
Scalable Security for High Performance,
Petascale Storage

Technical Report UCSC-SSRC-07-07
June 2007

Andrew W. Leung
aleung@cs.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

Abstract

Petabyte scale, high-performance parallel file systems often hold sensitive data and thus require secu-
rity, but authentication and authorization have the potential to reduce performance dramatically because
of the high number of clients and devices, data distributionacross both clients and devices, and bursty
and demanding workloads. Existing security protocols perform poorly in these environments because
they do not scale well—the number of security operations is strongly tied to the number of devices and
requests. To address these issues, we developed Maat, a security protocol designed to provide strong,
scalable security in petabyte-scale parallel file systems.Maat introduces three new techniques:extended
capabilities, automatic revocation, andsecure delegation, all of which act to limit the number of cryp-
tographic operations as the number of devices and requests becomes large. Extended capabilities allow
a single capability to authorize I/O for any number of clients to any number of files, greatly limiting
the number of capabilities needed. Automatic revocation uses short capabilities lifetimes to allow sim-
ple capability expiration to act as a global revocation and renews non-revoked capabilities in batches,
reducing the number of cryptographic operations required.Secure delegation allows clients to securely

act on behalf of a group to open files and distribute access, reducing the number of operations for large,
joint computations. Experiments on the Maat prototype we implemented in the Ceph high-performance
storage system show an overhead of as little as 6-7% over insecure operation for high performance work-
loads. By implementing strong authentication and authorization without a large performance penalty,
Maat enables secure access to high-performance petabyte-scale storage.

1 Introduction

The demand from science, research, and business for large, high-performance storage has risen in recent
years. High performance computing (HPC) scientific applications such as physical and chemical simu-
lations have demanding I/O patterns, and their large data sets require terabytes to petabytes of storage.
Businesses such as Google and Yahoo! also have HPC applications such as MapReduce [8] that require
giant web indices or image archives, placing a heavy load on storage infrastructure. Securing such large-
scale HPC storage systems is an important challenge becauseof the large number of users and potentially
sensitive data stored on them. For example, scientific research data stored on large-scale storage systems can
include highly classified data; even unclassified data, suchas simulations of drug effectiveness or geologic
survey analysis data for oil drilling, can be worth millionsof dollars. However, existing large-scale storage
systems largely ignore security, using (at most) advisory security techniques to restrict access to data. Un-
fortunately, this approach has led to unprivileged access to data and subsequent litigation and government
investigations [24, 33].

To secure I/O in petascale parallel file systems, it is insufficient to use traditional distributed access
control techniques that are designed for smaller systems with general or random workloads. Petascale file
systems may service hundreds of thousands of clients and storage devices and must support I/O patterns
that are highly parallel and very bursty [34]. These two factors increase the cost of traditional security
techniques, which are often based on pairwise associationsbetween clients and storage devices, and can
result in weak security. There have been numerous efforts tosecure distributed storage, but most were not
designed for the size and demand of large HPC systems [2, 4, 9,13, 21, 27]. These solutions were designed
for general workloads with a modest number of relatively small files and requests, and most were intended
for systems with a limited number of clients and storage devices. When incorporated into large parallel file
systems, current approaches either degrade performance orrely upon weaker security mechanisms.

Existing protocols perform poorly in large parallel file systems because they do not scale well—the
number of security operations is strongly tied to the numberof devices and requests. For example, existing
approaches may issue a capability for every block or object being accessed (i. e., a capability authorizes a
single block or object I/O) [13]. While this approach works well in smaller systems, it does not scale to
petabyte-scale systems, in which files containing terabytes of data are striped across thousands of devices
and accessed by thousands of clients. A single client wanting to access a 1 TB file striped into 1 MB objects
would need a million capabilities; it is impractical to return that many capabilities when a file is opened.
Worse,eachclient accessing the file would require these capabilities;while each client might use a different
subset, capabilities would have to be sent to the proper locations in advance because capability sharing by
clients is difficult or non-existent in current systems.

To address these shortcomings, we designed and implementedMaat, a strong security protocol designed
to scale to petabyte-scale parallel file systems. In developing Maat, we reconsidered traditional I/O security
techniques with the goal of allowing security to scale to large systems with very demanding workloads. This
paper describes the mechanisms that Maat uses to provide scalable I/O security for: preventing unauthorized

data access, revoking or changing user access privileges, and safeguarding against common security threats
such as spoofing, replay, and man-in-the-middle attacks.

Maat introduces three scalable security techniques. First, access control is enforced throughextended
capabilities, an extension of traditional capability tokens that can authorize I/O for any number of clients to
any number of files. For example, a single extended capability may authorize a read or write operation for
a hundred clients to any block in each of a hundred files. By authorizing access at the granularity of files
and aggregating many authorizations into a single capability, Maat is able to greatly reduce the number of
capabilities needed. Second,automatic revocationmakes it possible to revoke a client’s access privileges
without the need to explicitly contact any clients or storage devices by giving capabilities short lifetimes.
As a result, revoking a capability can be done by allowing thecapability to expire—no explicit notification
to storage devices is required. Continued use of valid capabilities is handled by a renewal protocol that
extends the lifetimes of batches of existing capabilities with minimal overhead. This paradigm shifts the
cost of revocation to renewal, where it can be handled in a more scalable fashion. Third,secure delegation
allows for scalable cooperative computation and I/O, a common feature of HPC workloads. A single client
generates a temporary asymmetric key pair and opens a file on behalf of the public portion of the key pair.
The private portion of the key pair is distributed to other clients who use it to access the file without having
to receive any additional authorization. The use of a temporary key pair shifts security from an insecure
opaque capability to the possession of a secure private key.Maat’s secure delegation provides and efficient
and secure implementation of the proposed POSIX HPC I/O extensionsopeng() andopenfh() [38].

We implemented Maat in Ceph [36], a petabyte-scale, high-performance distributed file system. Ex-
periments both with and without security show that Maat is able to achieve strong security on Ceph while
incurring less than 7% overhead for high performance workloads. Additionally, Maat has little impact on
latency and throughput, allowing secured Ceph to achieve nearly the same performance as insecure Ceph
operation.

2 Background

There are a number of parallel file systems that have been developed recently and are in use today [5, 11, 12,
22, 29, 31, 36]. Most of these file systems consist of three main components: the client, a metadata server
cluster (MDS), and a cluster of storage devices, such as network-attached disks or object storage devices
(OSD). A key concept behind this design is the decoupling of metadata and data paths. Clients communicate
all namespace operations, such asopen(), to the MDS and all file I/O operations, such asread() and
write(), to the storage devices.

A side effect of this design is that, often, storage devices have no implicit knowledge of access privileges
or authorizations because this information is stored at theMDS. As a result, the MDS must communicate
authorizations to storage devices via capabilities, whichare communicable tokens of authority [19]. Before
any storage device can authorize an I/O, a client must receive a capability authorizing the I/O from the MDS
and present it to the storage device with the I/O request. TheMDS cryptographically hardens the capability
with an HMAC or digital signature to guarantee to the storagedevice that the capability was not forged or
altered. Figure 1 demonstrates the architecture and security flow in most parallel file systems. The trust
model assumes the MDS is a trusted oracle and reference monitor. The storage devices are trusted to store
data and only perform I/O for authorized requests. There is no implicit trust placed on the clients.

� � � � � � � �

� 	
 � �
 � � � � � � � � � � � � �

Figure 1: Parallel file system architecture and security flow. Clients request capabilities from the MDS and
present them, along with I/O requests, to storage devices.

