Semantic Data Placement for CXL Memory Systems

Allen Aboytes, Pankaj Mehra Center for Research in Systems and Storage University of California, Santa Cruz

Center for Research in Systems and Storage

CRSS CONFIDENTIAL

Vector Processing Applications

Image Credits: ONERA, U.S. DOT, Pinecone, OpenAI, Flaticon.com

CRSS CONFIDENTIAL

Problem: Pressure on the Memory Hierarchy

Manoj Wadekar, Meta [FMS'24]

Needs large *memory capacity*

Wants high memory bandwidth

Issue: application working set >> accelerator memory capacity

Potential Solution: Memory Expansion

- Manage additional memory with software-based memory tiering
 - TPP [ASPLOS'23], Nimble [ASPLOS'19], HeMem [SOSP'21], TMTS [ASPLOS'23]

Limitations of Memory Tiering

What is the impact of a semantics-aware tiered memory system on resource utilization and application performance in heterogeneous systems?

Proposal: Semantic Data Placement

- Last time
 - Idea: Tiering for VPAs
- New Research
 - Refined ideas and system design
 - Work towards prototype
 - Identifying research challenges

Research Challenges

- How can application semantics be used to reduce **memory bandwidth consumption** and improve memory **goodput**?
- What effect does semantic data placement have on application **performance** and **memory utilization**?
- How can we organize metadata for hotness tracking and other management functions to improve **scalability**?

System Architecture Overview

M2T's Memory Allocation API: mnalloc

• Encodes application semantics to the system

- Captures characteristics of a program from the perspective of its data
- Similar approaches common in industry
 - Google: TMTS [ASPLOS'23], Meta: TPP [ASPLOS'23]

M2T's Memory Organization

- Adopt Twizzler's Memory Model [ACT'20]
 - Twizzler uses invariant pointers to memory objects as globally valid logical references
 - Software intercepts memory allocations and initial dereference only
- Semantic Slabs (SemSlabs)
 - Twizzler Memory Objects containing data allocated using **mnalloc**

Tracking and Migration at SemSlab Granularity

Application Integration

Applications link to the M2T runtime

Data Structure interface remains the same

Example: Scaling RAG Pipelines

Image Credits: https://gradientflow.com/techniques-challenges-and-future-of-augmented-language-models/

CRSS CONFIDENTIAL

Example: Scaling RAG Pipelines

What semantics can we express?

- Developers use mnalloc to steer how M2T places data
- Memory objects placed based on associated semantics
 - > Temperature \rightarrow Hot, Cold
 - Objects are "related": NextTo(r)
 - > Performance Insensitive → LatencyInsensitive, BwInsenstive
- PlacementDirective could be determined automatically
 - compiler techniques: Mira [SOSP'23], TrackFM [ASPLOS'24]
 - analyzing the call stack: TMC [SoCC'23], 2PP [PACT'15]

Goals for 2024-2025

- Implement a proof-of-concept M2T runtime
- Modify applications to use mnalloc
 - Initial focus on vector indexes and Vector DB's
 - Applicable to HPC, simulation, graph processing, DBMS, and kv-stores
- Evaluate the impact of semantic data placement
 - On application performance?
 - On memory utilization?

Conclusion

CRSS CONFIDENTIAL

- Vector Processing Applications need robust system architectures
 - to manage their growing memory footprint efficiently
 - CXL memory expansion provides a path forward
- Semantic data placement potentially impacts
 - application performance
 - system resource utilization

Hardware

Thank You

Allen Aboytes aaboytes@ucsc.edu

Questions?

Thank you to our sponsors!

Backup Slides

Simple Example: Using M2T to build a Linked List


```
struct Node {
  next: InvPtr<Node>,
  data: u64
}
let mut a = mnalloc::<Node>(Placement::None);
*a = Node::new(42);
let mut b = mnalloc::<Node>(Placement::NextTo(a));
*b = Node::new(101);
a.next.assign(b);
```

Use Case: DLRM Inference Embedding Offload

let itemEmbedding =
mnalloc(size,LowLatency)

Local Memory

let userEmbedding =
mnalloc(size,BwInsenstive)

CXL Memory

Image Credits: Nishant Kumar, "Deep Learning Recommendation Models (DLRM): A Deep Dive". Medium.

Towards Low Overhead Tracking

Figure 3: Page table scan time.

Amanda Raybuck, et al HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM. SOSP 2021.