
© 2024 Arm AI
-g

en
er

at
ed

 im
ag

eMatt Bromage
November 14, 2024

CRSS Keynote –

Designing Infrastructure
for the AI Era
Considerations in the use of “Near-Data Compute”

2 © 2024 Arm

The Cost of AI Inferencing

3 © 2024 Arm

“Far” Memory Can Reduce Infrastructure Costs
How?
• DRAM reuse
• Smaller DIMM capacities
• Reduction of “stranded memory”
• Server disaggregation

But at what cost?
• Higher latencies
• Additional hardware (CXL controllers, CXL switches, chassis)
• Additional complexity (tiering, mgmt., RAS considerations,

security)

Dev 7Dev 6Dev 5Dev 3Dev 2Dev 1Dev 0

Host 6Host 5Host 4Host 3Host 2Host 1Host 0 Host 7

Dev 4

Chassis

4 © 2024 Arm

Not all Inferencing is Equal…
Key Insight - not all inferencing has the same QoS requirements (ex: paid vs free,
batch vs live)
• By relaxing QoS requirements you can extend the allowable computational time

for inferencing tasks, opening the door to using CXL-attached memory to reduce
infra costs

Thesis: by using CXL-attached memory paired with computational cores (Near-
Memory Compute) and offloading AI inferencing tasks according to memory
sensitivity, we can reduce both the datacenter infrastructure costs as well as the
inferencing latencies inflated by using CXL memory

5 © 2024 Arm

The Case for Near-Memory Compute
OCP Composable Memory Systems (CMS) workgroup

6 © 2024 Arm

Adding HW Coherency + Compute to CXL Controllers
Chip size is dominated by IO blocks

8 DDR5 channels @6400:
• 2 TB Capacity
• 200 GB/s BW.

DCD

G
en6 x8

G
en6 x8

G
en6 x8

G
en6

G
en6x8

Host
0

Host
1

Host
2

Host
3

G
en6 x8

G
en6 x8

G
en6 x8

G
en6

G
en6x8

Host
4

Host
5

Host
6

Host
7

Measurements assuming 5nm design

7 © 2024 Arm

Silicon Area Estimates
Coherency logic and compute cores can fit inside
the 2.5 x 6 (15 sqmm) box:

Pooled FAM Logic: ~ 7 sq mm
•Memory/CXL Controllers
•8x8 Switching logic

 +

Shared FAM Logic: ~ 6 sq mm
•Home Nodes for host/device coherency
•Snoop Filter

 +

Optional Capabilities ~ 2 sq mm
•System Level Cache
•Near-Memory Compute (NMC) cores

8 © 2024 Arm

Application Profiling for Targeted Offload

Applications have various levels of sensitivity to memory latency increases and are not
harmed uniformly. We should therefore investigate offloading at the function level of
granularity

Function-level comparison of an application
running locally and then with a simulated
memory delay added

Start of
application not
as affected by
memory latency
increases

9 © 2024 Arm

Designing a Compute Placement Algorithm
We need to define a multi-objective function:
• Maximize the “far” memory allocation
• Minimize the total run-time of the inferencing model (referred to as “latency”)
• Weighted sum cost function w/ weights [0-1] selected to prioritize host data placement or latency

We wrote a combined Memory-Compute Placement Algorithm which takes the cost
function bias as input, as well as profiled runtime costs for running each layer in every
combination of local and remote
This algo outputs annotations for each layer of the ML model, designating various
memory and compute location as either local or remote
We used a modified Tensorflow runtime to accomplish both control levers for memory
and compute placement, both during profiling and executing with these annotations
• Memory is placed either local or remote via libnuma

• Compute is placed local or remote via thread affinity

10 © 2024 Arm

Results

For optimal placement of both compute and
memory, we want to hit the bottom-left
corner: use as much far memory as possible
and take as little time as possible

By utilizing the Memory-Compute Placement
algorithm, average latency is reduced by
~15% while also making use of far CXL
memory

BOTH MEMORY
AND COMPUTE
ARE REMOTE

BOTH MEMORY
AND COMPUTE
ARE LOCAL

MEMORY REMOTE,
COMPUTE LOCAL

Memory
offloaded to
CXL device

Compute offloaded to CXL device

11 © 2024 Arm

Key Takeaways
• AI infrastructure is expensive! So too will be dedicated inferencing data centers…
• “Far” memory can be part of the solution to reduce costs, with some tradeoffs

• Flexibility on QoS requirements is the key
• The addition of Near-Memory Compute can help mitigate the latency and

bandwidth limitations inherent in using “far” memory
• In some cases, NMC can completely recoup all lost performance

• Data Placement and Compute Placement are both important
• In fact, the most efficient use of far memory requires compute offload; not something data placement

can solve alone
• Challenges of course exist:

o CXL controllers need to include dedicated Near Memory Compute resources
o Shared addressing or full coherence between host and device is needed for efficient offload
o Standardization of offload instructions - kernel sys calls need to be handled correctly
o Cross-ISA offloading requires additional consideration
o Software profiling for memory sensitivity is required for this approach

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

ధన#$ాదమ(ల*
© 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2024 Arm