2.1 What’s Special About Petascale File Systems for HPC?

Petabyte-scale distributed file systems used for high-performance computing (HPC) are very different from
the smaller-scale file systems for which most security systems were developed. Petascale file systems are a
much more challenging environment to secure for the following reasons:
Data is large and highly distributed. Files in large-scale file systems are often extremely large,containing
gigabytes or terabytes of data, and can be striped across thousands of devices [34]. Previous security pro-
tocols distribute capabilities at the granularity of a block or object, requiring the generation of thousands or
even millions of capabilities. Some security systems have tried to alleviate this by issuing capabilities that
grant access to all file data on a device. Though this helps, thousands of capabilities must still be used to
access a large file which is striped over thousands of devices, thus creating high load for servers generating
capabilities, latency for clients opening files, high load for data servers verifying capabilities, and latency
for clients performing I/O.
Many clients and storage devices. Large-scale HPC systems may have tens of thousands of clients and
storage devices, increasing the cost of many security operations. For example, changing file permissions
becomes extremely expensive when thousands of devices mustbe contacted to revoke a capability. Doing
so quickly and reliably is often impractical in large-scalesystems.
Demanding I/O and access patterns. Parallel file systems are designed to support HPC workloads with
demanding access patterns that create worst case performance scenarios for existing security solutions. File
access and I/O are both extremely bursty and highly parallel[34], creating workloads in which thousands of
clients accessing a single file within seconds is common.
Added threat environment. Physical security for tens of thousands of clients and storage devices may
not be feasible. Additionally, it is unlikely that network security can be strictly enforced across the whole
network, invalidating assumptions of secure communication in previous solutions. For example, a system
in which the simple possession of a capability is sufficient to authorize I/O can fail on insecure networks
where attackers can easily eavesdrop the network and obtaincapabilities. Maat assumes no existing network
security and that devices are vulnerable to attack; thus, clients that are authorized to perform I/O must be

explicitly named in a capability, preventing a random attacker who obtains a capability from performing
unauthorized I/O.

2.2 Existing Parallel and Distributed File System Security

Parallel and distributed file systems feature disks or OSDs connected directly to the network. Because of
this model’s inherent vulnerabilities, there has been a great deal of research in providing secure I/O in these
systems. Though many of these solutions have been successful in smaller systems, most do not perform
well in the large-scale, demanding environment for which Maat was designed.

2.2.1 Access Control

Granting a capability at the granularity of a block or an object is often too expensive, even for smaller
systems. As a result, prior approaches have authorized access rights for multiple blocks or objects with a
single capability. NASD [13], the T10 OSD protocol [35], LWFS [25], and SnapDragon [2] all allow a
capability to authorize I/O to a group of objects that resideon the same storage device. Restricting access
to a single device does not significantly decrease the numberof capabilities required when files are striped
across thousands of devices. Additionally, these groupingstrategies often require manual specification or
are dependent on parameters such as on-disk layout, furtherlimiting capabilities from authorizing I/O to
many objects.

In many systems [2, 9, 13, 27, 40], an HMAC is used to provide a guarantee that a capability was gener-
ated by the MDS and has not been tampered with. An HMAC requires a shared key between the MDS and
the storage devices that recognize the capability. While HMACs are simple to generate (they do not require
public-key encryption), they are too insecure to be used in large-scale systems. If an attacker compromises
a single storage device, the attacker gains the key shared between the MDS and any storage devices that
share the same HMAC key, allowing the attacker to impersonate the MDS, the system’s trusted oracle and
reference monitor, to any of those devices. To alleviate this insecurity, keys are often shared only between
the MDS and a single disk, eliminating the threat of impersonation. This approach restricts a capability to
authorizing I/O on only a single device, since only a single device can verify the capability. This prevents a
capability from authorizing I/O to large groups of blocks orobjects which may reside on multiple devices.
SNAD [21], Plutus [17], Olson and Miller [26], and Leung and Miller [18] all use public key cryptography
to secure access to files. SNAD and Plutus use public key cryptography to make write operations externally
verifiable, while Olson and Miller use it to ensure a capability’s integrity. Using public key cryptography
for capability integrity allows a capability to span any number of storage devices because each device must
simply know the MDS’s public key. This also adds security because a subverted device will not be able to
spoof any other device. The downside is public key cryptography is orders of magnitude slower than shared
key cryptography, potentially introducing high performance penalties in the demanding HPC environments
in which Maat operates.

Previous work has tried to avoid some of these performance issues by relaxing security constraints or
relying on an existing security infrastructure. Azagury,et al. [4] assumes the existence of a network-level
security infrastructure, such as IPSec, allowing them to authenticate secure channels rather than clients.
LWFS [25] also assumes a secure transport layer allowing it to ignore potential replay and eavesdropping
of capabilities. However, most real-world systems do not employ strong network or transport security. This
is due to the high overhead of encrypting and decrypting all traffic and the difficulty of enacting a key
infrastructure across the entire network, thus limiting the scope of these solutions. Singh,et al. [32] employ
a trust framework based on a client’s past trustworthiness,requiring the MDS to monitor correctness of

client accesses. Clients who rarely make incorrect accesses are deemed trustworthy, and no effort is made to
ensure that their accesses are valid. While this framework does improve performance for trustworthy clients,
an obvious attack would be to gain trust through a series of correct I/O requests and subsequently behave
maliciously.

2.2.2 Revocation

Access to a file is not secure unless that privilege can be expunged. As file data becomes larger and the
number of devices increase, thousands of devices may need tobe contacted to revoke a single user’s access
or change a file’s permissions. Explicitly contacting everystorage device that contains data for a file is not
scalable. Moreover, it is difficult to guarantee that the messages are received at their destinations, meaning
that the system “fails unsafe”: the default behavior is toallow access, with revocation denying subsequent
accesses. Systems such as NASD [13] and SCARED [27] use object version numbers for revocation. Capa-
bilities in these systems authorize I/O to a specific object version; thus, changing the object version acts to
invalidate all capabilities for that object. With this method, revoking access to an entire file would require
incrementing the version number of every object in the file, which is potentially millions of objects. Snap-
Dragon [2] uses a similar approach, though capabilities rather than objects are versioned. Other systems
use similar methods with revocation lists [28], backpointers [25], and key re-distribution [14], all of which
require explicit messaging to all of the storage devices.

To mitigate the cost of explicitly contacting all storage devices which may hold a specific capability,
Cepheus [10], SNAD [21], and Plutus [17] suggest the use of lazy revocation. When permissions change,
access is revoked on the first write operation rather than immediately revoking access. This approach allows
the immediate cost of a permission change to be deferred until the first write request, but it also allows a
revoked user to continue to read the file data until it is overwritten.

3 Maat Design and Implementation

Maat provides strong, scalable access control using extended capabilities and automatic revocation and
supports cooperative computation with secure delegation.This section discusses the concepts behind these
techniques and how Maat addresses them.

3.1 Design Assumptions and Notation

Maat has been implemented in the Ceph petascale, high performance, distributed file system [36], allowing
Maat to make some simplifying assumptions. First, Maat assumes that all storage devices are object-based
storage devices (OSDs)—intelligent devices with a CPU, network interface, local cache, and a number of
underlying disks [35]. This approach means that Maat can assume that each OSD can associate local object
IDs with global file identifiers: using CRUSH [37], an OSD can map a global file identifier to the object IDs
and locations of the objects that contain the file data. Thus,Maat can issue capabilities that identifyfiles,
which OSDs can later associate with object IDs in I/O requests. We also assume that clients act as proxies
for users. More specifically, each client acts on behalf of a number of users, each of whom can be uniquely
identified. Throughout, whenever we refer to a client, we arereferring to a user acting through a client
proxy. Finally, we assume a secure synchronized clock protocol to keep time relatively synchronized across
nodes. Although these assumptions are slightly restrictive, they hold true in many parallel file systems.
Additionally, making several concessions to the current Maat design will make it possible to port Maat to
systems which do not meet these assumptions.

Securing a petascale storage system requires a protocol with many messages; to ensure that the content
of the messages is clear, we will use a standard notation to describe the messages throughout this section.
The notationA→ B : M denotes a message,M, sent from principalA to principalB. The public and private
keys of principalA are denoted asKU

A andKR
A , respectively. To denote a shared secret key between principals

A andB, we useKAB. The encryption of messageM with A’s public key,KU
A will be written as{M}KU

A ;
This makesM unreadable to anyone who does not posessA’s private key. The notation{M}KAB denotes
the encryption ofM with shared keyKAB; again, this makesM unreadable to anyone who does not posses
KAB. 〈M〉KR

A denotes a messageM signed with principalA’s private key, allowing any principal with access
to A’s public key to verify thatA “vouched for” the content ofM. The hash of messageM is denoted using
hash〈M〉. An HMAC uses a similar notation,hash〈M,KAB〉, where a shared keyKAB is hashed in addition to
M, allowing any principal that knowsKAB to verify that the message source also knows the secret and that
M was not modified in transport. Of course, the HMAC also pads the key to the correct block size and is
XOR’d with an inner and outer pad. Finally, the lettersC, M, andD will be used to represent a client, MDS,
and OSD, respectively.

