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Abstract

Petabyte scale, high-performance parallel file systenendibld sensitive data and thus require secu-
rity, but authentication and authorization have the péaétd reduce performance dramatically because
of the high number of clients and devices, data distribusioross both clients and devices, and bursty
and demanding workloads. Existing security protocolsqrenfpoorly in these environments because
they do not scale well—the number of security operationgréngly tied to the number of devices and
requests. To address these issues, we developed Maat,rayspmtocol designed to provide strong,
scalable security in petabyte-scale parallel file systdviaat introduces three new techniquestended
capabilities automatic revocationandsecure delegatigrall of which act to limit the number of cryp-
tographic operations as the number of devices and requestsries large. Extended capabilities allow
a single capability to authorize I/O for any number of clgetd any number of files, greatly limiting
the number of capabilities needed. Automatic revocati@s hort capabilities lifetimes to allow sim-
ple capability expiration to act as a global revocation agnews non-revoked capabilities in batches,
reducing the number of cryptographic operations requiBsture delegation allows clients to securely



act on behalf of a group to open files and distribute accedagcieg the number of operations for large,
joint computations. Experiments on the Maat prototype wel@mented in the Ceph high-performance
storage system show an overhead of as little as 6-7% oveninseperation for high performance work-
loads. By implementing strong authentication and autfation without a large performance penalty,
Maat enables secure access to high-performance petatgltestorage.

1 Introduction

The demand from science, research, and business for lagiepérformance storage has risen in recent
years. High performance computing (HPC) scientific apfibees such as physical and chemical simu-
lations have demanding I/O patterns, and their large datarsquire terabytes to petabytes of storage.
Businesses such as Google and Yahoo! also have HPC appikatiich as MapReduce [8] that require
giant web indices or image archives, placing a heavy loadtarage infrastructure. Securing such large-
scale HPC storage systems is an important challenge beoktlse large number of users and potentially
sensitive data stored on them. For example, scientific relseiata stored on large-scale storage systems can
include highly classified data; even unclassified data, siscsimulations of drug effectiveness or geologic
survey analysis data for oil drilling, can be worth millioosdollars. However, existing large-scale storage
systems largely ignore security, using (at most) advisegusty techniques to restrict access to data. Un-
fortunately, this approach has led to unprivileged accesiata and subsequent litigation and government
investigations [24, 33].

To secure I/O in petascale parallel file systems, it is incieffit to use traditional distributed access
control techniques that are designed for smaller systerisgeineral or random workloads. Petascale file
systems may service hundreds of thousands of clients arahstalevices and must support I/O patterns
that are highly parallel and very bursty [34]. These two destincrease the cost of traditional security
techniques, which are often based on pairwise associatietvgeen clients and storage devices, and can
result in weak security. There have been numerous effodedare distributed storage, but most were not
designed for the size and demand of large HPC systems [213,2], 27]. These solutions were designed
for general workloads with a modest number of relatively l§filas and requests, and most were intended
for systems with a limited number of clients and storage @i When incorporated into large parallel file
systems, current approaches either degrade performameby aipon weaker security mechanisms.

Existing protocols perform poorly in large parallel file s31ms because they do not scale well—the
number of security operations is strongly tied to the nunabetevices and requests. For example, existing
approaches may issue a capability for every block or objettghaccessed. (e., a capability authorizes a
single block or object 1/0) [13]. While this approach workgllhin smaller systems, it does not scale to
petabyte-scale systems, in which files containing terabgfaelata are striped across thousands of devices
and accessed by thousands of clients. A single client waitdiaccess a 1 TB file striped into 1 MB objects
would need a million capabilities; it is impractical to retuhat many capabilities when a file is opened.
Worse,eachclient accessing the file would require these capabilitidsle each client might use a different
subset, capabilities would have to be sent to the propetitotsain advance because capability sharing by
clients is difficult or non-existent in current systems.

To address these shortcomings, we designed and implemdiatsa strong security protocol designed
to scale to petabyte-scale parallel file systems. In deugyddaat, we reconsidered traditional I/O security
techniques with the goal of allowing security to scale tgéesystems with very demanding workloads. This
paper describes the mechanisms that Maat uses to providéled#O security for: preventing unauthorized



data access, revoking or changing user access privilegdsadeguarding against common security threats
such as spoofing, replay, and man-in-the-middle attacks.

Maat introduces three scalable security techniques. , icsiess control is enforced througktended
capabilities an extension of traditional capability tokens that camatrize 1/0 for any number of clients to
any number of files. For example, a single extended capabilgty authorize a read or write operation for
a hundred clients to any block in each of a hundred files. Bliait#ing access at the granularity of files
and aggregating many authorizations into a single capghiliaat is able to greatly reduce the number of
capabilities needed. Secoraljtomatic revocationmakes it possible to revoke a client’s access privileges
without the need to explicitly contact any clients or st@afgvices by giving capabilities short lifetimes.
As a result, revoking a capability can be done by allowingddugability to expire—no explicit notification
to storage devices is required. Continued use of valid dhgied is handled by a renewal protocol that
extends the lifetimes of batches of existing capabilitiehwninimal overhead. This paradigm shifts the
cost of revocation to renewal, where it can be handled in amocalable fashion. Thirgecure delegation
allows for scalable cooperative computation and 1/0, a comfeature of HPC workloads. A single client
generates a temporary asymmetric key pair and opens a filetaiftof the public portion of the key pair.
The private portion of the key pair is distributed to otheets who use it to access the file without having
to receive any additional authorization. The use of a termyokey pair shifts security from an insecure
opaque capability to the possession of a secure privateMast’s secure delegation provides and efficient
and secure implementation of the proposed POSIX HPC I/hsiiesopeng() andopenf h() [38].

We implemented Maat in Ceph [36], a petabyte-scale, higfepaance distributed file system. Ex-
periments both with and without security show that Maat ie &b achieve strong security on Ceph while
incurring less than 7% overhead for high performance wadkdo Additionally, Maat has little impact on
latency and throughput, allowing secured Ceph to achieaglynéhe same performance as insecure Ceph
operation.

2 Background

There are a number of parallel file systems that have beerogeeerecently and are in use today [5, 11, 12,
22,29, 31, 36]. Most of these file systems consist of threenroamponents: the client, a metadata server
cluster (MDS), and a cluster of storage devices, such asonetattached disks or object storage devices
(OSD). A key concept behind this design is the decoupling etaglata and data paths. Clients communicate
all namespace operations, suchogen() , to the MDS and all file 1/O operations, suchrasad() and
write(),tothe storage devices.

