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Abstract

We have adapted a multi-order context modeling tech-
nique used in the data compression method Prediction
by Partial Match (PPM) to track sequences of file ac-
cess events. From this model, we are able to determine
file system accesses that have a high probability of oc-
curring as the next event. By prefetching the data for
these events, we have transformed an LRU cache into a
predictive cache that in our simulations averages 15%
more cache hits than LRU. In fact, on average our four-
megabyte predictive cache has a higher cache hit rate
than a 90 megabyte LRU cache.

1 Introduction

With the rapid increase of processor speeds, file sys-
tem latency is a critical issue in computer system per-
formance [14]. Standard Least Recently Used (LRU)
based caching techniques offer some assistance, but by
ignoring any relationships that exist between file sys-
tem events, they fail to make full use of the available
information.

We will show that many of the events in a file sys-
tem are closely related. For example, when a user
executes the program make, this will often result in
accesses to the files cc, as, and ld. Additionally,
if we note an access to the files make and makefile
then another sequence of accesses: program.c, pro-
gram.h, stdio.h, : : : , is likely to occur. As a result,
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the file system behaves predictably. Thus a predictive
caching algorithm that tracks file system events and
notes predictive sequences can exploit such sequences
by preloading data before it is required. This increases
the cache hit ratio and reduces file system latency.

As in data compression, where a model drives a
coder, our predictive cache can be divided into two
portions: the model that tracks the sequences of previ-
ous events and the selector that uses this information to
determine likely future events and prefetch their data.
Our model tracks previous file system events through a
finite multi-order context modeling technique adapted
from the data compression technique Prediction by
Partial Match (PPM) [2]. This model uses a trie [9]
to store sequences of previous file system events and
the number of times they have occurred. Our selec-
tor examines the most recently seen sequences and the
counts of the events that have followed them to deter-
mine likely next events. Using these predictions, we
augment an LRU cache by prefetching data that are
likely to be accessed. The result is a predictive caching
algorithm that in our simulations averaged hit ratios
better than an LRU cache that is 20 times its size.

The rest of this article is organized as follows: x2 de-
tails the method used to model events and select events
to prefetch, x3 presents our simulations and results, x4
describes related work, x5 discusses future work, and
x6 concludes the paper.

2 Predictive Caching Method

The problem of tracking file system events and the
sequences in which they occur is quite similar to the
text compression problem of tracking strings of char-
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acters to model their frequency distributions. The use
of data compression modeling techniques for prefetch-
ing in operating systems was first investigated Vitter,
Krishnan and Curewitz [19, 4]. It was their work that
inspired us to adapt PPM’s modeling techniques, to
track file system events instead of characters of an al-
phabet. Using the information tracked by our model
we chose a method based on a likelihood threshold to
select the events to prefetch.

2.1 Context Modeling

Just as a word in a sentence occurs in a context, a char-
acter in a string can be considered to occur in a context.
For example, in the string “object” the character “t” is
said to occur within the context “objec”. However, we
can also say that “t” occurs within the context “c”, “ec”,
“jec”, and “bjec”. The length of a context is termed its
order. In the example string, “jec” would be consid-
ered a third order context for “t”. In text compression
these contexts are used to model which characters are
likely to be seen next. For example, given that we
have seen the context “object” it may be likely that the
next character will be a space, or possibly an “i”, but
it is unlikely that the next character is an “h”. On the
other hand, if we only consider the first order context,
“t”, then “h” is not so unlikely. Techniques that track
multiple contexts of varying orders are termed Multi-
Order Context Models [2]. To prevent the model from
quickly growing beyond available resources, most im-
plementations of a multi order context model limit the
highest order tracked to some finite number (m), hence
the term Finite Multi-Order Context Model.

At every point in the string, the next character can
be modeled by the last seen contexts (a set of order 0
throughm). For example, take the input string “objec”
and limit our model to a third order (m = 3). The next
character can now be described by four contexts f ø,
“c,” “ec,” “jec” g. This set of contexts can be thought
of as the current state of whatever we are modeling, be
it a character input stream or a sequence of file system
events. With each new event, the set of new contexts
is generated by appending the newly seen event to the
end of the contexts that previously modeled our state.
If the above set was our current state at time t, and
at time t + 1 we see the character “t”, our new state

is described by the set f ø, “t,” “ct,” “ect” g. The
nature of a context model, where one set of contexts
is built from the previous set, makes it well suited for
a trie1 [9], where the children of each node indicate
the events that have followed the sequence represented
by that node. A resulting property of this trie is that
the frequency count for each current context is equal
to the sum of its children’s counts plus one2. It is from
this property that we derive our probability estimate in
x2.3.

2.2 Tracking File System Events

In our model contexts are sequences of file system
events. To store all the previously seen contexts we
use a trie. Each node in this trie contains a specific
file system event. Through its path from the root, each
node represents a sequence of file system events, or a
context, that has been previously seen. Within each
node we also keep a count of the number of times this
sequence has occured.