3.2 Authentication

Authentication in Maat requires each principal to have a public/private key pair. We assume that all prin-
cipals know the authenticated public key of every MDS and OSD. Before entering the system, each client
creates a public/private key pair,KR

C andKU
C , and a shared key,KCM, and shares the public and shared keys

with the MDS. When a client “logs into” the system, it receives a signed ticketT that verifies the authen-
ticity of the client’s public key using an approach similar to that of authentication server tickets used in
Kerberos [23]. The ticket, shown in Figure 2(b), also contains an initialization vector and an expiration
time.

Once a client has received a ticket, it negotiates a unique shared keyKCD with each OSD, as shown in
Figure 2(a). The ticket’s initialization vector, the OSD’spublic key, and random data are hashed to generate
the shared key. Maat uses shared keys rather than public/private keys because of the dramatic performance
benefits, though, unlike a shared key between the MDS and somenumber of OSDs, subverting a client-OSD
shared key does not allow any additional principals to be spoofed. Clients securely distribute keys to each
OSD, who then verify correct receipt by responding to a noncechallenge with a second noncenonce′. The
protocol in Figure 2(a) is done infrequently—no further negotiations between clients and OSDs need be
done until the ticket is refreshed and the initialization vector is changed.

Though tickets are refreshed infrequently, refreshing a ticket requires the client to migrate all shared
keys to use the new initialization vector. To improve the performance of the resulting key re-negotiations,
the MDS provides the client with the new initialization vector prior to actually refreshing the ticket, allowing
the client to renegotiate shared keys during slack time rather than re-negotiating all keys at once. When the
ticket is “formally” refreshed, the client will have migrated most, if not all, of its shared keys to the new
initialization vector, so few keys would need to be negotiated at ticket refresh.

3.3 Extended Capabilities

Access control is the primary contributor to security overhead because the number of capabilities and their
resulting cryptographic overhead tends to scale up as systems or workloads become larger. To reduce ca-
pability overhead, Maat introduces the notion of anextended capability: a capability able to authorize I/O
for any number of clients to any number of files. Extended capabilities are conceptually equivalent to the
I/O authorizations of many traditional capabilities aggregated into a single data structure. For example, a

C→ M : requestticket,Ts,hash〈request,Ts,KCM〉 /* Client requests ticket from MDS */

M →C : T /* MDS returns ticket */

C→ D : {〈KCD,Ts,nonce〉KR
C}KU

D /* Client distributes keys to each OSD */

D →C : nonce′,hash〈nonce′,KCD〉 /* OSD confirms receipt with nonce challenge */

(a) Messages sent to establish a shared key between a clientC and an OSDD. In Message 3, an OSD extracts the client-
disk shared keyKCD by decrypting it using its private key and authenticating the message source using the public key in
T. An OSD confirms correct receipt by responding with a nonce challengenonce′.

T = 〈IDU ,KU
C , IV,Ts,Te〉KR

M
KCD = hash〈IV,KU

D , randomdata〉

(b) Definitions for a ticketT and client-disk shared keyKCD. T contains the
user’s ID (IDU), public key (KU

C), initialization vector (IV), and the ticket’s
lifetime. KCD is computed by hashingIV with the OSD’s public key and
random data.

Figure 2: Protocol to negotiate a shared client-disk key in Maat.

traditional capability may state “usera has read access to objecty”, while an extended capability may say
“usersa, b, andc have read access to filesx, y andz.” By combining permissions, the MDS can generate
fewer capabilities because a single extended capability can replace multiple traditional capabilities. This
change also means that OSDs need to verify fewer capabilities because more I/O requests can be done using
a single, previously verified, capability. It should be noted that, while an extended capability can authorize
many I/Os, access control is still at the granularity of a single file; individual files may be included or ex-
cluded from a single extended capability. This is in contrast to coarse-grained access control models [16] in
which access is granted at the granularity of a set of files. The MDS enforces the rule that all authorizations
in a extended capability are legal according to the MDS’s access control matrix.

Extended capabilities do not alter the I/O security model presented in Section 2; the primary change
is that the MDS may intelligently insert additional I/O authorizations when it generates a capability, as
discussed in Section 3.3.3. The protocol used by the client to open and read a file is shown in Figure 3(a).
After generating a capability, the MDS caches it, bypassingthe expensive capability generation process for
subsequentopen() requests from different clients that the MDS had already pre-authorized; this activity
on the MDS is transparent to the client. Similarly, when an OSD verifies an extended capability in response
to an I/O request it receives, it caches the results of the signature verification, allowing the OSD to bypass
signature verifications for I/O requests which use previously verified capabilities [39]. By authorizing many
I/Os in a single capability, extended capabilities increase the number of capability cache hits at the MDS
and allow the OSDs to bypass more capability verifications.

3.3.1 Securing Extended Capabilities

To ensure that capabilities cannot be forged or altered, Maat secures them using public-key cryptography.
Each capability is signed by the MDS’s private key, allowinganyone who knows the MDS’s public key to
verify its integrity and authenticity. Public key cryptography is used, rather than shared key cryptography,
for three reasons: convenience, security, and affordability. Any OSD can verify a capability, conveniently
allowing a capability to authorize I/O for a file that may reside on thousands of different OSDs. For this to
be possible with shared keys, the MDS must share a common key with all OSDs. If this key were to become
compromised, which may not be uncommon in very large systems, the attacker can spoof the MDS and any

C→ M : open(path,mode),Ts,hash〈open(path,mode),Ts,KCM〉 /* Client requests capability */

M →C : C,hash〈C,KCM〉 /* MDS returns capability */

C→ D : C, read(oid),Ts,hash〈read(oid),Ts,KCD〉 /* Client presents capability with I/O */

D →C : {data,Ts}KCD /* OSD responds to I/O */

(a) Protocol to open and read a file in Maat. Each message has anHMAC allowing its source and contents to be verified.
File data may be encrypted in transit to prevent eavesdropping.

D →C : update(RH),Ts,hash〈update(RH),Ts,KCD〉 /* OSD queries client for Merkle tree */

C→ M : update(RH),Ts,hash〈update(RH),Ts,KCM〉 /* Client queries MDS for Merkle tree */

M →C : H /* Merkle tree passed to client */

C→ D : H /* Merkle tree passed to OSD */

(b) Protocol to retrieve a hash tree in Maat. A client forwards update requests to the MDS when it does not haveH

cached locally; thus Messages 2 and 3 only occur when the client does not have the tree cached.

C = 〈U, I , IDC,mode,Ts,Te〉KR
M

H = 〈RH, tree〉KR
M

(c) Contents of a capabilityC and a signed Merkle treeH. In C, U andI
are the root hashes of authorized users and files, respectively, and IDC is a
unique capability identifier.H contains the Merkle tree associated with root
hashRH.

Figure 3: Protocols using extended capabilities.

OSD. With public key cryptography, however, obtaining the MDS’s public key does not allow an attacker
to forge signatures. Though Maat pays a cost for the convenience and security of public key cryptography,
this cost for a small number of cryptographic operations is amortized across thousands of I/O requests by
caching the results of both capability generation at the MDSand verification at the OSDs. Thus, Maat
can afford to use public key cryptography even though it is orders of magnitude slower than shared key
cryptography, because it dramatically reduces the number of capability generations and verifications.