A side effect of this design is that, often, storage devia&mo implicit knowledge of access privileges
or authorizations because this information is stored aMBs. As a result, the MDS must communicate
authorizations to storage devices via capabilities, whrehcommunicable tokens of authority [19]. Before
any storage device can authorize an 1/O, a client must reeedapability authorizing the I/O from the MDS
and present it to the storage device with the 1/0 request.MIB8 cryptographically hardens the capability
with an HMAC or digital signature to guarantee to the stordgeice that the capability was not forged or
altered. Figure 1 demonstrates the architecture and sedlaniv in most parallel file systems. The trust
model assumes the MDS is a trusted oracle and referenceanachiite storage devices are trusted to store
data and only perform 1/O for authorized requests. Ther® isnplicit trust placed on the clients.



1: open()

2: osdIDs, capability

Figure 1: Parallel file system architecture and security.flolients request capabilities from the MDS and
present them, along with 1/O requests, to storage devices.

2.1 What's Special About Petascale File Systems for HPC?

Petabyte-scale distributed file systems used for higlepmdnce computing (HPC) are very different from
the smaller-scale file systems for which most security systeere developed. Petascale file systems are a
much more challenging environment to secure for the folhguieasons:

Dataislarge and highly distributed. Files in large-scale file systems are often extremely largetaining
gigabytes or terabytes of data, and can be striped acrogsahds of devices [34]. Previous security pro-
tocols distribute capabilities at the granularity of a Blac object, requiring the generation of thousands or
even millions of capabilities. Some security systems heee to alleviate this by issuing capabilities that
grant access to all file data on a device. Though this helpsisinds of capabilities must still be used to
access a large file which is striped over thousands of dewigces creating high load for servers generating
capabilities, latency for clients opening files, high load data servers verifying capabilities, and latency
for clients performing 1/O.

Many clients and storage devices. Large-scale HPC systems may have tens of thousands ofschenat
storage devices, increasing the cost of many security tpesa For example, changing file permissions
becomes extremely expensive when thousands of deviceshmusintacted to revoke a capability. Doing
so quickly and reliably is often impractical in large-scajestems.

Demanding 1/0O and access patterns. Parallel file systems are designed to support HPC workloatis w
demanding access patterns that create worst case perfmgraseenarios for existing security solutions. File
access and I/O are both extremely bursty and highly pai&Hg) creating workloads in which thousands of
clients accessing a single file within seconds is common.

Added threat environment. Physical security for tens of thousands of clients and g®idevices may
not be feasible. Additionally, it is unlikely that networkaurity can be strictly enforced across the whole
network, invalidating assumptions of secure communiagaitoprevious solutions. For example, a system
in which the simple possession of a capability is sufficienatthorize 1/0 can fail on insecure networks
where attackers can easily eavesdrop the network and alatpabilities. Maat assumes no existing network
security and that devices are vulnerable to attack; thientslthat are authorized to perform 1/O must be



explicitly named in a capability, preventing a random d&owvho obtains a capability from performing
unauthorized 1/0.

2.2 Existing Parallel and Distributed File System Security

Parallel and distributed file systems feature disks or OSibmected directly to the network. Because of
this model’s inherent vulnerabilities, there has been atgteal of research in providing secure 1/O in these
systems. Though many of these solutions have been sudcissfaaller systems, most do not perform

well in the large-scale, demanding environment for whicraMaas designed.

2.2.1 AccessControl

Granting a capability at the granularity of a block or an objie often too expensive, even for smaller
systems. As a result, prior approaches have authorizegscicgts for multiple blocks or objects with a
single capability. NASD [13], the T10 OSD protocol [35], L\@H25], and SnapDragon [2] all allow a
capability to authorize 1/0 to a group of objects that resddethe same storage device. Restricting access
to a single device does not significantly decrease the nuofleapabilities required when files are striped
across thousands of devices. Additionally, these groupiragegies often require manual specification or
are dependent on parameters such as on-disk layout, fiirtiigng capabilities from authorizing 1/O to
many objects.

In many systems [2, 9, 13, 27, 40], an HMAC is used to provideaxrantee that a capability was gener-
ated by the MDS and has not been tampered with. An HMAC regj@rghared key between the MDS and
the storage devices that recognize the capability. WhileAdlare simple to generate (they do not require
public-key encryption), they are too insecure to be usednge-scale systems. If an attacker compromises
a single storage device, the attacker gains the key shategdre the MDS and any storage devices that
share the same HMAC key, allowing the attacker to impersotiet MDS, the system’s trusted oracle and
reference monitor, to any of those devices. To alleviate ititsecurity, keys are often shared only between
the MDS and a single disk, eliminating the threat of impeasimm. This approach restricts a capability to
authorizing 1/0 on only a single device, since only a singeice can verify the capability. This prevents a
capability from authorizing 1/O to large groups of blocksalmjects which may reside on multiple devices.
SNAD [21], Plutus [17], Olson and Miller [26], and Leung andller [18] all use public key cryptography
to secure access to files. SNAD and Plutus use public keyamyaubhy to make write operations externally
verifiable, while Olson and Miller use it to ensure a capafdiintegrity. Using public key cryptography
for capability integrity allows a capability to span any rioen of storage devices because each device must
simply know the MDS’s public key. This also adds securitydaese a subverted device will not be able to
spoof any other device. The downside is public key cryptolgyds orders of magnitude slower than shared
key cryptography, potentially introducing high perforraarpenalties in the demanding HPC environments
in which Maat operates.

Previous work has tried to avoid some of these performarseessby relaxing security constraints or
relying on an existing security infrastructure. Azaguwyal. [4] assumes the existence of a network-level
security infrastructure, such as IPSec, allowing them tihenticate secure channels rather than clients.
LWEFS [25] also assumes a secure transport layer allowingigriore potential replay and eavesdropping
of capabilities. However, most real-world systems do noplesnstrong network or transport security. This
is due to the high overhead of encrypting and decryptingraffit and the difficulty of enacting a key
infrastructure across the entire network, thus limiting sisope of these solutions. Singhal.[32] employ
a trust framework based on a client’s past trustworthinesgiring the MDS to monitor correctness of



client accesses. Clients who rarely make incorrect acsessadeemed trustworthy, and no effort is made to
ensure that their accesses are valid. While this framewaek @nprove performance for trustworthy clients,
an obvious attack would be to gain trust through a series wecbl/O requests and subsequently behave
maliciously.

