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Abstract

Secret splitting across independent sites has been pro-
posed for data storage in archival systems as an approach
that removes the issues surrounding key management re-
sulting from fixed key encryption. However, the inherent
security of such an archive precludes it from being di-
rectly searched; as a result, applications for secret split
archives have been limited in the general environment.

In this paper, we present a novel method to perform
blinded search across a secret-split archive, which we
call Percival. We leverage pre-indexing, keyed hashing
and Bloom filters to enable blinded searching, blinding
the archive from knowing what terms are being queried.
The addition of chaff during ingestion and search oper-
ations not only keeps an attacker blind to the data in the
archive, but also precludes correlating search results that
could potentially reveal which shares are needed for re-
construction. While chaff increases the number of false
positives at the archive site, the client can quickly fil-
ter most of them. This makes reconstruction of results
by the client relatively efficient, keeping the bulk of the
computational burden on the repositories.

1 Introduction

Security is a critical issue for long-term storage, partic-
ularly given recent incidents such as the Edward Snow-
den [20] and Bradley Manning disclosures of secret data
and the revelation that the National Security Agency may
have compromised the design of encryption algorithms.
As the volume of health care data, sensor data, personal
video and images, and sensitive corporate and govern-
ment data continues to increase, the threat of compro-
mise at some point in the future continues to grow [23].
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Much of this risk is due to traditional archival storage
having a single point of compromise: the archive reposi-
tory. If that one point is compromised at any time during
the archive’s lifespan, the archive’s data can be leaked.

Secret-splitting of archival storage can mitigate this
problem by distributing data to multiple archive repos-
itories.  Secret-split storage was first described by
Wylie et al. in the PASIS project [30], and adapted
to archival storage in the POTSHARDS project [24].
Secret-split archives divide a data object into shares,
each of which is stored on a separate repository in a dis-
tributed environment, making the archive less vulnerable
upon the compromise of a single site. However, data pro-
tection in such an archive relies on an attacker not being
able to determine which shares from different reposito-
ries go together, so any long-term archive that uses se-
cret splitting must prevent an attacker from gaining this
knowledge.

The need to be able to search long-term archival stor-
age is at odds with the need to keep data secure: queries
can reveal information about the data they cover, and can
potentially allow an attacker to determine which pieces
of data are related, even if the attacker can’t immediately
identify the data content itself. This is of particular con-
cern for secret-split archives, since the security of the
archive depends in part on preventing an attacker from
identifying relationships between shares, yet most tech-
niques for searching data allow an attacker to correlate
query results, yielding information about which shares
are related.

To address this problem, we developed Percival, a
archive that uses secret splitting to store data across mul-
tiple repositories while providing a mechanism for users
to query the archive. Percival pre-indexes the data be-
fore splitting it, and combines the resulting shares with
a Bloom filter containing terms ingested via keyed hash-
ing. This design enables blinded searching: the data cus-
todians are blinded to the contents of the search as well
as remaining blind to the data in the archive. Like all



secret-split archives, Percival has the additional benefit
of resistance to key and encryption algorithm compro-
mise and the ability to recover data if sufficiently many
repositories agree to do so.

The terms stored in each Bloom filter are further ob-
fuscated by adding chaff during both data ingestion and
search operations. This keeps an attacker from learn-
ing the relative number of terms stored in each filter,
which could possibly reveal something about the under-
lying data, and makes it more difficult to correlate re-
lated shares on a single archive. In addition, the use of
chaff obscures correlations between related shares across
compromised archives, preventing an attacker from iden-
tifying the shares necessary to rebuild a stored data item.
The byproduct of adding chaff is an increase in the false
hit rate, and subsequently an increase in the number of
shares needed to be reconstructed by the client, the cost
of which is high bandwidth and computational load on
the client [24]. Percival mitigates that requirement by
having the repositories respond to search requests with
the headers of the shares that meet the search criteria,
rather than sending the shares themselves. Each header
represents the share: if the header of the object can be
reconstructed, then the payload of the object can also be
reconstructed. This minimizes bandwidth usage, greatly
reduces the client’s computational load, and improves se-
curity by allowing the Bloom filters and headers to be
stored physically separate from the shares themselves.
Furthermore, the headers can be secret split following a
completely different scheme than the data.

This approach not only provides added security, but is
also compatible with organizations that consist of many
individual sites with limited ability to collaborate. It is
not uncommon to have multiple entities with limited mu-
tual trust wanting to share information. For example, the
Federal Bureau of Investigation (FBI) and the Central
Intelligence Agency (CIA) have very different jurisdic-
tions; one looks inward while the other looks outward.
As a result, the two organizations have strong regulatory
restrictions on their ability to share information, but they
also have a strong need to share information in order to
carry out mission-critical tasks. Both organizations may
have information on a subject that, if correlated, would
improve their ability to carry out their missions, but sep-
arately both tend to remain impaired. Percival would al-
low both organizations to share information while main-
taining data privacy.