Ensuring integrity is not sufficient, however—extended capabilities must also ensure that simply obtain-
ing a capability,e. g. via eavesdropping an unencrypted network, does not allow unprivileged data access.
Such breaches can occur in “pure capability systems,” in which simple possession of a capability is sufficient
to grant access. Maat confines I/O authorization byexplicitly naming all authorized users and file identifiers
in the capability. When an OSD verifies a capability, it checks that the authenticated user making the request
is named in the capability and that the file identifier in the capability maps to the object ID being read or
written, thus preventing an attacker from using a capability to perform any unauthorized operations.

3.3.2 Making Extended Capabilities Fixed Size

Extended capabilities can become very large when they must explicitly state all authorized users and files.
Since large capabilities can consume lots of cache space andare inefficient for frequent network transmis-
sion, Maat creates small, fixed size capabilities using Merkle hash trees [20]. Capabilities identify authorized
users and files via the root hash of a Merkle tree constructed from the user IDs or file identifiers, with the
root hash acting as a unique, fixed size identifier for all elements in the tree. Merkle trees are used because
each inner node of the tree is itself the root hash of a sub-tree corresponding to a subset of the original tree.

� � � � � � �
� � � � � � �

 ! � " �
 ! � " �

� � � � � � # $ �
� � � � � � #

 ! � " # $ �
 ! � " �

 ! � " � $ �

 ! � " # $ � $ #

% � � � & �' (() ! � "

* + � � � �
* + � � � �

 ! � " �
 ! � " �

* + � � � # $ �
* + � � � #

 ! � " # $ �
 ! � " �

 ! � " � $ �

 ! � " # $ � $ #

, � + � & �' (() ! � "

- �) " (� � . � � % � � � �
- �) " (� � . � � , � + � �

/ 0) � # � � � 1 ! 2 ! 3 � + �) 4

& 5 6 7 (� � 8 � 8 �
9 � : # !) � � �

Figure 4: Extended capabilities identify authorized usersand files using root hashes. This allow capabilities
to be fixed size, no matter how many I/Os are authorized.

This allows easy composition and decomposition of new Merkle trees, as illustrated in Figure 4.U andI in
capabilityC are the root hashes of the Merkle trees of user IDs and file identifiers, respectively.

A result of using root hashes in capabilities is that when an OSD first receives a capability, it does not
know which users or files are authorized by the capability because it does not know the user IDs or file
identifiers associated with a root hash. Maat uses an update protocol, shown in Figure 3(b) to allow an
OSD to query the requesting client for the Merkle tree associated with a root hash. Clients retrieve and
cache the signed1 Merkle tree from the MDS. By caching the tree, clients ensurethat all subsequent update
requests (i. e., another OSD verifying the capability) do not burden the MDS. Once the OSD has cached
the tree, it ensures that any future uses of the root hash do not require an update by also caching the tree.
Additionally, messages 2 and 3 only occur when a client does not have the Merkle tree,H, associated with
the root hash,RH. Thus, a capability which authorizes I/O forN users toM files located acrossJ OSDs
requires a maximum ofJ OSD update requests for theN×M I/Os authorized by the capability.

3.3.3 Grouping I/O Authorizations

The technique by which I/O authorizations are grouped into an extended capability directly affects how
effectively Maat can reduce capability generation and how well OSD capability verification performs,i. e.,
the number of root hash updates that must be performed. The four factors that impact grouping effective-
ness are the number of authorizations per capability, the frequency with which groups change, the overhead
of the grouping scheme, and compatibility in heterogeneousenvironments. Increasing the number of I/O
authorizations per capability causes fewer capabilities to be generated. The frequency with which groups
change affects how frequently OSDs must resolve new, unknown root hashes, impacting capability verifica-
tion performance. The overhead of the grouping strategy determines the time required to actually construct
the group. Compatibility defines how well the grouping strategy works in heterogeneous environments. Ul-
timately, the optimal grouping strategy varies from systemto system and depends on workload and system
size, among other things. We briefly discuss several grouping approaches that we believe work well for
large-scale systems and HPC workloads.
Access Prediction. HPC applications often have repeated access patterns, suchas reading data files on
boot and writing log files on close. Future file or user accesses can be predicted based on past behavior

1The Merkle tree signature has subsequently been removed from the protocol as it is not necessary. Each root hash represents a
unique Merkle tree, therefore, a tree cannot have the correct root hash unless it is the correct tree. This makes forgery pointless and
tampering obvious. The signature has been included here because it is reflected in our benchmarking results and removingit would
lead to inconsistencies.

and pro-actively included in a capability. Clients can provide predicted future file accesses to the MDS
with open() requests, similar to the prediction strategy discussed by Gobioff [13]. In addition, the MDS
can predict future users’ accesses. Prediction has the upside of potentially grouping many authorizations
into a single capability, but can cause frequent group changes if predictions are limited or incorrect. Also,
prediction incurs a space and time penalty to store past behaviors and calculate predictions.
UNIX Permissions. Using UNIX access control (i. e., owner, group, world permissions) in a way similar
to sharing in Cepheus [10] has the major advantage of requiring a maximum of three capabilities for any
single file. Only three capabilities are needed because anyone accessing the file must use either the user,
group, or world permissions. Additionally, UNIX groups do not change frequently. The major downside is
its incompatibility with other access control semantics, such as those of Windows. In large-scale systems
various access control semantics may be needed for different domiains, therefore, not all files may be con-
trolled by UNIX access semantics. Unless the MDS is sophisticated enough orother steps are taken [15],
multiple access control semantics cannot be enforced.
Temporal Patterns. HPC workload access patterns have strong temporal relationships, bursty accesses and
flash crowds [34]. Batching groups of capability requests atthe client or MDS can alleviate congestion
caused by these patterns, using a batching approach similarto that used in the original NASD design [13].
Temporal request batching can absorb bursty requests to reduce overall load, but can also increase client
latencies. Also, batching will only produce large groups iftemporal relationships are strong.
User or Application Knowledge. Users or applications may know of an efficient grouping strategy, and
may thus manually define their own groupings, similar to T10’s set attribute (SET ATTR) functionality [35].
Manual definitions may be accurate but are also tedious, making it unlikely group definitions will be rigorous
or maintained.
Other Relationships. Other, simpler relationships may also prove effective. Forexample, including all
files in the current working directory may serve as a quick andaccurate method of file access prediction.
Additionally, combining grouping strategies can improve the number of authorizations per capability.

3.3.4 Extended Capabilities and Cache Consistency

Previous work [13, 35] allowed capabilities that authorizeI/O at the granularity of blocks or objects to also
serve as block or object range locks. The MDS could ensure theconsistency of a single block or object by not
issuing a capability which caused multiple writers or readers and writers. Coupling security with consistency
is not possible with extended capabilities because authorizations are too coarse-grained. We assert security
and consistency should not be so tightly bound, as each are separate concepts with different goals. Namely,
high performance applications can often sacrifice consistency for I/O performance, exemplified by POSIX
HPC I/O extensions which call for looser consistency semantics [38]. On the other hand, data security
and privacy is often far less flexible. Ceph promotes this separation by using consistency tokens which are
distinct from security capabilities and object range locksissued by OSDs, rather than the MDS.

3.4 Automatic Revocation

Revoking a capability by explicitly contacting storage devices in a petascale storage system is very difficult
for several reasons. First, file data is striped across many storage devices, meaning many devices must
be contacted if a capability is to be revoked. Second, extended capabilities may exacerbate the problem
by authorizing I/O to many files, increasing the number of devices which hold the capability. Third, each
storage device must remember which capabilities were revoked, so as to not allow reuse later. To achieve
better scalability, Maat usesautomatic revocation, which allows global capability revocation without the

C→ M : renewal(P),Ts,hash〈renewal(P),Ts,KCM〉 /* Client renews a set of capabilities */

M →C : R,hash〈R,KCM〉 /* MDS returns a renewal token */

C→ D : C,R, read(oid),Ts,hash〈read(oid),Ts,KCD〉 /* Client presents token to OSD with I/O */

(a) Protocol to renew capabilities. Clients renew all capabilities in use,P, and present renewal tokens,R, to an OSD with
I/O requests. The OSD uses the token to extend the lifetime ofthe capabilities it names to a valid time.