2.2.2 Revocation

Access to a file is not secure unless that privilege can bengqul As file data becomes larger and the
number of devices increase, thousands of devices may ndmddontacted to revoke a single user’s access
or change a file’s permissions. Explicitly contacting eveligrage device that contains data for a file is not
scalable. Moreover, it is difficult to guarantee that the sages are received at their destinations, meaning
that the system “fails unsafe”: the default behavior isltow access, with revocation denying subsequent
accesses. Systems such as NASD [13] and SCARED [27] usé objston numbers for revocation. Capa-
bilities in these systems authorize 1/O to a specific objecsion; thus, changing the object version acts to
invalidate all capabilities for that object. With this meth revoking access to an entire file would require
incrementing the version number of every object in the fileicl is potentially millions of objects. Snap-
Dragon [2] uses a similar approach, though capabilitielserathan objects are versioned. Other systems
use similar methods with revocation lists [28], backpaisi@5], and key re-distribution [14], all of which
require explicit messaging to all of the storage devices.

To mitigate the cost of explicitly contacting all storagevides which may hold a specific capability,
Cepheus [10], SNAD [21], and Plutus [17] suggest the useayf tavocation. When permissions change,
access is revoked on the first write operation rather thaneidiately revoking access. This approach allows
the immediate cost of a permission change to be deferretithatfirst write request, but it also allows a
revoked user to continue to read the file data until it is ovigten.

3 Maat Design and | mplementation

Maat provides strong, scalable access control using esterdpabilities and automatic revocation and
supports cooperative computation with secure delegalfibrs section discusses the concepts behind these
techniques and how Maat addresses them.

3.1 Design Assumptions and Notation

Maat has been implemented in the Ceph petascale, high penfee, distributed file system [36], allowing
Maat to make some simplifying assumptions. First, Maatmgsuthat all storage devices are object-based
storage devices (OSDs)—intelligent devices with a CPUyosk interface, local cache, and a number of
underlying disks [35]. This approach means that Maat camasghat each OSD can associate local object
IDs with global file identifiers: using CRUSH [37], an OSD caapra global file identifier to the object IDs
and locations of the objects that contain the file data. Thlgt can issue capabilities that identffies
which OSDs can later associate with object IDs in 1/0O requédte also assume that clients act as proxies
for users. More specifically, each client acts on behalf aimiper of users, each of whom can be uniquely
identified. Throughout, whenever we refer to a client, weraferring to a user acting through a client
proxy. Finally, we assume a secure synchronized clock pobto keep time relatively synchronized across
nodes. Although these assumptions are slightly resteictivey hold true in many parallel file systems.
Additionally, making several concessions to the currenatMiesign will make it possible to port Maat to
systems which do not meet these assumptions.



Securing a petascale storage system requires a proto¢omaity messages; to ensure that the content
of the messages is clear, we will use a standard notationsiride the messages throughout this section.
The notationA — B : M denotes a messadd, sent from principal to principalB. The public and private
keys of principalA are denoted dsg andKR, respectively. To denote a shared secret key between paisci
A andB, we useKag. The encryption of messadé with A’'s public key, K,&J will be written as{M}KX;
This makesM unreadable to anyone who does not pogEsprivate key. The notatiodM }Kag denotes
the encryption oM with shared keyg; again, this makeM unreadable to anyone who does not posses
Kags. (M)KR denotes a messa@ signed with principal\'s private key, allowing any principal with access
to A’s public key to verify thatA “vouched for” the content oM. The hash of messadé is denoted using
hashM). An HMAC uses a similar notatiomashM, Kag), where a shared ké{g is hashed in addition to
M, allowing any principal that knowKag to verify that the message source also knows the secret ahd th
M was not modified in transport. Of course, the HMAC also padsk#ty to the correct block size and is
XOR'd with an inner and outer pad. Finally, the lett€aM, andD will be used to represent a client, MDS,
and OSD, respectively.

3.2 Authentication

Authentication in Maat requires each principal to have diplgrivate key pair. We assume that all prin-
cipals know the authenticated public key of every MDS and OB&fore entering the system, each client
creates a public/private key pali(é‘ and K‘CJ, and a shared ke¥cu, and shares the public and shared keys
with the MDS. When a client “logs into” the system, it receivee signed tickeT that verifies the authen-
ticity of the client’s public key using an approach similarthat of authentication server tickets used in
Kerberos [23]. The ticket, shown in Figure 2(b), also camaan initialization vector and an expiration
time.

Once a client has received a ticket, it negotiates a unigaeedkeyKcp with each OSD, as shown in
Figure 2(a). The ticket's initialization vector, the OSpigblic key, and random data are hashed to generate
the shared key. Maat uses shared keys rather than publatfpkeys because of the dramatic performance
benefits, though, unlike a shared key between the MDS and samber of OSDs, subverting a client-OSD
shared key does not allow any additional principals to befgub Clients securely distribute keys to each
OSD, who then verify correct receipt by responding to a nari@@lenge with a second nonoencé. The
protocol in Figure 2(a) is done infrequently—no further okgtions between clients and OSDs need be
done until the ticket is refreshed and the initializatiowtee is changed.

Though tickets are refreshed infrequently, refreshingclketi requires the client to migrate all shared
keys to use the new initialization vector. To improve thef@@anance of the resulting key re-negotiations,
the MDS provides the client with the new initialization vexgbrior to actually refreshing the ticket, allowing
the client to renegotiate shared keys during slack timeeratian re-negotiating all keys at once. When the
ticket is “formally” refreshed, the client will have miged most, if not all, of its shared keys to the new
initialization vector, so few keys would need to be negeticat ticket refresh.

3.3 Extended Capabilities

Access control is the primary contributor to security oeath because the number of capabilities and their
resulting cryptographic overhead tends to scale up asmegsbe workloads become larger. To reduce ca-
pability overhead, Maat introduces the notion ofextended capabilitya capability able to authorize 1/0
for any number of clients to any number of files. Extended bdgifias are conceptually equivalent to the
I/O authorizations of many traditional capabilities aggted into a single data structure. For example, a



C — M : requestticket, T, hashrequestTs, Kcw) /* Client requests ticket from MDS */
M —C : T /*MDS returns ticket */

C—D : {(Kcp,Ts,noncéKRIKS /* Client distributes keys to each OSD */

D — C : noncé, hashinoncé, Kcp) /* OSD confirms receipt with nonce challenge */

(a) Messages sent to establish a shared key between aCkert an OSID. In Message 3, an OSD extracts the client-
disk shared ke¥cp by decrypting it using its private key and authenticating thessage source using the public key in
T. An OSD confirms correct receipt by responding with a non@lehgenoncé.

T (lDU,Kg,lv,Ts,Te>K,\Fj
Kep hashV, K3, randomdata)

(b) Definitions for a tickef and client-disk shared ké{§p. T contains the
user’s ID (Dy), public key ((8), initialization vector V), and the ticket's
lifetime. Kcp is computed by hashinty with the OSD’s public key and
random data.