No security mechanism is perfect, of course, but Per-
cival provides the ability to make a secret split archive
searchable in such a way that the custodian of the data
is blinded to the data involved in the search as well as
remaining blinded to the data in the archive. This design
prevents a disgruntled insider from successfully disclos-
ing the information under their care in several ways. A

single repository contains only a single share from any
piece of information and is therefore useless on its own.
Rather, in order to reproduce the release of informa-
tion perpetrated by several recent incidents, many large
queries would have to be submitted to multiple reposi-
tories in the archive; this unusual usage pattern would
easily be detected and reported. While Percival can play
a key role in the fundamental utility of a secret split
archive, this new unique ability for blinded search can
also be a valuable tool in trusted information sharing.

The rest of the paper is organized as follows: We
present background material in section 2. Section 3 de-
tails the attack scenarios pertaining to this study. Sec-
tion 4 introduces the basic overall design, including file
ingestion, searching, chaff, and the user of search head-
ers. The performance evaluation is presented in Sec-
tion 5, followed by a threat analysis in Section 6. Related
work is discussed in Section 7, future work in Section 8,
and we conclude in Section 9.

2 Background

Since Percival relies heavily on secret splitting for data
storage and Bloom filters for searching, this section pro-
vides background on these concepts and their application
to searchable archival storage.

2.1 Secret Splitting

Secret splitting is the act of splitting a piece of data into N
shares such that only T shares are required for reassem-
bly, where 7' < N. Thus, for example, a 6:10 splitting
scheme generates ten equally-sized shares, where any
6 shares will enable the reconstruction of the original
data. All ten shares are sibling shares for one another:
a share is a sibling of another share if they are both gen-
erated from the same piece of data. A critical property of
secret splitting is that, with less than T shares, no data is
revealed; however.

There are several known techniques to accomplish
splitting a secret, all of which have varying levels
of information-theoretic security. Shamir first intro-
duced the concept of secret splitting [19]; Shamir se-
cret splitting provides provably information-theoretic se-
curity, but requires that a data object of d bytes store
N shares, each of d bytes, for a total storage of dN.
AONT-RS [18] combines an all-or-nothing transform
with Reed-Solomon coding, resulting in a secret-splitting
algorithm that is more efficient with storage space: each
shares is only d/T bytes long, for a total storage of
dN/T. However, AONT-RS is only computationally se-
cure, not information-theoretically secure, since an at-
tacker could guess a fixed-size key and recover data from
fewer than T shares. We are currently investigating an



approach that provides a middle ground between these
methods, with security guarantees that can be tuned from
varying levels of computational security to information-
theoretic security.

While all of these approaches provide varying levels
of security, Percival is agnostic with respect to the choice
of secret splitting algorithm, treating the algorithm as a
black box.

2.2 Bloom Filters

A Bloom filter is a probabilistic data structure used to
test set membership [S5]. The key characteristic of Bloom
filters is that while false positives are possible, false neg-
atives are not. Furthermore, it is possible to add terms
to the filter, but once added, they cannot be removed.
We define a term as a single word, identifier, or other
piece of information to be used as an input to a Bloom fil-
ter. Percival uses Bloom filters when pre-indexing each
piece of data to be ingested into the archive by attach-
ing a unique Bloom filter to each share. Bloom filters
are subsequently used during the blinded search process.
These uses are discussed in detail in Section 4.

In practice, Bloom filters are implemented as an array
of bits. To insert a value into the filter, the value is passed
through k hash functions, where the output of each is the
index of a bit to be set to 1 in the filter. There are several
factors that directly affect the false positive rate of the
filter, including the following:

o m : the size of the filter

e 1 : the typical number of values to be stored in the
filter

e Lk : the number of hash functions used to ingest each
value

If the size of the filter, m, is too small in comparison
to the expected number of values to be stored, n, then the
filter will become saturated, i. e. most or all of the po-
sitions in the filter will be set to 1. When that happens,
the false positive rate approaches 100% and the filter be-
comes useless.

To prevent this, Equation 1 is used to find the optimal
number of hash functions, &, for a given ratio of filter
size, m, to the number of entries in the filter, n, while
minimizing the probability false positives, p.

m
k="(In2) (1
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However, since at design time that ratio is typically not
known, equations 1 and 2 need to be used in conjunction
to determine both the filter size, m, and the optimal num-
ber of hash functions, k, given only the typical number of

entries to be stored in the filter, n. Note that Equation 1
assumes optimal p.