R = 〈P+O,Te〉KR
M

(b) Contents of a renewal token. The token renews all valid requested capa-
bilities,P, and all outstanding capabilities for all users,O in a single renewal
token. All renewed capabilities are valid until timeTe.

Figure 5: Capability renewal protocol.

need to explicitly contact any storage devices. In this section we discuss the techniques that make this
possible.

3.4.1 Capability Expiration as Revocation

Maat requires that each capability have a short lifetime; our current prototype uses five minute timeouts.
This allows Maat to shift the revocation paradigm from explicitly contacting devices to simply allowing a
capability to expire. When an OSD verifies an I/O request, it checks to see if the capability’s lifetime is
valid; if not, it does not authorize the I/O. When a file’s permissions change (e. g., usingchmod()), after a
maximum of five minutes, all capabilities permitting the now-invalid access have expired. By immediately
applying the permission changes to its local access controlmatrix, the MDS ensures that it will no longer
issue nor renew capabilities that authorize the revoked access. As an additional benefit, revoking many
accesses requires no greater effort than revoking a single access. For example, revoking all access privileges
of a user simply requires the MDS to no longer issue capabilities for that user. After a maximum of five
minutes, all of the user’s capabilities will have expired and the user will no longer be able to access data.
This allows expiration to act as a global revocation, no matter how large the system or where capabilities are
located. While there is a five minute window of vulnerability, techniques similar to this have previously been
used in formal proof of network-attached storage security:the MDS does not apply a permission change
until it is sure that all capabilities authorizing the modified access have expired, ensuring that permission
state on the MDS and OSDs are consistent [6].

3.4.2 Capability Renewal

While the goal of capability expiration is to allow scalablerevocation, it must also ensure that valid ca-
pabilities can continue to be used. To do this, Maat uses a fast capability renewal protocol, as shown in
Figure 5. Clients periodically submit requests to extend the lifetimes of capabilities that they wish to con-
tinue using. In response, the MDS generates, caches and returns renewal tokensthat extend the lifetime of
a set of capabilities for the same length as the original period—five minutes in the current implementation.
When making an I/O request, clients present renewal tokens along with the expired capability to an OSD.
The OSD can subsequently verify that the token indeed extends the lifetime of the capability to a valid time
and cache the result of the verification.

The core concept behind scalable renewal is that the MDS can generate a single renewal token which
renews a large number of valid capabilities by generating a renewal token forall valid outstanding capabil-

ities. In this way, a small number of renewal tokens can extend the lifetimes of all valid capabilities still
in use, ensuring that the MDS spends a limited amount of time serving renewal requests. In essence, this
shifts the cost of revocation from revoking invalid capabilities to renewing valid ones, which can be done in
a much more scalable fashion. As Figure 5 shows, the renewal tokenR extends the lifetime of all requested
capabilitiesP and all outstanding capabilitiesO.

3.4.3 Immediate Revocation

It may be the case, albeit rarely, that file or user access mustbe immediately revoked. In the example of a
compromised client workstation, eventual revocation (i. e., waiting for capabilities to expire) is insufficient.
For these scenarios, Maat uses an immediate revocation scheme. While explicitly contacting a large number
of devices cannot be avoided, Maat uses short capability lifetimes to eliminate the need for OSDs to per-
sistently remember all revoked capabilities. Once an OSD has been notified of a capability revocation, it
only needs to remember the revocation for a maximum of five minutes, since after that time the capability
becomes invalid. This allows Maat to support immediate revocation without the need to require OSDs to
remember past capabilities or rotate capability IDs.

3.5 Secure Delegation

Large-scale high performance computing often involves thousands of compute nodes collaborating on a
common job, thus requiring clients, even those without file access privilege, to perform I/Os to and from
shared files. Conceptually, facilitating these operationsseems easy: a client simply opens a file and dis-
tributes a capability to other clients participating in thecomputation. Unfortunately, this gives rise to several
issues. First, a capability that authorizes I/O for anyone who holds it is dangerous since anyone who obtains
it, including an attacker, can use it to access data. On the other hand, the capability must be general enough
to be distributed to any client participating in the computation. Second, delegated access must be temporary
and limited because it provides privileged access to unprivileged users, though it should last as long as the
computation. Third, while group file opening and delegationmust be secure, they must also be fast, and
ideally much faster than each client individually opening the file.

The POSIX HPC I/O extensionsopeng() andopenfh() [38] were designed to provide support for
collaborative computation by allowing collective file opens and access delegation. Theopeng() operation
takes a path and mode and returns a file that which can be transferred to cooperating clients and subsequently
converted to a file descriptor withopenfh(). The proposed semantics of these operations require that
the file handle, and therefore capability, be transferable to any client. We describe how Maat uses secure
delegation to support secure cooperative computation, address the concerns above, and support these HPC
I/O extensions.

3.5.1 Secure Group Opens

Group opens and delegation in Maat are implemented using temporary asymmetric computation keys. At the
start of a large compute job, a single client (the “lead”) initiates a joint computation and generates an asym-
metric key pair that will last the duration of the computation. For each file, the “lead” client callsopeng(),
passing the computation public key along with the usualopen() arguments, as shown in Figure 6(a); this is
the onlyopen() call sent to the MDS for this file. The MDS returns a file handle that includes a capability
to access the file and a token stating the lifetime of the computation public key. The capability includes the
hash of the computation public key in place of a root hash of user IDs, thus associating the capability with

C→ M :
openg(path,mode),KU

Comp,Ts,

hash〈openg(path,mode),KU
Comp,Ts,KCM〉

/* Openg with computation public key */

M →C : F,L,hash〈F,L,KCM〉 /* MDS returns a file handle and key lifetime token */

(a) Protocol to open a file on behalf of a group. The “lead” client submits the computation public key withopeng()
requests. The MDS returns a file handle,F, and a public key lifetime token,L. F contains the capability needed to access
the file.

C→C′ : {KR
Comp}KU

C′ ,F,L /* The lead client distributes the computation private key */

C→ D : read(oid),C,P,Ts,hash〈read(oid),Ts,KCD〉 /* Clients pass a proof token with I/O */

D →C : update(KU
Comp),Ts,hash〈update(KU

Comp),Ts,KCD〉 /* Queries for key lifetime token */

C→ D : L /* Client returns lifetime token */

(b) Messages to securely delegate file access privilege. Theencrypted computation private key, file handle, and public
key lifetime token are distributed to clients participating in the computation. Each client computes a tokenP that proves
possession of the private computation key and present it with I/O requests. Messages 3 and 4 only occur if the OSD has
not previously seen the computation public key.

F = 〈path,mode,flags,C,KU
Comp,Ts,Te〉KR

M

L = 〈KU
Comp,Ts,Te〉KR

M

P = {〈hash〈KU
Comp〉〉K

R
Comp}KCD

(c) Definitions for a file handleF, public key lifetime tokenL, and private
key proof tokenP. F contains a capability to access the file and data for
openfh() to produce a local file descriptor.L authenticates the public
key and its expiration time.P proves possession of the computation private
key.

Figure 6: Secure group open and delegation.

an asymmetric key pair, rather than a set of users and allowing an OSD to authorize I/O for anyone who can
prove possession of the computation private key. In the messages in Figure 6,F andL are the file handle
and public key lifetime token, respectively.

3.5.2 Secure Delegation

Onceopeng() returns, the “lead” client is free to pass the file handle, computation key pair, and signed
key lifetime token to any clients who are participating in the computation. To prevent eavesdropping of the
computation private key, the key is encrypted with the receiving client’s public key and then signed by the
source client. Delegation can be optimized by the source client precomputing the encrypted, signed private
key for each receiving client. To perform I/O, clients convert the file handle to a local file descriptor using
openfh(). Each client proves possession of the computation private key by submitting a proof token
with I/O requests. The proof token is computed by signing thehash of the computation public key with the
computation private key and encrypting it with the OSD shared key. The signed hash proves possession of
the computation private key while the encryption authenticates the client. If an OSD has not previously seen
the computation public key, a client must also pass the signed key lifetime.