Figure 2: Protocol to negotiate a shared client-disk key aai

traditional capability may state “usarhas read access to objgtt while an extended capability may say
“usersa, b, andc have read access to filgsy andz” By combining permissions, the MDS can generate
fewer capabilities because a single extended capabilityreplace multiple traditional capabilities. This
change also means that OSDs need to verify fewer capabitiseause more 1/O requests can be done using
a single, previously verified, capability. It should be mbtkat, while an extended capability can authorize
many 1/Os, access control is still at the granularity of gk&rfile; individual files may be included or ex-
cluded from a single extended capability. This is in contttagoarse-grained access control models [16] in
which access is granted at the granularity of a set of filee. MIBS enforces the rule that all authorizations
in a extended capability are legal according to the MDS’&sscontrol matrix.

Extended capabilities do not alter the I/O security modekpnted in Section 2; the primary change
is that the MDS may intelligently insert additional 1/O aotlzations when it generates a capability, as
discussed in Section 3.3.3. The protocol used by the cleeapén and read a file is shown in Figure 3(a).
After generating a capability, the MDS caches it, bypassiiregexpensive capability generation process for
subsequenbpen() requests from different clients that the MDS had alreadyguthorized; this activity
on the MDS is transparent to the client. Similarly, when arbQ®rifies an extended capability in response
to an 1/O request it receives, it caches the results of theasiige verification, allowing the OSD to bypass
signature verifications for /O requests which use previousrified capabilities [39]. By authorizing many
I/Os in a single capability, extended capabilities inceetiee number of capability cache hits at the MDS
and allow the OSDs to bypass more capability verifications.

3.3.1 Securing Extended Capabilities

To ensure that capabilities cannot be forged or alteredt Ble@ures them using public-key cryptography.
Each capability is signed by the MDS's private key, allowangyone who knows the MDS'’s public key to
verify its integrity and authenticity. Public key crypteghy is used, rather than shared key cryptography,
for three reasons: convenience, security, and affordab#iny OSD can verify a capability, conveniently
allowing a capability to authorize I/O for a file that may @sion thousands of different OSDs. For this to
be possible with shared keys, the MDS must share a commonikeahOSDs. If this key were to become
compromised, which may not be uncommon in very large systdmasattacker can spoof the MDS and any



C — M : operpath modeg, Ts,hashiopen(path mode, Ts, Kcm) /* Client requests capability */
M —C : C,hashC,Kcwm) /* MDS returns capability */

C—D : C,readoid), Ts,hashreadoid), Ts,Kcp) /* Client presents capability with I/O */

D —C : {dataTs}Kcp /* OSD responds to I/O */

(a) Protocol to open and read a file in Maat. Each message HdBIAR allowing its source and contents to be verified.
File data may be encrypted in transit to prevent eavesdngppi

D — C : updatéRH), Ts,hashupdat¢RH), Ts,Kcp) /* OSD queries client for Merkle tree */
C— M : updatéRH), Ts,hashiupdaté¢RH), Ts,Kcm) /* Client queries MDS for Merkle tree */
M —C : H /*Merkle tree passed to client */

C—D : H /*Merkle tree passed to OSD */

(b) Protocaol to retrieve a hash tree in Maat. A client forveatghdate requests to the MDS when it does not lJdve
cached locally; thus Messages 2 and 3 only occur when thet claes not have the tree cached.

e (U,1,IDc,mode T, Te)KR
H (RH,tree)K{

(c) Contents of a capabilit¢ and a signed Merkle tre&(. In €, U andl

are the root hashes of authorized users and files, respgctivel IDc is a
unigue capability identifietH contains the Merkle tree associated with root
hashRH.

Figure 3: Protocols using extended capabilities.

OSD. With public key cryptography, however, obtaining th®#Is public key does not allow an attacker
to forge signatures. Though Maat pays a cost for the conmeaiand security of public key cryptography,
this cost for a small number of cryptographic operationsm®rized across thousands of 1/O requests by
caching the results of both capability generation at the MID8 verification at the OSDs. Thus, Maat
can afford to use public key cryptography even though it e of magnitude slower than shared key
cryptography, because it dramatically reduces the nunfeapability generations and verifications.

Ensuring integrity is not sufficient, however—extendedatalities must also ensure that simply obtain-
ing a capability,e. g. via eavesdropping an unencrypted network, does not allgwivileged data access.
Such breaches can occur in “pure capability systems,” ithvkimple possession of a capability is sufficient
to grant access. Maat confines I/O authorizatiorexplicitly naming all authorized users and file identifiers
in the capability. When an OSD verifies a capability, it chettlat the authenticated user making the request
is named in the capability and that the file identifier in thpatality maps to the object ID being read or
written, thus preventing an attacker from using a capahititperform any unauthorized operations.

3.3.2 Making Extended Capabilities Fixed Size

Extended capabilities can become very large when they mpditigly state all authorized users and files.
Since large capabilities can consume lots of cache spacarandefficient for frequent network transmis-
sion, Maat creates small, fixed size capabilities using Mdrlsh trees [20]. Capabilities identify authorized
users and files via the root hash of a Merkle tree constructed the user IDs or file identifiers, with the
root hash acting as a unique, fixed size identifier for all elets in the tree. Merkle trees are used because
each inner node of the tree is itself the root hash of a subemeresponding to a subset of the original tree.
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Figure 4: Extended capabilities identify authorized userd files using root hashes. This allow capabilities
to be fixed size, no matter how many I/Os are authorized.

This allows easy composition and decomposition of new Metides, as illustrated in Figured.andl in
capability C are the root hashes of the Merkle trees of user IDs and fildiftbaa, respectively.

A result of using root hashes in capabilities is that when &DGairst receives a capability, it does not
know which users or files are authorized by the capabilityabee it does not know the user IDs or file
identifiers associated with a root hash. Maat uses an updatecpl, shown in Figure 3(b) to allow an
OSD to query the requesting client for the Merkle tree asdediwith a root hash. Clients retrieve and
cache the signédVlerkle tree from the MDS. By caching the tree, clients enshia all subsequent update
requestsi( e, another OSD verifying the capability) do not burden the M@®ce the OSD has cached
the tree, it ensures that any future uses of the root hash tequoire an update by also caching the tree.
Additionally, messages 2 and 3 only occur when a client do¢save the Merkle tredl(, associated with
the root hashRH. Thus, a capability which authorizes 1/O fbr users toM files located acros§ OSDs
requires a maximum af OSD update requests for thex M 1/0s authorized by the capability.

