Sparta: Practical Anonymity with Resistance to Traffic Analysis

Kyle Fredrickson, Ioannis Demertzis, Jim Hughes, Darrell D.E. Long

Metadata and Why You Care

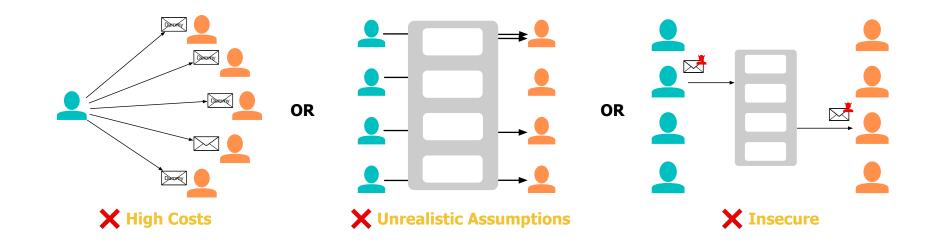
- **Goal:** Private messaging systems.
- Isn't encryption enough?
 - Necessary hides content
 - Not sufficient leaks metadata
- Metadata is extremely valuable.
 - "With enough metadata you don't really need content."
 - Former NSA General Counsel
 - Statistical Relational Learning

Metadata and Why You Care

"We kill people based on metadata."

Former NSA, CIA Director, Gen. Michael Hayden

Existing Work



Atom: H	orizontally Scal	Clarion: Anonymous Communication											
	Henry Corrigan-Gibbs			-		Cost of Metadata-hiding	trom Mult	ng Protocols					
MIT	Stanford Tor: The Second-Generation	MIT Onion Router	EPFL	С	ommunication with (Cryptographic Privacy	Saba Eskand UNC Chapel		Dan Boneh anford University				
Roger Ding, The Free Have, arma@freeha	n Project The Free Haven Project	Paul Syverson t Naval Research Lab syverson@itd.nrl.navy.mil		Saba Eskandarian Henry Corrig Stanford University MIT CS		Matei Zaharia Stanford University S	Dan Boneh Stanford University						
	menneyrenwerner	syverson & names and young			XRD:	Scalable Messa	ging System	aphic Privacy					
Return Addresses, and			The Dining Cryptographers Problem: ditional Sender and Recipient Untraceability			Albert Kwon MIT	David Lu MIT PRIME	Srinivas I S Mi					
Digital Pseudonyms David Chaum Centre for Mathematics and Computer Science, Kruislan 413, 10985J Amsterdam, The Netherlands David Chaum													
David L. Chaum Unobser University of California, Berkeley			unication over fu (extended ver	ılly untrusted infrastru sion)*	cture Vuvuz	Vuvuzela: Scalable Private Messaging Resistant to Traffic Analysis							
		LIT Aus	tian Angel tin and NYU I	Srinath Setty Microsoft Research		*Jelle van den Hoof	f, *David Lazar, Mat MIT CSA	Zeldovich					
Groove: F	lexible Metada	ta-Private Mess	aging	Sabre: Sender-Anor		ous Messaging		~ ~ ~	1				
Ludovic Barman EPFL	Moshe I Hebrew University	of Jerusalem	avid Lazar EPFL	Adithya University o adithya.vadapall	f Waterloo	Kyle Storrier University of Calgary yle.storrier@ucalg	Ryan Henry University of Calgary The Looni y	y x Anonymity System					
	Yossi Gilad niversity of Jerusalem	Nickolai Zeldov MIT CSAIL											
	· · · · · · · · · · · · · · · · · · ·						1. Piotrowska College London	Jamie Hayes University College London	Tariq Elahi <i>KU Leuven</i>				
						U	Sebastian Meiser niversity College Londo	George Dar On University Colleg					

Existing Work Doesn't Work

Choose one

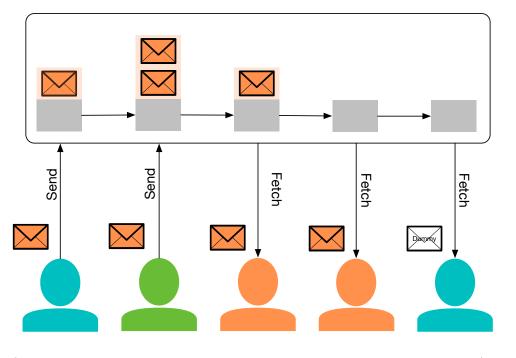
Q1: Can systems provide long-term traffic analysis resistance practically?