3.5.3 Computation Key Properties

The computation key pair is the root of security in Maat’s delegation protocol. Maat requires the key pair
to exhibit three properties to make it efficient and secure—it must be temporary, renewable, and revocable.
The key pair must be temporary because it allows clients who may not otherwise have access rights, the
rights to access privileged files. However, since cooperative computation is often long-lived, this privilege
should last as long as the computation, requiring that the key pair be renewable. In addition, the key pair
must be immediately revocable since clients without normalfile access privileges may be participating in
the computation.

When the MDS generates the computation public key lifetime tokenL it gives the key a short lifetime
(five minutes in the current implementation), making the keytemporary. Since cooperative I/O relies on an
OSD validating both a capability and a private key proof token, renewal and immediate revocation can be
achieved by renewing or revoking the public key lifetime token at the OSDs. Maat implements protocols
very similar to capability renewal and revocation that allows a public key lifetime token to be renewed or
revoked. The only significant difference is that only the client who initiated the joint computation can renew
the public key lifetime. This prevents a client who was delegated access to a file from continually renewing
the computation public key and having persistent access to the file.

3.6 Implementation Details

We have implemented Maat in the Ceph petascale, high-performance distributed file system. All crypto-
graphic operations were implemented using the Crypto++ library [7]. Maat has support for various crypto-
graphic algorithms, though the current implementation uses 1023-bit ESIGN for public/private key opera-
tions, 128-bit AES for shared key operations, and SHA-1 for one-way hash functions. All were chosen for
their high performance.

The current Maat implementation supports several of the authorization grouping strategies previously
mentioned: UNIX groups, prediction, and temporal batching. UNIX groups are implemented by using
Merkle trees with group IDs pointing to the root hash value associated with the group’s Merkle tree. Predic-
tion uses the Recent Popularity algorithm [3], which predicts a successors if s occurs at leastj times in the
k previous observations and makes no prediction otherwise. We chose Recent Popularity because adjusting
the j andk values allows us to adjust the accuracy of our prediction; wechosej = 4 andk = 6. Additionally,
only making predictions with confidence avoids the penalty of creating groups which are likely incorrect;
it is important to note, however, that the MDS never creates capabilities that are not permitted by its cur-
rent access control matrix. Temporal batching is designed to handle flash crowd-like workloads. The MDS
begins batchingopen() requests for a file if four requests for the same file are received within 20 ms of
each other. Additionally, the MDS begins batching requestsfrom a user if more than four requests from
the same user for different files are received within 20 ms of each other. Batching is currently set for one
second, though a smaller value is probably more desirable for most workloads. Once a group of requests
are batched, a capability is generated to authorize all requests in the batch. Whenever Maat cannot group
multiple authorizations into a capability it issues capabilities which authorize a single user to access a single
file, by explicitly naming in the capability and eschewing the use of Merkle trees.

Capability expiration is currently configured for five minutes; after four minutes each client renews
capabilities for all open files. By renewing after four minutes, clients are pro-active about not allowing
capabilities in use to expire. Also, by renewing all open capabilities the clients ensure that no currently used
capability will expire while in use. In addition to the requested capabilities, the MDS renews capabilities
for all currently opened files, for all users.

4 Performance Evaluation

We evaluated Maat to assess the overhead and scalability of securing a petabyte-scale file system using
“insecure” Ceph as a baseline. We evaluated I/O performanceusing a microbenchmark run with two Maat
authorization grouping strategies, UNIX groups and prediction, and compared them both to secure I/O with-
out grouping and to baseline Ceph. This experiment highlighted the benefits of extended capabilities, and
explored the pros and cons of different authorization grouping strategies. We also evaluated the performance
of batch-based authorization grouping during flash crowds and the overhead incurred for capability renewal.
Finally, we evaluated the performance of Maat and Ceph running the IOR2 benchmark [30], an HPC parallel
file system benchmark.

4.1 Experimental Setup

Our experiment test bed consisted of an 18 node Linux clusterin which each node was a PC with a 2.8 GHz
Pentium 4 processor with 3.1 GB of RAM connected to a local SCSI disk and running Red Hat Enterprise
Linux 4 (kernel version 2.6.9). The nodes were networked viagigabit Ethernet through an Extreme Net-
works switch. The cluster was partitioned into 1 MDS, 10 OSDs, and 7 client nodes, each of which was able
to run up to 20 client processes concurrently without performance degradation. Our benchmarks were done
without on-wire encryption because encryption tends hide the sources of overhead by adding encryption
costs to each I/O operation. Additionally, all experimentswere conducted with the local client data cache
disabled because the Ceph client write back policy resultedin high variability between runs.

4.2 Overhead from Capability Operations

Operation open() write() read()
Baseline 41 329 45

Maat 597 619 291
Maat (Merkle) 615 1534 1301

Maat (Cache Hit) 44 333 48

Table 1: A comparison ofopen(),write, andread()
operations in microseconds. The drastic increase in over-
head when a capability must be generated or verified
demonstrates the critical need for Maat to maximize ca-
pability cache hits.

To determine the performance impact of in-
troducing security via capabilities and quan-
tify the potential savings from caching capa-
bility generations and verifications, we timed
open() operations at the MDS andwrite()
andread() operations at an OSD under sev-
eral scenarios and compared these operations to
the times required in baseline Ceph, with the
results summarized in Table 1. Open requests
that require capability generation run 14 times
slower than baseline Ceph, 90% of which can
be attributed to the signature required for capa-
bilities. Because the operation was timed at the
MDS, this difference is greater than it would be
if timed at a client, since network round trip time would be accounted for. Handling an open with a cached
capability performs significantly better, incurring a penalty of 3 µs (7%) due to lookups. When verifying a
capability, write and read operations perform 2 and 6 times slower than baseline Ceph, respectively. When
Merkle trees are used these overheads increase to a factors of 5 for writes and 29 for reads because the
OSD has not already cached the Merkle tree below the root hash. In our experiment, the client did not have
the tree cached either, requiring additional messages fromthe OSD to the client and from the client to the
MDS. However, when an OSD has previously verified a capability, I/O performance is on par with baseline

Number of Clients
10 30 50 70 90 110 130

O
pe

n
La

te
cy

 (
us

)

0

100

200

300

400

500

600

700

baseline
no groups
unix groups
prediction

(a) Average MDSopen() latency.

Number of Clients
10 30 50 70 90 110 130

W
rit

e
La

te
cy

 (
us

)

0

100

200

300

400

500

600

baseline
no groups
unix groups
prediction

(b) Average clientwrite() latency.

Number of Clients
10 30 50 70 90 110 130P

er
−

O
S

D
 T

hr
ou

gh
pu

t (
M

B
/s

ec
)

0

10

20

30

40

baseline
no groups
unix groups
prediction

(c) Average per-OSD write throughput.

Figure 7: Results of a mixed workload microbenchmark.

Ceph performance, with performance penalties under 7% for strong security. These numbers demonstrate
the need to reduce the number of capability generations and verifications by employing caches.

4.3 Microbenchmark Performance

To evaluate Maat’s performance and scalability under various system sizes, we ran several experiments with
a microbenchmark in which each client writes to 6 shared filesand 4 non-shared files with 5 MB being
written to each in 128 KB byte chunks. Each run began with a fresh file system and a cold capability cache.
We pre-configured UNIX groups such that every 10 clients shared a group. Using this setup, we evaluated
how extended capabilities performed under various authorization grouping strategies, varying the number
of clients from 10 to 140.
open()Latency. Figure 7(a) charts the average latency for an MDSopen() request, showing that the use
of extended capabilities to group authorizations results in a a major performance improvement. Both UNIX

and prediction grouping perform more than 3 times better than no grouping, and UNIX grouping approaches
baseline Ceph performance. UNIX groups perform better than prediction because prediction does not group
as many authorizations per capability as UNIX groups. For each client, prediction generates a capability
that authorizes access to all shared files and capabilities for all four non-shared files. In contrast, UNIX

grouping generates one capability per file, but that capability authorizes write privileges for all ten users in

Number of Clients
20 40 60 80 100

M
D

S
 L

at
ec

y
(s

ec
)

0

0.02

0.04

0.06

0.08

0.1
baseline
no batching
batching

(a) Average MDSopen() latency.