To easily update our model and use it to determine
likely future events, we maintain an array of pointers,
0 through m, that indicate the nodes which represent
the current contexts (C0 through Cm). With each new
event A, we examine the children of each of the old
Ck, searching for a child that represents the eventA. If
such a child exists, then this sequence (the new Ck+1)
has occurred before, and is represented by this node’s
child, so we set the new Ck+1 (the k + 1th element
of our array) to point to this child and increment its
count. If no such child is found, then this is the first
time that this sequence has occurred, so we create a
child denoting the event A and set the k+ 1th element
of our array to point to its node. Once we have updated
each context in our set of current contexts, we have
a new state that describes our file system. Figure 1
extends an example from Bell [2] to illustrate how
this trie would develop when given the sequence of

1A trie is commonly used as as a efficient data structure to hold
a dictionary of words. It is based on a tree in which each node
contains a specific character. Each node then represents the sequence
of characters that can be found by traversing the tree from the root
to that node.

2Note that since nodes of ordermmust have children (which will
be leafs), a model of orderm requires a trie of orderm+ 1.
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Figure 1: Example tries for the sequence CACBCAABCA.

events CACBCAABCA. The first three tries show how
our model builds from the initial (empty) state. The
last trie shows how our model would look after the
entire sequence. The current contexts at each stage are
indicated by the circled letters.

2.3 Selecting Events to Prefetch

As we generate each of the new contexts, we
examine their children to determine how likely
they are to be the next event. Using the for-
mula CountChild=(CountParent � 1) we generate a
maximum-likelihoodestimation [17] of the probability
of that child’s event occurring. We compare this esti-
mate to a probability threshold set as a parameter of our
algorithm. If the estimated likelihood is greater than or
equal to this threshold, then the data accessed for this
event is prefetched into the cache. We evaluate each

context 1 throughm independently, resulting inm sets
of predictions. The zero order context is a Least Fre-
quently Used (LFU) model and therefore was thought
to be of little benefit. Consequently the selector does
not examine the zero order context for predictions.

Prefetched data is placed at the front of our cache,
and since cache replacement is still LRU, the data will
most likely be in the cache for the next several events.
The result is that although our cache prefetches based
on predictions for what the next event will be, since
the prefetched data is likely to be in the cache for more
than just the next event, as long as the event occurs
before its data is removed from the cache we still avoid
a cache miss.
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3 Simulation

To simulate the workload of a system, we used file
open events from the Sprite file system traces [1]. We
chose to consider whole file caching for three reasons.
The primary purpose of our work is to avoid the latency
of file system accesses; if a whole file can be cached,
this reduces the number of transactions with the I/O
subsystem on behalf of that file, and in turn reduces the
latency of our file system. Whole file caching has been
used effectively in several distributed file systems [7,
8, 18]. In a mobile environment the possibility of
temporary disconnection and the availability of local
storage make whole file caching the best option.

We split the file system traces into eight 24 hour
periods lettered A through H. Given the time frame
and environment under which these traces were gen-
erated, we chose a cache size of four megabytes as a
reasonable size for our initial tests. After developing an
understanding of how the various parameters effected
performance, we explored our model’s performance
for cache sizes up to 256 megabytes.3

3.1 Prefetch Threshold

Our first goal was to examine which probability thresh-
olds would result in the best hit ratios. Figure 2 shows
how our hit ratio varied as the threshold settings ranged
from a probability of 0.001 to 0.25. From this graph
we can see that a setting in the region of 0.05 to 0.1
will offer the best performance. From Griffioen and
Appleton’s work [6] and our earlier work, we expected
this setting to be quite low. Even so, it is surprising
that such an aggressive prefetch threshold produced the
best results.

To explain this, we first consider that each trace is
comprised of over 10,000 distinct files. Since each
of these files can be a child to any node, the tree we
build will become very wide. Since the count for each
parent is the sum of the counts for its children, such
a wide tree would result in parents with much higher
counts than their individualchildren. It follows that the
parent count divided by the count of children would be

3For readability our graphs only show cache sizes up to 128
megabytes.

rather low even for children that frequently follow their
parent.

For settings greater than 0.025, performance does
not change radically with minor variations. However
for settings below 0.025 we see a sharp drop in perfor-
mance as a result of prefetching too many files. Thus
we can say that this algorithm is stable for settings of
the probability threshold that are greater than 0.025.

3.2 Number of Files Prefetched

We were initially concerned that these low threshold
settings might have resulted in prefetching an imprac-
tical number of files, but this is not the case. In fact,
for a probability threshold of 0.075 the average number
of files prefetched per open event ranged from 0.21 to
1.10 files. Figure 3 shows how the average number
of prefetches varied for the same settings of proba-
bility threshold used in x3.1. This graph shows that
for extremely low threshold settings, less than 0.025,
the number of files prefetched quickly becomes pro-
hibitive. However, for settings in the region of 0.05–
0.1, the average number of files prefetched would not
impose an excessive load.