The blinded search algorithm depends on both union
and intersection operations to be performed on the filters,
both of which can be performed using a bitwise OR and
AND respectively. Additionally, the union of filters is
lossless, i. e. the result of the union operation is the same
as the Bloom filter created by inputing all of the values
present in each candidate Bloom filter.

Bloom filters are highly compressible, as shown by
Mitzenmacher et al. [16]. It is possible to reduce the size
of the filter, the false positive rate, as well as the com-
putation required for each lookup operation, at the cost
of processing time for each compression and decompres-
sion. They are also easily adapted to perform a reverse
index search by treating the filter as column-based in-
stead of row-based. These, and similar, optimizations
may be used to improve Percival’s performance and effi-
ciency.

3 Threat Model

In order to understand how Percival mitigates the risk of
data leakage, it is important to specify the assumptions
we are making about what attacks may be used against
the system and to what resources the attackers have ac-
cess.

3.1 Attack Scenarios

Information exposure to unauthorized users is the pri-
mary threat on which this study focuses. It is assumed
that an attacker has unlimited computing power and stor-
age, as well as unlimited time to carry out an attack, since
Percival’s intended use is for long term storage. Fur-
thermore, in applicable attack scenarios, an attacker has
the ability to save an unlimited number of past search
queries.

The primary attack scenario we will address in each
of the design sections is that of an attacker controlling a
single site storing data for the archive. This is the most
plausible attack, since it requires only an adversary with
unlimited access to a repository—a single site storing
shares for the archive. A repository is a site housing a
collection of shares, none of which are sibling shares.
Under normal circumstances, no communication occurs
between repositories. However, an attacker may commu-
nicate out-of-band with other repositories as part of an
attack. This scenario can also take several forms, includ-
ing the site system administrator who has an operational
need to have access to an entire repository, the janitorial
staff that needs physical access to the repository, or even
a disgruntled insider such as Edward Snowden [20].



The other attack scenario considered in this study is
when an attacker has compromised 7 — 1 repositories. A
Percival secret split archive contains a total of N reposi-
tories, where N is the number of shares into which each
piece of data is split; recall that at least 7' shares are
needed in order to reconstruct the data. Therefore, if an
attacker compromised T repositories, they would have
access to T shares from each piece of data and would
subsequently be able to reconstruct the original data. We
define an archive as the collection of all repositories that
together create a system for archiving and operating on
sensitive data.

Even though a base assumption of this work is that
an attacker has full access to at most 7 — 1 repositories,
compromising a repository is not a binary action. As a
result, if 7 — 1 sibling shares could be correlated and a re-
maining sibling share easily identified, an attacker need
not compromise an entire additional repository to obtain
the original data, but could instead steal the missing sib-
ling share. For this reason, when applicable, we will
address the potential for an attacker to correlate shares
across repositories repositories, even though that action
alone reveals nothing about the underlying data.

3.2 Authentication

Authentication is the linchpin of any security system.
While Percival is focused on archival data, the compro-
mise of authentication can result in data loss in any sys-
tem. If a user has been authenticated, we assume that the
user has full permission to perform searches across all of
the data in the archive. Section 8 discusses an approach
to implement access levels in Percival.

Using a Percival like architecture for the data store
provides numerous advantages:

1. Several authentication systems must be compromised
without detection before data can be disclosed.

2. Physical access to all repositories can be used to over-
come any authentication and gain access to the data;
however, access to a single repository cannot.

3. When it is necessary to make adjustments in security
policies, the authentication systems can be updated
without the necessity to re-encrypt the entire archive.

4. Most authentication systems already have a standard
provision for key rotation.

Fundamentally, this approach moves key management
for things like rotation and revocation out of the data
store and to the authentication system where they belong.
The issue of key management when no user currently re-
quires access, but access will be required in the future is
another issue with encryption based archives [24].

In the Percival architecture, this new user could set up
authentication credentials and the appropriate relation-

ship with each repository to enable access to the data.
When they no longer need access the authentication do-
mains would remove the relationship and they would no
longer have access to the data in the archive. This ap-
proach provides a unique property that the system can
keep data encoded in a secure way with no one having
access to the data until a business need necessitates it.

Moreover the requirements of authentication can be
tailored to the specifics of the data archive’s security
needs. While it might seem overly burdensome for a user
to have to authenticate separately to multiple servers, in
some cases the nature of the data and in-frequent use of
the archive might warrant such a system configuration.
Authentication configurations that require a two man or
even greater rule could also be implemented.

On the other end of the spectrum, one could have a
policy where the host on which a user processes data is
deemed as an acceptable place to have that data reassem-
bled. In such an environment, the policy could also allow
that host to hold a keychain the user is able to unlock to
open authentication credentials to numerous repositories
at once. Such an environment would simplify the user’s
interactions at the cost of some limited risk as deemed
acceptable by the organization.