Number of Clients
10 30 50 70 90 110 130

R
en

ew
al

 L
at

ec
y

(u
s)

0

20

40

60

80

100

120

140

no groups
unix groups
prediction

(b) Average MDS renewal latency.

Figure 8: An analysis of Maat’s scalability for flash crowds and capability renewal.

the group. While both approaches performed well, we believecombining both grouping strategies would
produce better results as even fewer capabilities would need to be generated.
write() Latency. Figure 7(b) shows the average latency for clientwrite() operations. UNIX and
prediction grouping add a negligible overhead to baseline Ceph performance, but not using authorization
grouping incurs a higher overhead. While Maat’s low overhead contributes to the low latency, other factors
do as well. First, the round trip network latency for client requests masks differences between baseline
Ceph and Maat by adding a relatively constant overhead for all writes. Second, each client writes 5 MB in
128 KB chunks, so at most one (the first) of the 40 writes per filewill miss the capability verification cache
at any given OSD, regardless of the grouping strategy. Grouping authorizations decreases the number of
initial writes that will miss the cache, accounting for the discrepancy between the different strategies: some
strategies result in zero verification cache misses on file writes.
write()Throughput. Figure 7(c) shows that, as before, UNIX and prediction grouping do not noticeably
decrease per-OSD write throughput compared to the baseline, while not grouping authorizations lowers
throughput. The UNIX and prediction grouping decrease total throughput 3.8 and 1.3%, respectively, and
total throughput is decreased 20% without grouping.

4.4 Scalability

To further explore Maat’s scalability we conduct two experiments first using flash crowds then capability
renewal. Our flash crowd experiment consisted of each clientissuing anopen() request for the same file.
We varied the number of clients from 20 to 100. Figure 8(a) shows the results of our flash crowd experiment.
Batching is able to keep open latency low, very close to baseline Ceph. Without using batching, open latency
quickly increases to over 30 times that of baseline Ceph. This difference is easily attributed to the difference
in the number of capabilities generated. Without batching,the MDS must generate a capability per request
while batching requires only a single capability per batch.

For our capability renewal experiment, we adjusted Maat’s renewal period to have clients request re-
newals every 15 seconds while clients wrote a series of non-shared, 32 MB files for 50 seconds. The work-
load allowed each client to make three renewal requests before finishing. Figure 8(b), which displays the
average amount of time the MDS spent handling renewal requests, shows that the average latency declines
as the number of clients increases. This behavior results from the number of total number of renewal token
generations staying essentially constant, even as the number of renewal requests increases.

Number of Clients
10 30 50 70 90 110 130

P
er

−
O

S
D

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

0

5

10

15

20

25

30

35

40

prediction
unix grouping

no grouping
baseline

reads

writes

(a) Per-OSD read and write throughput.

Number of Clients
10 30 50 70 90 110 130

O
pe

n
La

te
cy

 (
us

)

0

100

200

300

400

500

baseline
no groups
unix groups
prediction

(b) Averageopen() latency.

ba
se

lin
e no

gr
ou

ps

un
ix

gr
ou

ps

pr
ed

ic
tio

n

T
im

e
(s

ec
on

ds
)

4.8

5.3

5.8

6.3

(c) Total time to run a single IOR2 trace file.

Figure 9: Results of the IOR2 benchmark.

4.5 IOR2 Benchmark

To gauge Maat’s performance under a real HPC workload, we used a modified version of the IOR2 bench-
mark [30], a parallel file system benchmark designed for large-scale systems. The benchmark is broken
down into 512 trace files collected from 512 separate processes, each of which writes a series of non-shared
output files and reads them back. A limited number of shared files are also written.

For our experiments, each client ran two trace files randomlyselected from the 512 possible traces, with
the number of clients varying from 10 to 140. Because each experiment began with a fresh file system, we
modified each trace file to issue awrite() andlseek() prior to any read to ensure reads were not issued
to an unwritten offset. Each trace issues about 520 reads, soour modifications added another 520 writes,
resulting in each trace issuing about 1,030 total writes. The majority of I/O is done in 64 KB chunks and
approximately 25 files are opened in each trace file. Again, weconfigured UNIX groups so that every
10 clients shared a group. We ran all 512 trace files though ourRecent Popularity predictor to calculate
predictions.

The results in Figure 9(a) shows that per-OSD read and write throughput were comparable across all
four experiments. The minimal effect on throughput is slightly different than what we expected, but can
be attributed to the I/O-centric nature of the benchmark. With our modifications, over 125 MB are written
per trace file, which, at two processes per client, results in250 MB being written per client. As a result,
the cost of verifications are amortized across the large numbers of I/O requests. Averageopen() latency,

in Figure 9(b), shows that UNIX grouping produces results comparable to baseline Ceph, while prediction
latencies are generally over 100µs slower. This discrepancy is due to Recent Popularity producing relatively
few predictions; only a few of the IOR2 access patterns were sufficiently common for Recent Popularity to
have confidence to make a prediction. Finally, Figure 9(c) shows the total time required to run a single IOR2
trace file. Without any authorization grouping, a 22% overhead is incurred over baseline Ceph, but UNIX

and prediction reduce the overhead significantly to 6% and 7%, respectively.

5 Future Work

The current Maat design works very well at providing security for petabyte-scale storage systems. However,
there are still some issues that remain. First, the authorization grouping strategy Maat uses has a dramatic
impact on the performance improvements gained by extended capabilities. While we presented several
approaches for how to group authorizations, our list is by nomeans exhaustive. By exploring other grouping
strategies we may be able to find which work best for specific workloads.

A second issue is that Maat was designed to provide scalable I/O security for petabyte scale, high per-
formance storage, but, while it provides an authenticationand authorization framework, it does not provide
on-disk security. For many systems, access control is not sufficient; rather, such file systems want to keep
all file contents encrypted on the network-attached devices[2, 17, 21] because On-disk security prevents an
attacker from obtaining data even when the attacker has physical possession of the device. Additionally,
on-disk security further limits the amount of trust that need be placed on storage devices. As a result, we are
currently exploring scalable techniques for encrypting data on disk in petabyte-scale storage systems.

Finally, we presented several novel protocols which take a unique approach to providing security. As
such, we would like to pursue formal proofs of security for these protocols. While we believe Maat’s
protocols are secure, formal proofs would provide certifiable verification. A language such as the applied
pi calculus [1], which contains cryptographic primitives and basic file system constructs, can be used to
generate these proofs.

6 Conclusions

This paper described Maat, a scalable method for securing petabyte-scale parallel and distributed file systems
by using three novel techniques for achieving scalability:extended capabilities, automatic revocation, and
secure delegation. By limiting the number of cryptographicoperations while still providing strong security,
Maat’s security can scale to handle file systems with thousands of clients accessing files striped across
thousands of network-attached storage devices. Maat accomplishes this goal by using capabilities that can
authorize I/O for any number of clients to any number of files,revocation which does not require explicit
messaging to any devices, and a secure method for access delegation.

We evaluated a prototype implementation of Maat in the Ceph petascale distributed file system ,focusing
on Maat’s scalability. Our scalability experiments show that, as system size increases, Maat has a minimal
impact on latency and throughput for high-performance computing workloads. More concretely, Maat is
able to add strong security while incurring as little 6–7% overhead on an I/O-intensive HPC benchmark.
With strong security available for scalable storage for so little overhead, there is no longer any reason to
exclude secure file system authentication and authorization from petabyte-scale high performance storage.

References

[1] Martı́n Abadi and Cédric Fournet. Mobile values, new names, and secure communication. InProceed-
ings of the 28th ACM Symposium on Principles of Programming Languages (POPL’01), New York,
NY, USA, January 2001. ACM Press.