3.3.3 Grouping /O Authorizations

The technique by which 1/0O authorizations are grouped im@edended capability directly affects how
effectively Maat can reduce capability generation and halt @SD capability verification performs,e.,

the number of root hash updates that must be performed. Tinddotors that impact grouping effective-
ness are the number of authorizations per capability, #guncy with which groups change, the overhead
of the grouping scheme, and compatibility in heterogenemwironments. Increasing the number of 1/0O
authorizations per capability causes fewer capabilitbebet generated. The frequency with which groups
change affects how frequently OSDs must resolve new, unkmoat hashes, impacting capability verifica-
tion performance. The overhead of the grouping strategsraghes the time required to actually construct
the group. Compatibility defines how well the grouping stggtworks in heterogeneous environments. Ul-
timately, the optimal grouping strategy varies from systeraystem and depends on workload and system
size, among other things. We briefly discuss several grguppproaches that we believe work well for
large-scale systems and HPC workloads.

Access Prediction. HPC applications often have repeated access patterns,asudading data files on
boot and writing log files on close. Future file or user accessm be predicted based on past behavior

1The Merkle tree signature has subsequently been remowvetifi® protocol as it is not necessary. Each root hash refigeaen
unique Merkle tree, therefore, a tree cannot have the daowethash unless it is the correct tree. This makes forgeintiess and
tampering obvious. The signature has been included heeabedt is reflected in our benchmarking results and remavimguld
lead to inconsistencies.



and pro-actively included in a capability. Clients can pdevpredicted future file accesses to the MDS
with open() requests, similar to the prediction strategy discussed diyi@¥ [13]. In addition, the MDS
can predict future users’ accesses. Prediction has thdaups$ipotentially grouping many authorizations
into a single capability, but can cause frequent group obsiifgoredictions are limited or incorrect. Also,
prediction incurs a space and time penalty to store pastvimgbkaand calculate predictions.

UNIX Permissions. Using UNIX access controli.(e., owner, group, world permissions) in a way similar
to sharing in Cepheus [10] has the major advantage of reguaimaximum of three capabilities for any
single file. Only three capabilities are needed becausengngocessing the file must use either the user,
group, or world permissions. Additionally,NUx groups do not change frequently. The major downside is
its incompatibility with other access control semantiag;tsas those of Windows. In large-scale systems
various access control semantics may be needed for diffdogniains, therefore, not all files may be con-
trolled by UNIX access semantics. Unless the MDS is sophisticated enougthersteps are taken [15],
multiple access control semantics cannot be enforced.

Temporal Patterns. HPC workload access patterns have strong temporal rediios) bursty accesses and
flash crowds [34]. Batching groups of capability requestthatclient or MDS can alleviate congestion
caused by these patterns, using a batching approach stmilaat used in the original NASD design [13].
Temporal request batching can absorb bursty requests teaamerall load, but can also increase client
latencies. Also, batching will only produce large group®ihporal relationships are strong.

User or Application Knowledge. Users or applications may know of an efficient grouping etigt and
may thus manually define their own groupings, similar to $Xet attribute (SET ATTR) functionality [35].
Manual definitions may be accurate but are also tedious,ngatkiinlikely group definitions will be rigorous

or maintained.

Other Relationships. Other, simpler relationships may also prove effective. &ample, including all
files in the current working directory may serve as a quick aoclrate method of file access prediction.
Additionally, combining grouping strategies can improlie umber of authorizations per capability.

3.34 Extended Capabilities and Cache Consistency

Previous work [13, 35] allowed capabilities that authollite at the granularity of blocks or objects to also
serve as block or object range locks. The MDS could ensureathgstency of a single block or object by not
issuing a capability which caused multiple writers or readmd writers. Coupling security with consistency
is not possible with extended capabilities because aathirns are too coarse-grained. We assert security
and consistency should not be so tightly bound, as each pagate concepts with different goals. Namely,
high performance applications can often sacrifice consigtéor 1/0 performance, exemplified by POSIX
HPC I/O extensions which call for looser consistency serosij88]. On the other hand, data security
and privacy is often far less flexible. Ceph promotes thissspn by using consistency tokens which are
distinct from security capabilities and object range loslssied by OSDs, rather than the MDS.

3.4 Automatic Revocation

Revoking a capability by explicitly contacting storage ideg in a petascale storage system is very difficult
for several reasons. First, file data is striped across memgge devices, meaning many devices must
be contacted if a capability is to be revoked. Second, egrudpabilities may exacerbate the problem
by authorizing I/O to many files, increasing the number ofickes which hold the capability. Third, each
storage device must remember which capabilities were ezljobo as to not allow reuse later. To achieve
better scalability, Maat usemutomatic revocationwhich allows global capability revocation without the



C— M : renewalP), Ts,hashrenewalP), Ts,Kcm) /* Client renews a set of capabilities */
M — C : R,hashR,Kcm) /* MDS returns a renewal token */
C—D : C,R,readoid), Ts,hashreadoid), Ts,Kcp) /* Client presents token to OSD with I/O */

(a) Protocol to renew capabilities. Clients renew all calfias in use,P, and present renewal toke#s,to an OSD with
I/0O requests. The OSD uses the token to extend the lifetinieeofapabilities it names to a valid time.

R = (P+0O,ToKR

(b) Contents of a renewal token. The token renews all vatidested capa-
bilities, P, and all outstanding capabilities for all usetsn a single renewal
token. All renewed capabilities are valid until tirfig

Figure 5: Capability renewal protocol.

need to explicitly contact any storage devices. In thisigeave discuss the techniques that make this
possible.

3.4.1 Capability Expiration as Revocation

Maat requires that each capability have a short lifetime; caurent prototype uses five minute timeouts.
This allows Maat to shift the revocation paradigm from esiliy contacting devices to simply allowing a
capability to expire. When an OSD verifies an /O requesthéoks to see if the capability’s lifetime is
valid; if not, it does not authorize the 1/0. When a file’s p&sions changee( g, usingchnod() ), after a
maximum of five minutes, all capabilities permitting the nowalid access have expired. By immediately
applying the permission changes to its local access comadtlix, the MDS ensures that it will no longer
issue nor renew capabilities that authorize the revokedsaccAs an additional benefit, revoking many
accesses requires no greater effort than revoking a singéss. For example, revoking all access privileges
of a user simply requires the MDS to no longer issue capgsiliior that user. After a maximum of five
minutes, all of the user’s capabilities will have expired dhe user will no longer be able to access data.
This allows expiration to act as a global revocation, no erdtow large the system or where capabilities are
located. While there is a five minute window of vulnerabijliigchniques similar to this have previously been
used in formal proof of network-attached storage secuttg: MDS does not apply a permission change
until it is sure that all capabilities authorizing the moelifiaccess have expired, ensuring that permission
state on the MDS and OSDs are consistent [6].