Q2: Can they be securely and scalably implemented?

Our Contributions

- Precise definitions of traffic analysis resistance.
- New class of anonymity system.
 - Provably resists traffic analysis
 - Under weak assumptions
 - With low costs (3400x reduction in traffic)
- Sparta: securely implements this class using Intel SGX.
 - Scalable (15x faster)
 - Usable
 - Deployable

CRSS CONFIDENTIAL


Our Contributions

- Precise definitions of traffic analysis resistance.
- New class of anonymity system.
 - Provably resists traffic analysis
 - Under weak assumptions
 - With low costs (3400x reduction in traffic)
- Sparta: securely implements this class using Intel SGX.
 - Scalable (15x faster)
 - Usable
 - Deployable

Oblivious MultiQueues (OMQs)

Time

OMQs are a set of queues.

Security Properties

- Send(q_i, m) should **not** leak which queue is written to
- Fetch (q_i, k) should **only** leak k

Deferred Retrieval

Traffic Analysis Resistance: No correlation between sender and receiver traffic.

Assumptions for OMQs

- Users fetch independently of received messages.
 - 🔽 Users can go offline
 - 🔽 Users can have different rates
 - Visers can change their rate, e.g. at night, while on cellular networks
 - X Users cannot change their rate based on received traffic (inherent)

Assumptions for Prior Work

- All users send one message during every interval *R*.
 - X Users cannot go offline.
 - X Users cannot have different rates
 - X Users cannot change their rate, e.g. at night, while on cellular networks.
 - X Users cannot change their rate based on received traffic (inherent)

What We Did

- Leakage Analysis
- New class of anonymity system.
 - 🔽 Provably resists traffic analysis
 - VInder weak assumptions
 - 🗸 With low costs
- Sparta: securely implements this deferred retrieval using Intel SGX.
 - Scalable
 - Usable
 - Deployable

Intel SGX

- Hardware-based trusted execution environment.
- Guarantees
 - Isolation establishes region of memory accessible only by an enclave.
 - Attestation enclave is running expected code.

Side Channels

Solution: SGX + Oblivious Algorithms

- A family of solutions implementing OMQS.
 - Sparta-LL optimized for low-latency
 - Sparta-SB optimized for high throughput
 - Sparta-D optimized for high throughput in a distributed environment

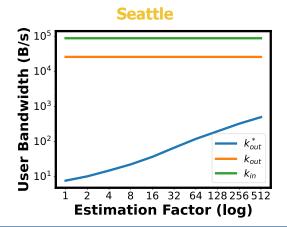
- A family of solutions implementing OMQS.
 - Sparta-LL optimized for low-latency
 - Sparta-SB optimized for high throughput
 - Sparta-D optimized for high throughput in a distributed environment

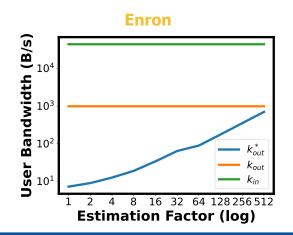
- Based on oblivious sort and oblivious compaction.
- Send (u_i, m) : appends a message into the state
- Fetch($\{u_i, k_i\}$):