[2] Marcos K. Aguilera, Minwen Ji, Mark Lillibridge, John MacCormick, Erwin Oertli, Dave Andersen,
Mike Burrows, Timothy Mann, and Chandramohan A. Thekkath. Block-level security for network-
attached disks. InProceedings of the Second USENIX Conference on File and Storage Technologies
(FAST), pages 159–174, San Francisco, CA, 2003.

[3] Ahmed Amer, Darrell D. E. Long, Jehan-François Pâris,and Randal C. Burns. File access prediction
with adjustable accuracy. InProceedings of the International Performance Conference on Computers
and Communication (IPCCC ’02), Phoenix, April 2002. IEEE.

[4] Alain Azagury, Ran Canetti, Michael Factor, Shai Halevi, Ealan Henis, Dalit Naor, Noam Rinetzky,
Ohad Rodeh, and Julian Satran. A two layered approach for securing an object store network. InIEEE
Security in Storage Workshop, pages 10–23, 2002.

[5] Peter J. Braam. The Lustre storage architecture. http://www.lustre.org/documentation.html, Cluster
File Systems, Inc., August 2004.

[6] Avik Chaudhuri and Martı́n Abadi. Formal analysis of dynamic, distributed file-system access controls.
In International Conference on Formal Techniques for Networked and Distributed Systems (FORTE
2006), pages 99–114, Paris, France, September 2006.

[7] Wei Dai. Crypto++ version 5.4. http://www.cryptopp.com, 2006.

[8] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplifieddata processing on large clusters. In
Proceedings of the 6th Symposium on Operating Systems Design and Implementation (OSDI), San
Francisco, CA, December 2004.

[9] Michael Factor, David Nagle, Dalit Naor, Erik Riedel, and Julian Satran. The OSD security protocol.
In Proceedings of the 3rd International IEEE Security in Storage Workshop, pages 29–39, 2005.

[10] Kevin Fu. Group sharing and random acces in cryptographic storage file systems. Master’s thesis,
MIT, June 1999.

[11] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. InProceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP ’03), Bolton Landing, NY, October
2003. ACM.

[12] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler, Fay W. Chang, Howard Gobioff, Charles
Hardin, Erik Riedel, David Rochberg, and Jim Zelenka. A cost-effective, high-bandwidth storage
architecture. InProceedings of the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 92–103, San Jose, CA, October 1998.

[13] Howard Gobioff. Security for a High Performance Commodity Storage Subsystem. PhD thesis,
Carnegie Mellon University, July 1999. Also available as Technical Report CMU-CS-99-160.

[14] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. SiRiUS: Securing remote un-
trusted storage. InProceedings of the 2003 Network and Distributed System Security Symposium,
pages 131–145. Internet Society, February 2003.

[15] D. Hitz, B. Allison, Andrea Borr, R. Hawley, and M. Muhlestein. Merging NT and UNIX Filesystem
Permissions. InProceedings of the USENIX Windows NT Symposium, Seattle, Washington, August
1998.

[16] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. Wes. Scale and performance in a distributed file system.ACM
Transactions on Computer Systems, 6(1):51–81, February 1988.

[17] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, QianWang, and Kevin Fu. Plutus: scalable
secure file sharing on untrusted storage. InProceedings of the Second USENIX Conference on File
and Storage Technologies (FAST), pages 29–42, San Francisco, CA, March 2003. USENIX.

[18] Andrew Leung and Ethan L. Miller. Scalable security forlarge, high performance storage systems. In
Proceedings of the 2006 ACM Workshop on Storage Security andSurvivability. ACM, October 2006.

[19] Henry M. Levy. Capability-Based Computer Systems. Butterworth-Heinemann, Newton, MA, USA,
1984.

[20] R. C. Merkle. A digital signature based on a conventional encryption function. InAdvances in Cryp-
tology - Crypto ’87, pages 369–378, Berlin, 1987. Springer-Verlag.

[21] Ethan L. Miller, Darrell D. E. Long, William E. Freeman,and Benjamin C. Reed. Strong security for
network-attached storage. InProceedings of the 2002 Conference on File and Storage Technologies
(FAST), pages 1–13, Monterey, CA, January 2002.

[22] David Nagle, Denis Serenyi, and Abbie Matthews. The Panasas ActiveScale storage cluster—
delivering scalable high bandwidth storage. InProceedings of the 2004 ACM/IEEE Conference on
Supercomputing (SC ’04), November 2004.

[23] B. Clifford Neumann, Jennifer G. Steiner, and Jeffrey I. Schiller. Kerberos: An authentication service
for open network systems. InProceedings of the Winter 1988 USENIX Technical Conference, pages
191–201, Dallas, TX, 1988.

[24] Los Alamos Lab loses more data. http://www.wired.com/news/politics/0,1283,63553,00.html, 2004.

[25] Ron A. Oldfield, Arthur B. Maccabe, Sarala Arunagiri, Todd Kordenbrock, Rolf Riesen, Lee Ward,
and Patrick Widener. Lightweight I/O for scientific applications. Technical report, Sandia National
Laboratories, SAND2006-3057, May 2006.

[26] Christopher A. Olson and Ethan L. Miller. Secure capabilities for a petabyte-scale object-based dis-
tributed file system. InProceedings of the 2005 ACM Workshop on Storage Security andSurvivability,
Fairfax, VA, November 2005.

[27] Benjamin C. Reed, Edward G. Chron, Randal C. Burns, and Darrell D. E. Long. Authenticating
network-attached storage. InProceedings of the Symposium on High Performance Interconnects(Hot
Interconnects VII), Stanford, CA, August 1999. IEEE.

[28] Jude T. Regan and Christian D. Jensen. Capability file names: Separating authorisation from user
management in an internet file system. InProceedings of the Tenth USENIX Security Symposium,
pages 221–234. USENIX, August 2001.

[29] Ohad Rodeh and Avi Teperman. zFS—a scalable distributed file system using object disks. InProceed-
ings of the 20th IEEE / 11th NASA Goddard Conference on Mass Storage Systems and Technologies,
pages 207–218, April 2003.

[30] Scalable I/O Project. http://www.llnl.gov/icc/lc/siop/, 2006.

[31] Frank Schmuck and Roger Haskin. GPFS: A shared-disk filesystem for large computing clusters.
In Proceedings of the 2002 Conference on File and Storage Technologies (FAST), pages 231–244.
USENIX, January 2002.

[32] Aameek Singh, Sandeep Gopisetty, Linda Duyanovich, Kaladhar Voruganti, David Pease, and Ling
Liu. Security vs performance: Tradeoffs using a trust framework. In Proceedings of the 22nd IEEE /
13th NASA Goddard Conference on Mass Storage Systems and Technologies, 2005.

[33] VA data loss class action. http://www.vva.org/ClassAction/QA.htm, 2006.

[34] Feng Wang, Qin Xin, Bo Hong, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Tyce T.
McLarty. File system workload analysis for large scale scientific computing applications. InProceed-
ings of the 21st IEEE / 12th NASA Goddard Conference on Mass Storage Systems and Technologies,
pages 139–152, College Park, MD, April 2004.

[35] Ralph O. Weber. Information technology—SCSI object-based storage device commands (OSD). Tech-
nical Council Proposal Document T10/1355-D, Technical Committee T10, August 2002.

[36] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn. Ceph: A
scalable, high-performance distributed file system. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA, November 2006. USENIX.

[37] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. CRUSH: Controlled, scalable,
decentralized placement of replicated data. InProceedings of the 2006 ACM/IEEE Conference on
Supercomputing (SC ’06), Tampa, FL, November 2006. ACM.

[38] Brent Welch. POSIX IO extensions for HPC. InProceedings of the 4th USENIX Conference on File
and Storage Technologies (FAST), December 2005.

[39] Edward Wobber, Martin Abadi, Andrew Birrell, and ButleLampson. Access control subsystem and
method for distributed computer system using locally cached authentication credentials. United States
Patent 5,235,642, August 1993.

[40] Yingwu Zhu and Yiming Hu. Snare: A strong security scheme for network-attached storage. In
Proceedings of the 22nd Symposium on Reliable Distributed Systems (SRDS ’03), Los Alamitos, CA,
USA, 2003.