3.4.2 Capability Renewal

While the goal of capability expiration is to allow scalalsvocation, it must also ensure that valid ca-
pabilities can continue to be used. To do this, Maat usestaégability renewal protocol, as shown in
Figure 5. Clients periodically submit requests to exteralifietimes of capabilities that they wish to con-
tinue using. In response, the MDS generates, caches amdgetnewal tokenshat extend the lifetime of
a set of capabilities for the same length as the originabplerifive minutes in the current implementation.
When making an I/O request, clients present renewal tokiemg) avith the expired capability to an OSD.
The OSD can subsequently verify that the token indeed egtdradlifetime of the capability to a valid time
and cache the result of the verification.

The core concept behind scalable renewal is that the MDS eaergte a single renewal token which
renews a large number of valid capabilities by generatingnawal token foall valid outstanding capabil-



ities. In this way, a small number of renewal tokens can ektie lifetimes of all valid capabilities still

in use, ensuring that the MDS spends a limited amount of tiengirsy renewal requests. In essence, this
shifts the cost of revocation from revoking invalid capdig$ to renewing valid ones, which can be done in
a much more scalable fashion. As Figure 5 shows, the renekahfR extends the lifetime of all requested
capabilitiesP and all outstanding capabiliti&3.

3.4.3 Immediate Revocation

It may be the case, albeit rarely, that file or user access beushmediately revoked. In the example of a
compromised client workstation, eventual revocatioe.( waiting for capabilities to expire) is insufficient.
For these scenarios, Maat uses an immediate revocatiomsch&hile explicitly contacting a large number
of devices cannot be avoided, Maat uses short capabildtirties to eliminate the need for OSDs to per-
sistently remember all revoked capabilities. Once an OSPDbeen notified of a capability revocation, it
only needs to remember the revocation for a maximum of fiveutes since after that time the capability
becomes invalid. This allows Maat to support immediate cation without the need to require OSDs to
remember past capabilities or rotate capability IDs.

3.5 Secure Delegation

Large-scale high performance computing often involvesushods of compute nodes collaborating on a
common job, thus requiring clients, even those without fdeeas privilege, to perform I/Os to and from
shared files. Conceptually, facilitating these operatisesms easy: a client simply opens a file and dis-
tributes a capability to other clients participating in tmenputation. Unfortunately, this gives rise to several
issues. First, a capability that authorizes 1/0 for anyohe twolds it is dangerous since anyone who obtains
it, including an attacker, can use it to access data. On tier diand, the capability must be general enough
to be distributed to any client participating in the compiota Second, delegated access must be temporary
and limited because it provides privileged access to uiteged users, though it should last as long as the
computation. Third, while group file opening and delegationst be secure, they must also be fast, and
ideally much faster than each client individually openihg file.

The POSIX HPC I/O extensiorgpeng() andopenf h() [38] were designed to provide support for
collaborative computation by allowing collective file opeand access delegation. Toygeng() operation
takes a path and mode and returns a file that which can bedregtsto cooperating clients and subsequently
converted to a file descriptor withpenf h(). The proposed semantics of these operations require that
the file handle, and therefore capability, be transferablanty client. We describe how Maat uses secure
delegation to support secure cooperative computatiorreaddhe concerns above, and support these HPC
I/O extensions.

3.5.1 SecureGroup Opens

Group opens and delegation in Maat are implemented usingdeary asymmetric computation keys. At the
start of a large compute job, a single client (the “lead™iates a joint computation and generates an asym-
metric key pair that will last the duration of the computatié-or each file, the “lead” client caltgpeng() ,
passing the computation public key along with the usyedn( ) arguments, as shown in Figure 6(a); this is
the onlyopen() call sent to the MDS for this file. The MDS returns a file handigtincludes a capability

to access the file and a token stating the lifetime of the caatiom public key. The capability includes the
hash of the computation public key in place of a root hash ef U3s, thus associating the capability with



opendpath modg, Kg, T,
hashopendpath modg, Kg,, Ts, Kem)
M—C : F,L hashF, L ,Kcy) /* MDS returns a file handle and key lifetime token */

C—M: /* Openg with computation public key */

(a) Protocol to open a file on behalf of a group. The “lead”rdlisubmits the computation public key wittpeng()
requests. The MDS returns a file handleand a public key lifetime toker;. I contains the capability needed to access
the file.

c—C: {Kgomp}Kg,,fF,L [* The lead client distributes the computation private key *
C—D : readoid),C,?,Ts, hashreadoid), Ts,Kcp) /* Clients pass a proof token with 1/0O */
D —C : updatéKeomy), Ts, hashupdatéKeym ), Ts,Kep) /* Queries for key lifetime token */
C— D : L /*Clientreturns lifetime token */

(b) Messages to securely delegate file access privilege.embiypted computation private key, file handle, and public
key lifetime token are distributed to clients participatin the computation. Each client computes a toRethat proves
possession of the private computation key and presentlit Wit requests. Messages 3 and 4 only occur if the OSD has
not previously seen the computation public key.

g = (pathmodeflags C,Keymp Ts Te) KY
L= (Komp Ts Te)Ki
ro= {<hasr(K(l:Jomp>> Romp}KCD

(c) Definitions for a file handl€, public key lifetime tokerC, and private
key proof tokenP. F contains a capability to access the file and data for
openf h() to produce a local file descriptoil authenticates the public
key and its expiration timeP proves possession of the computation private
key.

Figure 6: Secure group open and delegation.

an asymmetric key pair, rather than a set of users and allpanrOSD to authorize 1/O for anyone who can
prove possession of the computation private key. In the agessin Figure 6F and L are the file handle
and public key lifetime token, respectively.

3.5.2 SecureDelegation

Onceopeng() returns, the “lead” client is free to pass the file handle, pomation key pair, and signed
key lifetime token to any clients who are participating ie tomputation. To prevent eavesdropping of the
computation private key, the key is encrypted with the réngiclient’s public key and then signed by the
source client. Delegation can be optimized by the souremtcprecomputing the encrypted, signed private
key for each receiving client. To perform 1/O, clients comvtbe file handle to a local file descriptor using
openf h() . Each client proves possession of the computation priveyebly submitting a proof token
with I/O requests. The proof token is computed by signinghiieh of the computation public key with the
computation private key and encrypting it with the OSD stdmey. The signed hash proves possession of
the computation private key while the encryption authexéis the client. If an OSD has not previously seen
the computation public key, a client must also pass the digeg lifetime.



3.5.3 Computation Key Properties

The computation key pair is the root of security in Maat'sege@ltion protocol. Maat requires the key pair
to exhibit three properties to make it efficient and secutemtist be temporary, renewable, and revocable.
The key pair must be temporary because it allows clients why not otherwise have access rights, the
rights to access privileged files. However, since coopgratomputation is often long-lived, this privilege
should last as long as the computation, requiring that tlyepledr be renewable. In addition, the key pair
must be immediately revocable since clients without norfifalaccess privileges may be participating in
the computation.