3.3 Maximum Order of the Model

To see how much benefit was gained from each order of
modeling, we simulated models of order ranging from
zero through four. Since we ignore the predictions
of the zero order model, a zero order cache does not
prefetch, and is therefore equivalent to an LRU cache.
Figure 4 shows how performance varied over changes
in model order. While we expected to gain mostly
from the first and second orders, the second order im-
proved performance more than we had expected, while
fourth and higher orders appeared to offer negligible
improvements. We hypothesize that the significant in-
crease from the second order model comes from its
ability to detect the combination of some frequently
used file (e.g. make or xinit) and a task-specific file
(e.g. Makefile or .xinitrc).
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Figure 2: Cache hits versus prefetch threshold (cache size 4 megabytes, second order, threshold settings 0.001, 0.01,
0.025, 0.05, 0.075, 0.1 and 0.25).

3.4 Improvements Over LRU

With a firm understanding for the appropriate parame-
ters of our model, we compared our predictive cache to
an LRU cache. For this comparison, both caches simu-
lated four megabytes of cache memory. Our predictive
cache extended to the second order and prefetched at
a conservative threshold of 0.1. Table 1 shows the re-
sults of our simulations. Our predictive cache clearly
offered significant improvements over the performance
of LRU on all eight traces, averaging 15% more cache
hits than LRU and, in the case of trace E as much as
22% more.

3.5 Cache Size

One key concern we had was whether the benefit from
our predictive cache would quickly diminish as the
size of our cache grew. In order to investigate this we
simulated an LRU cache and our predictive cache for
varying cache sizes up to 256 megabytes. Figures 5
and 6 show how the cache hit ratios varied as we in-
creased the cache size. From these graphs it is clear
that tracking file system actions offers a performance
gain that will not easily be overcome by increasing

the size of an LRU cache. For example, on average it
would require a 90 megabyte LRU cache to match the
performance of a 4 megabyte predictive cache.

3.6 Model Memory Requirements

The amount of memory required in our current im-
plementation is directly proportional to the number of
nodes in our trie. On average a second order model
required 238,200 nodes. Since our implementation re-
quired 16 bytes per node, the memory required by a
third order model should be well under four megabytes.
While this model takes almost as much memory as
the cache it models, we note that this additional four
megabytes seems negligible when compared to the ad-
ditional 86 megabytes that would be required for an
LRU cache to see equivalent performance. It should
also be noted that model size is independent of cache
size, therefore a 32 megabyte predictive cache would
still require less than four megabytes of model space.

Additionally, in our initial implementation we have
made no effort to efficiently use memory in our model.
We intend to expand on methods used successfully
in the compression technique DAFC [13], to limit the
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Figure 3: Average number of files prefetched per open event versus prefetch threshold (cache size 4 megabyte, second
order, threshold settings 0.001, 0.01, 0.025, 0.05, 0.075, 0.1 and 0.25).

Trace A B C D E F G H
Predictive 56.1% 74.6% 75.0% 73.2% 77.1% 70.0% 77.7% 79.8%
LRU 48.5% 59.7% 59.8% 57.2% 54.9% 54.0% 58.4% 68.8%
Improvement 7.6% 14.9% 15.2% 16.0% 22.2% 16.0% 19.3% 11.0%

Table 1: Hit ratios for LRU and predictive caches (cache size 4 megabytes, second order model, threshold 0.1).

number of children that each node in our context model
has, and to periodically refresh parts of the set of chil-
dren by releasing links taken up by less frequently seen
children. We expect that this modification will not only
significantly reduce the memory requirements of our
model, but will also allow it to adapt to patterns of
local activity. Limiting the number of children a node
can have will also ensure that the time required to up-
date our model and predict new accesses is limited to
a constant factor.

4 Related Work

Vitter, Krishnan and Curewitz were the first to examine
the use of compression modeling techniques to track
events and prefetch items [19]. They prove that such
techniques converge to an optimal online algorithm.

They go on to test this work for memory access pat-
terns [4] in an object oriented database and a CAD
system. They deal with the large model size by paging
portions of the model to secondary memory, and show
that this can be done with negligible effect on perfor-
mance. Additionally they suggest that such methods
could have great success within a variety of other ap-
plications such as hyper-text. Our work adapts PPM
in a different manner. We avoid the use of vine point-
ers [2, 10] and instead keep an array of the current
contexts. Their method of selection for prefetching
(choosing the n most probable items, where n is a
parameter of their method) differs from the threshold
based method we use. Lastly, the problem domain we
examine (file systems access patterns) differs from that
which they have worked under (virtual memory access
patterns).
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Figure 4: Cache hit ratio versus model order (cache size 4 megabytes, prefetch threshold 0.1).