					Pro	ocess	s Fe	etch							
1 Initial state		③ Combine/Sort			(4) Linear Scan				(5) Compact						
u ₂	u ₂ send		u _I	fetch	2	u j	l	fetch	2		u ₁	se	nd		
u _I	se	nd	u _I	send		u _I	l	send			u ₁	send	dum		
Message Store		u _I	send	dum	u _j	l	send	dum		u ₂	se	nd			
u ₂	fetch	1	u _I	send	dum	u _j	1	send	dum		u _I	fetch	2		
u _I	fetch	2	u ₂	fetch	1	u ₂	2	fetch	1		u ₁	send	dum		
Requests		u ₂	send		u ₂	2	send			u ₂	fetch	1			
(2) Expand Fetch		u ₂	send	dum	u ₂	2	send	dum		u ₂	send	dum			
	and Fe							fatala	0			Delive	r		
u ₂	send	dum				u _j		fetch 2			u ₁	send	dum		
u _I	send	dum						send			u ₂	send	dum		
u _I	send	dum				i		send	dum		u ₁	fetch	2		
						u _j		send	dum		u ₁	se	nd		
						u ₂	-	fetch	1		u ₁	send	dum		
							u ₂ send				u ₂	fetch	1		
						u_2	2	send	dum		u ₂	se	nd		
									New Message Store						

Experiment 1:

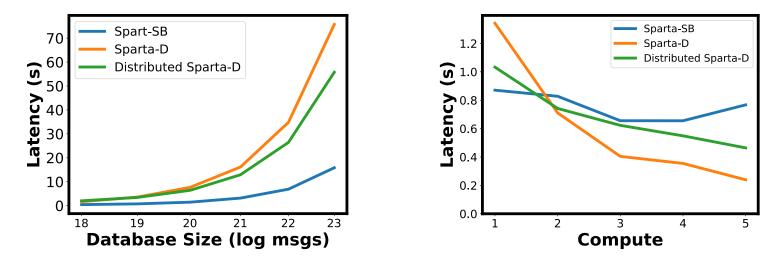
• How do our relaxed assumptions affect performance under real workloads?

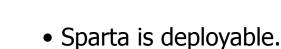

Experiment 2:


• How does Sparta perform as the database and compute scale?

Experiment 1 Results

- Our systems rely on estimations of a user's download rate.
 - Existing work network overhead under optimal download rates?
 - Sparta only how do imperfect estimations affect network overhead?
- 3400x reduction in overhead for the same latency (optimal)
- 710x reduction in overhead for the same latency (estimate OOM)





Experiment 2 Results

- 15x improvement over prior fastest work.
- Experiment 2.1 scaling up the size of the database state.
- Experiment 2.2 scaling up the amount of compute allocated to the systems.

• Sparta is usable.

Conclusion

Contributions

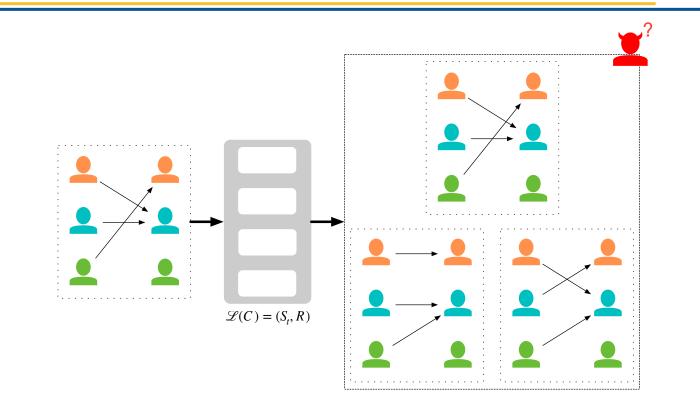
• We formalized traffic analysis resistance.

• Deferred retrieval leads to orders of magnitude cheaper systems.

• Our implementations are an order of magnitude faster.

News & Upcoming Work

- Sparta was accepted!
 - IEEE Security & Privacy (Oakland) 2025
- SoK: The Traffic Analysis and Performance of Anonymous Communication Systems
 - Submitting to Oakland tomorrow
- Under Construction
 - Synchronous Systems are Dead; Long Live the Asynchronous
 - Raptor: Recipient Adjustable Padding for Traffic Analysis Resistance
 - Graduating in Spring 2025


Thanks for Listening!

Kyle Fredrickson kyfredri@ucsc.edu

Leakage Analysis