When the MDS generates the computation public key lifetioken L it gives the key a short lifetime
(five minutes in the current implementation), making the tayporary. Since cooperative 1/O relies on an
OSD validating both a capability and a private key proof tokeenewal and immediate revocation can be
achieved by renewing or revoking the public key lifetimednlat the OSDs. Maat implements protocols
very similar to capability renewal and revocation thatwhoa public key lifetime token to be renewed or
revoked. The only significant difference is that only thewstiwho initiated the joint computation can renew
the public key lifetime. This prevents a client who was dated access to a file from continually renewing
the computation public key and having persistent acceswtéle.

3.6 Implementation Details

We have implemented Maat in the Ceph petascale, high-peafoce distributed file system. All crypto-
graphic operations were implemented using the Crypto+ab[7]. Maat has support for various crypto-
graphic algorithms, though the current implementatiors i€ 3-bit ESIGN for public/private key opera-
tions, 128-bit AES for shared key operations, and SHA-1 fee-way hash functions. All were chosen for
their high performance.

The current Maat implementation supports several of theasiziation grouping strategies previously
mentioned: WX groups, prediction, and temporal batching.NI¥ groups are implemented by using
Merkle trees with group IDs pointing to the root hash valusoasmted with the group’s Merkle tree. Predic-
tion uses the Recent Popularity algorithm [3], which presde&csuccess@if soccurs at leasf times in the
k previous observations and makes no prediction otherwisechMise Recent Popularity because adjusting
the j andk values allows us to adjust the accuracy of our predictionchasej = 4 andk = 6. Additionally,
only making predictions with confidence avoids the penaftgreating groups which are likely incorrect;
it is important to note, however, that the MDS never creatgmbilities that are not permitted by its cur-
rent access control matrix. Temporal batching is desigaddhndle flash crowd-like workloads. The MDS
begins batchingpen() requests for a file if four requests for the same file are recewithin 20 ms of
each other. Additionally, the MDS begins batching requé&sis a user if more than four requests from
the same user for different files are received within 20 msacheother. Batching is currently set for one
second, though a smaller value is probably more desirablmést workloads. Once a group of requests
are batched, a capability is generated to authorize allestgun the batch. Whenever Maat cannot group
multiple authorizations into a capability it issues capaés which authorize a single user to access a single
file, by explicitly naming in the capability and eschewing tiise of Merkle trees.

Capability expiration is currently configured for five mieatf after four minutes each client renews
capabilities for all open files. By renewing after four miesit clients are pro-active about not allowing
capabilities in use to expire. Also, by renewing all openatalties the clients ensure that no currently used
capability will expire while in use. In addition to the recptied capabilities, the MDS renews capabilities
for all currently opened files, for all users.



4 Performance Evaluation

We evaluated Maat to assess the overhead and scalabilitycafisg a petabyte-scale file system using
“insecure” Ceph as a baseline. We evaluated I/O performasitg) a microbenchmark run with two Maat
authorization grouping strategiesNX groups and prediction, and compared them both to secureitt® w
out grouping and to baseline Ceph. This experiment higtdigjlthe benefits of extended capabilities, and
explored the pros and cons of different authorization girmyiptrategies. We also evaluated the performance
of batch-based authorization grouping during flash crowdksthe overhead incurred for capability renewal.
Finally, we evaluated the performance of Maat and Ceph ngnthie IOR2 benchmark [30], an HPC parallel
file system benchmark.

4.1 Experimental Setup

Our experiment test bed consisted of an 18 node Linux clistghich each node was a PC with a 2.8 GHz
Pentium 4 processor with 3.1 GB of RAM connected to a local ISIsk and running Red Hat Enterprise
Linux 4 (kernel version 2.6.9). The nodes were networkedgigabit Ethernet through an Extreme Net-
works switch. The cluster was partitioned into 1 MDS, 10 OSidsl 7 client nodes, each of which was able
to run up to 20 client processes concurrently without perforce degradation. Our benchmarks were done
without on-wire encryption because encryption tends higeesources of overhead by adding encryption
costs to each 1/O operation. Additionally, all experimewere conducted with the local client data cache
disabled because the Ceph client write back policy resuitéigh variability between runs.

4.2 Overhead from Capability Operations

To determine the performance impact of in-
troducing security via capabilities and quan-

tify the potential savings from caching capa- Operation open() wite() read()

bility generations and verifications, we timed Baseline 41 329 45
open() operations atthe MDS ant i t e() Maat 597 619 291
andr ead() operations at an OSD under sev-| Maat (Merkle) 615 1534 1301
eral scenarios and compared these operations td¥aat (Cache Hit) 44 333 48

the times required in baseline Ceph, with thEable 1: A comparison aipen() ,wri t e, andr ead()
results summarized in Table 1. Open requestgerations in microseconds. The drastic increase in over-
that require capability generation run 14 timdsead when a capability must be generated or verified
slower than baseline Ceph, 90% of which cadgmonstrates the critical need for Maat to maximize ca-
be attributed to the signature required for capgability cache hits.

bilities. Because the operation was timed at the

MDS, this difference is greater than it would be

if timed at a client, since network round trip time would be@aented for. Handling an open with a cached
capability performs significantly better, incurring a pkynaf 3 us(7%) due to lookups. When verifying a
capability, write and read operations perform 2 and 6 tinh@ser than baseline Ceph, respectively. When
Merkle trees are used these overheads increase to a fattbrioowrites and 29 for reads because the
OSD has not already cached the Merkle tree below the root haslur experiment, the client did not have
the tree cached either, requiring additional messages tinen®SD to the client and from the client to the
MDS. However, when an OSD has previously verified a capgbiliD performance is on par with baseline
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Figure 7: Results of a mixed workload microbenchmark.

Ceph performance, with performance penalties under 7%tfong security. These numbers demonstrate
the need to reduce the number of capability generations arifications by employing caches.

