Bede: Exploiting CXL-Memory for Cluster Job Scheduling

Pooneh Safayenikoo, Yuanchao Xu, Tanvir Ahmed Khan, Andrew Quinn Center for Research in Systems and Storage University of California, Santa Cruz

1

BaskinEngineering

CRSS CONFIDENTIAL

Center for Research in Systems and Storage

Motivation

- ❖ **Scheduling is a key function in computer systems**
	- \triangleright Managing clusters (e.g., Kubernetes, Mesos, Borg)
	- \triangleright Handling data analytics (e.g., Spark, Hadoop)
	- \triangleright Running machine learning and LLM jobs (e.g., PyTorch)
- ❖ **An efficient scheduler is crucial for large data centers**
	- \triangleright Even small improvements can lead to millions in cost savings at scale

MESOS

My Vision: Rethinking the Way We Schedule Cluster Jobs

❖ **Solution**

 \triangleright CXL. mem shared memory pools can solve queuing delay!

CRSS

Bede Design

Research Questions

● What's the potential of CXL.mem Memory Pooling to improve jobs scheduling performance?

● **How do we configure CXL data center to achieve the best possible benefits?**

● **How do we schedule the jobs across the CXL and DRAM to achieve the best performance?**

Contributions

- **● What's the potential of CXL.mem Memory Pooling to improve jobs scheduling performance?**
	- Conduct the study to show that CXL.mem has the potential to improve average completion time up to an order of magnitude.
- **How do we configure CXL data center to achieve the best possible benefits?**
	- Build the simulator to explore the Bede configuration space and show that small pod (8-16 machines) with most memory on DRAM achieved most of the performance benefit.
- **How do we schedule the jobs across the CXL and DRAM to achieve the best performance?**
	- Two new scheduling algorithms outperforms by on average 4.9X.

Overview of Study 1

● **Objective**

○ Investigate if CXL.mem can accelerate job performance in real-world cluster job scheduling scenarios and identify key properties of memory-based scheduling delays in real-world workloads.

Azure17

Azure19

● Methodology

- Real world traces
	- **Azure 17 and Azure 19**
- Configuration:
	- 100th percentile of requested CPU
	- Machines with 192 cores, matching large cloud instances
	- 50th, 75th, 85th, 95th percentile of requested memory
- Scheduling algorithm
	- FIFO and SJF
	- Both use greedy resource allocation strategy

378GiB

573 GiB

379 GiB

578 GiB

382 GiB

593 GiB

375GiB

666 GiB

346944 628608

Memory-Based Delays: Most jobs experience significant delays due to memory constraints, even with clusters near peak memory usage.

Fragmented Memory: Majority of delays occur due to fragmented memory, where total memory is sufficient but not available on any single machine.

Scheduling Algorithms: SJF reduces scheduling delays by about 50% compared to FIFO but does not fully eliminate them.

CRSS CONFIDENTIAL

Key Findings

- **Insight 1**
	- **Memory-Based Delays:** Most jobs experience significant delays due to memory constraints, even with clusters near peak memory usage.
- **Insight 2**
	- **Fragmented Memory:** Majority of delays occur due to fragmented memory, where total memory is sufficient but not available on any single machine.
- **Insight 3**
	- **Scheduling Algorithms:** SJF reduces scheduling delays by about 50% compared to FIFO but does not fully eliminate them.

CXL.mem can help reduce scheduling delay by avoiding memory fragmentation within a cluster

Overview of Study 2

Objective

- Identifying whether the reduction in scheduling delay outweighs job slowdown when using a CXL.mem memory pool
- **● Methodology**
	- Real world trace
		- Azure 17
	- Configuration
		- 100th percentile of requested CPU
		- 85 cluster (a cluster deployed with the 85th percentile of requested memory)
		- All of its memory in a single memory pool
		- Varying application slowdown from 1.1 to 2.0 (all applications have the same slowdown)
	- Scheduling algorithm
		- FIFO

Per-job Speedup with CXL under Slowdown Condition

The median job is a nearly an order of magnitude faster when application slowdown is 10%

Contributions

- **● What's the potential of CXL.mem Memory Pooling to improve jobs scheduling performance?**
	- Conduct the study to show that CXL.mem has the potential to improve average completion time by up to an order of magnitude.
- **How do we configure CXL data center to achieve the best possible benefits?**
	- Build the simulator to explore the Bede configuration space and show that small pod (8-16 machines) with most memory on DRAM achieved most of the performance benefit.
- **How do we schedule the jobs across the CXL and DRAM to achieve the best performance?**
	- Two new scheduling algorithms outperform prior work by 4.9X on average.