Within the domain of file systems, Griffioen and
Appleton [6] have worked to developed a predictive
model that for each file accumulates frequency counts
of all files that are accessed in a window after the
first. These frequency counts are then used to drive a
prefetching cache. Their prediction model differs from
ours in that they look at more than just the next event.
Additionally, they only consider a first order model.
Nevertheless, the method of prefetch selection based
on a probability threshold was first presented in their
work.

Kuenning, Popek, and Reiher [12] have done ex-
tensive work analyzing the behavior of file system re-
quests for various mobile environments with the intent
of developing a prefetching system that would predict
needed files and cache them locally. Their work has
concluded that such a predictive caching system has
promise to be effective for a wide variety of environ-
ments. Kuenning has extended this work [11], devel-
oping the concept of a Semantic Distance, and using
this to determine groupings of files that should be kept
on local disks for mobile computers.

Patterson, et al. [16, 15], have modified a compiler
and file system to implement a method called Trans-
parent Informed Prefetching where applications inform

the file system which files to prefetch. While this
method can offer significant improvements in through-
put, it is dependent on the applications ability to know
its future actions. For example cc would only know
which header files it would need once it had read in
the line #include hstdio.hi, while our our predictive
model could notice that every accesses to program.c
causes an access to stdio.h. Finally, such an applica-
tion specific method would not be able to make use
of any relationships that exist across applications (e.g.
between make and cc).

Cao et al. [3] have approached this problem from a
unique perspective, by examining what characteristics
an off-line prefetching technique would require to be
successful.

5 Future Work

The following items are intended as areas of future
exploration:

Trie memory requirements – Our current imple-
mentation was designed as a proof of concept without
concern for the memory usage of our predictive trie.
Both Griffioen [5] and Curewitz [4] successfully ad-
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Figure 5: Cache hit ratio versus cache size for both predictive cache and LRU (cache sizes 1–128 megabytes).

dress this issue. We hope to expand on their work,
in conjunction with data compression techniques. We
expect that our predictive cache will see significantly
improved efficiency after we implement a fixed limit on
the number of children each node can have. Addition-
ally, methods that give more weight to more recently
seen patterns and purge old informations not only re-
duce the model size, but also can improve performance.

Predicting from grandparents – It is quite possible
for one file open event to be the cause of two future
events that occur closely. As a result, the order of these
two events may vary. For example, an open of file B
causes opens to files A and C, so we would have one
of two resulting sequences BAC or BCA. We intend
to investigate using all the descendants of a context to
predict possible variations in the ordering of events.
Using the final tree from Figure 1, if we see an open
of file B, then we would not only prefetch file C but
also file A as well. Such a forward-looking prediction
would enable us to avoid cache misses for the sequence
BAC as well as BCA.

Modifications to the prefetching algorithm –
Curewitz’s [4] approach to prefetching is to select the
n most likely items (where n is a parameter of the
model). We intend to investigate a combination of this

method and the threshold based selection that we have
used by placing a limit on the number of files that can
be prefetched. We also intend to investigate the effect
of having different threshold settings for each order of
the model.

Predictive replacement – While our cache is based
on a predictive model to prefetch files, it still uses
LRU to determine which files to expel from the cache
when space is needed. Using our predictive model to
determine cache replacements may offer further im-
provements in performance.

Read wait times – While cache hit ratios are com-
monly used to measure the performance of a caching
algorithm, we are mostly concerned with the amount
of time that is spent waiting for file access events to
complete. Our intent is to extend our simulation to
include read-wait times allowing us to account for the
additional I/O load generated by prefetching.

Selection by cost comparison – Finally we intend
to explore a prefetching selection model that uses the
estimated probabilities of our model, in conjunction
with other factors, such as memory pressure and file
size, to estimate the cost, in terms of read-wait times.
These estimates would be used in each case to decide
if it was more beneficial to prefetch or not. Our hope is
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Figure 6: Cache hit ratio versus cache size for both predictive cache and LRU (cache sizes 1–128 megabytes).

that such a parameterless selection method will adjust
to changing file system behavior.

6 Conclusions

Our prediction model shows how file system events
can successfully be modeled with the multi-order tech-
niques used in PPM. Through trace driven simulations,
we have demonstrated that this model can be used ef-
fectively to predict future file system events. From
our ability to effectively predict future events based
on previous file system events, we have shown strong
empirical evidence that there exists consistent and ex-
ploitable relationships between file accesses.

As the I/O gap widens due to advances in proces-
sor design, file system latency will become a greater
hindrance to overall performance. By exploiting the
highly related nature of file system events we can use
methods such as predictive caching to reduce file sys-
tem latency and improve overall system performance.
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