4.3 Microbenchmark Performance

To evaluate Maat'’s performance and scalability under uargystem sizes, we ran several experiments with
a microbenchmark in which each client writes to 6 shared &leg 4 non-shared files with 5 MB being
written to each in 128 KB byte chunks. Each run began with shffée system and a cold capability cache.
We pre-configured Wix groups such that every 10 clients shared a group. Using e¢tup swe evaluated
how extended capabilities performed under various awtatioin grouping strategies, varying the number
of clients from 10 to 140.

open() Latency. Figure 7(a) charts the average latency for an Mipen() request, showing that the use
of extended capabilities to group authorizations resols & major performance improvement. BotRik

and prediction grouping perform more than 3 times bettar titagrouping, and Nix grouping approaches
baseline Ceph performanceNX groups perform better than prediction because predicti@s ot group

as many authorizations per capability asi¥ groups. For each client, prediction generates a capability
that authorizes access to all shared files and capabilitieallf four non-shared files. In contrast,Nix
grouping generates one capability per file, but that caalilithorizes write privileges for all ten users in
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Figure 8: An analysis of Maat'’s scalability for flash crowdglaapability renewal.

the group. While both approaches performed well, we belarabining both grouping strategies would
produce better results as even fewer capabilities would teebe generated.

write() Latency. Figure 7(b) shows the average latency for clienti t e() operations. Wix and
prediction grouping add a negligible overhead to baselispherformance, but not using authorization
grouping incurs a higher overhead. While Maat'’s low ovedheantributes to the low latency, other factors
do as well. First, the round trip network latency for clieejuests masks differences between baseline
Ceph and Maat by adding a relatively constant overhead fevrdks. Second, each client writes 5MB in
128 KB chunks, so at most one (the first) of the 40 writes pemfilemiss the capability verification cache
at any given OSD, regardless of the grouping strategy. Gmguauthorizations decreases the number of
initial writes that will miss the cache, accounting for the discnegebetween the different strategies: some
strategies result in zero verification cache misses on fitesvr

wr it e() Throughput. Figure 7(c) shows that, as beforenl and prediction grouping do not noticeably
decrease per-OSD write throughput compared to the baselinde not grouping authorizations lowers
throughput. The Mix and prediction grouping decrease total throughput 3.8 aB%b 1respectively, and
total throughput is decreased 20% without grouping.

4.4 Scalability

To further explore Maat'’s scalability we conduct two expeents first using flash crowds then capability
renewal. Our flash crowd experiment consisted of each dbsning aropen() request for the same file.
We varied the number of clients from 20 to 100. Figure 8(ajshihe results of our flash crowd experiment.
Batching is able to keep open latency low, very close to Ioas€leph. Without using batching, open latency
quickly increases to over 30 times that of baseline Cepts diffierence is easily attributed to the difference
in the number of capabilities generated. Without batchihg,MDS must generate a capability per request
while batching requires only a single capability per batch.

For our capability renewal experiment, we adjusted Maa&trgewal period to have clients request re-
newals every 15 seconds while clients wrote a series of hared, 32 MB files for 50 seconds. The work-
load allowed each client to make three renewal requestsééfoshing. Figure 8(b), which displays the
average amount of time the MDS spent handling renewal résjugsows that the average latency declines
as the number of clients increases. This behavior reswits fhe number of total number of renewal token
generations staying essentially constant, even as theeruohbenewal requests increases.
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Figure 9: Results of the IOR2 benchmark.

45 |OR2Benchmark

To gauge Maat's performance under a real HPC workload, we asrodified version of the IOR2 bench-
mark [30], a parallel file system benchmark designed fordatple systems. The benchmark is broken
down into 512 trace files collected from 512 separate presessch of which writes a series of non-shared
output files and reads them back. A limited number of shared éite also written.

For our experiments, each client ran two trace files rand@®ligcted from the 512 possible traces, with
the number of clients varying from 10 to 140. Because eackraxent began with a fresh file system, we
modified each trace file to issuewai t e() andl seek() prior to any read to ensure reads were not issued
to an unwritten offset. Each trace issues about 520 readsyrsmodifications added another 520 writes,
resulting in each trace issuing about 1,030 total writese ajority of I/O is done in 64 KB chunks and
approximately 25 files are opened in each trace file. Againcerdigured WiX groups so that every
10 clients shared a group. We ran all 512 trace files thougReaent Popularity predictor to calculate
predictions.

The results in Figure 9(a) shows that per-OSD read and wiiteighput were comparable across all
four experiments. The minimal effect on throughput is dliglifferent than what we expected, but can
be attributed to the I/O-centric nature of the benchmarkthWur modifications, over 125 MB are written
per trace file, which, at two processes per client, resul@5mMB being written per client. As a result,
the cost of verifications are amortized across the large ewsndf 1/0 requests. Averaggen() latency,



in Figure 9(b), shows that X grouping produces results comparable to baseline Ceple witadiction
latencies are generally over 1(@®slower. This discrepancy is due to Recent Popularity priodurelatively
few predictions; only a few of the IOR2 access patterns weffeceently common for Recent Popularity to
have confidence to make a prediction. Finally, Figure 9(ojsthe total time required to run a single IOR2
trace file. Without any authorization grouping, a 22% ovarth& incurred over baseline Ceph, butiitd
and prediction reduce the overhead significantly to 6% andré$pectively.

5 Future Work

The current Maat design works very well at providing seguot petabyte-scale storage systems. However,
there are still some issues that remain. First, the authtioiz grouping strategy Maat uses has a dramatic
impact on the performance improvements gained by extendpdbdities. While we presented several
approaches for how to group authorizations, our list is byneans exhaustive. By exploring other grouping
strategies we may be able to find which work best for specifikivads.

A second issue is that Maat was designed to provide scaléblselcurity for petabyte scale, high per-
formance storage, but, while it provides an authenticadioth authorization framework, it does not provide
on-disk security. For many systems, access control is rifitient; rather, such file systems want to keep
all file contents encrypted on the network-attached de\Jek7, 21] because On-disk security prevents an
attacker from obtaining data even when the attacker hasqatysossession of the device. Additionally,
on-disk security further limits the amount of trust thateiée placed on storage devices. As a result, we are
currently exploring scalable techniques for encryptintadm disk in petabyte-scale storage systems.

Finally, we presented several novel protocols which takeigque approach to providing security. As
such, we would like to pursue formal proofs of security foedld protocols. While we believe Maat’s
protocols are secure, formal proofs would provide certifiakerification. A language such as the applied
pi calculus [1], which contains cryptographic primitiveisdabasic file system constructs, can be used to
generate these proofs.

6 Conclusions

This paper described Maat, a scalable method for securtafpyte-scale parallel and distributed file systems
by using three novel techniques for achieving scalabilgytended capabilities, automatic revocation, and
secure delegation. By limiting the number of cryptograpiperations while still providing strong security,
Maat’s security can scale to handle file systems with thalsani clients accessing files striped across
thousands of network-attached storage devices. Maat guishi@s this goal by using capabilities that can
authorize 1/0 for any number of clients to any number of filespcation which does not require explicit
messaging to any devices, and a secure method for accegati@ie

We evaluated a prototype implementation of Maat in the Cegageale distributed file system ,focusing
on Maat'’s scalability. Our scalability experiments showatftas system size increases, Maat has a minimal
impact on latency and throughput for high-performance asing workloads. More concretely, Maat is
able to add strong security while incurring as little 6—7%read on an I/O-intensive HPC benchmark.
With strong security available for scalable storage forigle loverhead, there is no longer any reason to
exclude secure file system authentication and authorizétoon petabyte-scale high performance storage.
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