Simulator

Simulator

CRSS CONFIDENTIAL

Slowdown Model

● Slowdown Models

- Required to simulate CXL.mem memory pool impact on job latency.
- Predicts slowdown when local memory resources are reduced.
- **● Challenges**
	- CXL.mem memory pools are not yet commercially available.
- **● Simulator Approach**
	- Uses a two-socket NUMA machine to simulate CXL.mem pools.
	- Varies local memory via mlock() and fits a degree 3 polynomial for slowdown.
- **● Mitigation Strategy**
	- Includes a tunable **scale factor** to adjust CXL.mem pool performance relative to NUMA.
	- Example: Scale factor of 2 means CXL.mem is twice as slow as NUMA.

The number of Machines Per Pool CRSS RC19 RC17 GoogleB $\frac{1}{2}$ Knee Point RC19 --- Knee Point RC17 --- Knee Point GoogleB Scale = 0.5 , Mem Cluster = 0.5 Time 400000 Avg. Compl 300000 10 20 30 **Machines per Pool**

The number of Machines Per Pool

The number of Machines Per Pool

CRSS CONFIDENTIAL

Server-Pool Memory Split

Server-Pool Memory Split

Server-Pool Memory Split

CRSS CONFIDENTIAL

Contributions

- **● What's the potential of CXL.mem Memory Pooling to improve jobs scheduling performance?**
	- Conduct the study to show that CXL.mem has the potential to improve average completion time by up to an order of magnitude.
- **How do we configure CXL data center to achieve the best possible benefits?**
	- Build the simulator to explore the Bede configuration space and show that small pod (8-16 machines) with most memory on DRAM achieved most of the performance benefit.
- **How do we schedule the jobs across the CXL and DRAM to achieve the best performance?**
	- Two new scheduling algorithms outperform prior work by 4.9X on average.

Intuitions

● E-PVM (Enhanced version of the Parallel Virtual Machine)

○ When a job arrives, it calculates the marginal cost of assigning the job to each machine and assigns the job to the machine with the smallest cost.

● **Tetris**

○ Packing heuristic + Job Completion Time Heuristic

"alignement" = Job's demand vector * Machine resource vector

EVPM-Far

❖ **For job J, select the machine with the minimum score among N runnable machines:**

$$
for M = 1, 2,..., N
$$
\n
$$
J_{Mem_LM} = min(M_{unused_Mem}, J_{Mem}), \quad J_{Mem_Pool} = J_{Mem_LM}
$$
\n
$$
Score_M = (J_{CPU} * M_{unused_CPU}) + \frac{1}{2} (J_{Mem_LM} * M_{unused_Mem}) + \frac{1}{2} (J_{Mem_Pool} * Pool_{unused_Mem})
$$
\n
$$
S_{min} = min_{M=1}^{N} Score_M
$$

T-Far

❖ **For machine M, select the job with the maximum score among P runnable jobs:**

If Job's demand vector < Machine resource vector

a = Job's demand vector * Machine resource vector $for l = 1, 2,..., P$ $J_{Mem_LM} = min(M_{unused_Mem}, J_{Mem}),$ $J_{Mem_Pool} = J_{Mem_LM}$ $a_j = \left(\frac{J_{CPU}}{M_{CPU}} * M_{unused_CPU}\right) + \left(\frac{J_{Mem_LM}}{M_{Mem}} * M_{unused_Mem}\right) + \left(\frac{J_{Mem_Pool}}{Pool_{mem}} * Pool_{unused_Mem}\right)$ $b_j = \left(\frac{J_{\text{CPU}}}{M_{\text{CPU}}} + \frac{J_{\text{Mem_LM}}}{M_{\text{Mem}}} + \frac{J_{\text{Mem_Pool}}}{Pool_{\text{Mem}}}\right) * J_{\text{exe}} * Slowdown(J_{\text{Mem_LM}})$ Score_J = $a_j - (\frac{\overline{a_j}}{\overline{b_j}}) * b_j$ **b** = Job's demands * Job's durations * Job's slowdown S_{max} = $max_{l=1}^{P} Score_{l}$

Scheduling Policies

Scheduling Policies

CRSS CONFIDENTIAL

Scheduling Policies

CRSS CONFIDENTIAL

CRSS CONFIDENTIAL

Conclusion

Resource Utilization & Performance Optimization

- Addressed the need for improved resource management in compute clusters.
- Leveraged **Compute Express Link (CXL) memory pools** for enhanced resource efficiency.

● **Bede**

- **Two new schedulers** optimize job placement across memory tiers.
- **Configuration simulator** finds optimal cluster configurations for maximizing performance improvements

● What did we learn?

- **○** Batch jobs and their completion times in real-world traces
- More realistic baselines other than FIFO and SJF (adding borg and tetris)
- Low-utilization in clusters and oversubscription
- Heterogeneous machines

● Future work

- **○** Alternative far memory technologies (RDMA and SSDs)
- Real-world prototype
- OSDI submission