4 Design

We now present the specifics of the design for a search-
able secret split archive. We describe both the core file
ingestion process as well as our techniques for blinded
search. Each section is followed by a detailed threat anal-
ysis that specifies the security implications of the partic-
ular design choice.

4.1 File Ingestion

The file ingestion algorithm pre-processes each docu-
ment at the client prior to the use of secret splitting.
We define a client as an entity connected to the remote
archive that has access to each of the repository keys,
key, and is capable of generating blinded queries and
processing the results. During pre-processing, the terms
identified for the document are used to populate unique
Bloom filters for each repository. The document is then
secret split, after which each share is bundled with a
single, unique Bloom filter. Each combination of share
and metadata is then sent to a different repository in the
archive. Figure 1 depicts an overview of this process.
We define W = (wy,...,wy) as the set of terms used
during file ingestion. The terms can be obtained by any
technique, including stemming, keyword selection, user
tagging, or more advanced methods such as audio tran-
scription or image recognition; there is no restriction on
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Figure 1: Overview of the file ingestion process. A file is
secret split into N shares (1), each of which is then bun-
dled with a unique Bloom filter, tailored for a particular
repository (2). The resulting share-Bloom filter pairs are
then each distributed to a single repository (3).

the terms inserted into each Bloom filter. During inges-
tion, each term w; is used as an input to Equation 3 to
generate a repository specific unique value, v;, that rep-
resents the term.

v; = keyedHash(w;, key,) 3)

The keyed hash function, keyedHash, is a message
authentication code utilizing a cryptographic hash func-
tion [17]. Each key, is kept secret from the reposito-
ries, and is the only secret aspect of this design. The
repository-specific hash keys protect the contents of each
Bloom filter, preventing an attacker from correlating
terms to bit groups, as well as ensuring the Bloom filters
for sibling shares are different across across repositories.
We define a bit group as a group of bits set in a Bloom
filter that together represent a single term.

Normally, a Bloom filter is populated by passing each
input value, v;, through k hash functions; the outputs of
which are the indexes, index;, that are set to 1 to indi-
cate the presence of the value in the filter. In our design,
however, each value v; is transformed into a bit string, b,
by passing it through a SHA hash. We then extract 24-
bit disjoint sections from the hash to generate each index
index;, based on the size of the Bloom filter, s;¢, as shown
in Equation 4. Since all of the bits of SHA-512 are in-
dependent, this approach is comparable to traditional ap-
proaches that use different hash functions; if additional
bits are needed, we can use a longer hash function.

index; = b ;,3)—((ix3)+2) % Sbf @

Finally, the resulting unique Bloom filters, one for
each repository, are each paired with a single share and
distributed to different repositories in the archive. It is
worth noting that the data protections within the archive

010101011001010101011010 Repository
101010101001010101100101 #1
010101010101010101001010
100101001001010001001010 Repository
101000101001010100100101 #N
Share/'mmmm|10|0|0|0|00|0|o

Not Used
|b] — (k+24) bits

by b3_s
24 bits | 24 bits

b2«
24 bits

Table 1: Breakdown of the bit string used to generate the
indexes set in the Bloom filter for each input value, v;

are not reliant on the security of the hash functions used.
It is assumed that all fixed key cryptographic functions
can be broken given enough time and computing power.
However, breaking the hash functions used, i. e. finding
one or more collisions in their outputs, actually strength-
ens this algorithm since it would result in further obfus-
cating which terms are represented by a bit group.

4.1.1 Bloom Filter Design

The first step in determining the proper Bloom filter size
for a given implementation is to calculate the minimum
allowable size for the filters. This is accomplished by ex-
amining the corpus to be stored in the archive, and deter-
mining the typical and maximum number of keywords,
or terms, to be stored in each Bloom filter. The typical
number of terms defines the filter parameter, n. Recall
from Section 2.2 that if the size of the filter, m, is too
small relative to the maximum number of terms, the fil-
ter will become saturated and no longer useful.

In this study, the Gutenberg Library [13] and
WikiPedia [29] were used in order to verify the blinded
search algorithm against test corpora containing docu-
ments with different sizes. Figures 2 and 3 show a word
count analysis of these repositories. This is relevant if,
when pre-indexing a document, all unique words present
are inserted into the Bloom filter, since there is the pos-
sibility of overloading the Bloom filter by inserting too
many terms. An asymptotic bound for the number of
unique words per document was evident; it occurred at
approximately 14,000 unique words per document for
the Gutenberg Library, and at approximately 3,000 words
for Wikipedia, with an average unique word count of
3,000 and 2,000 respectively. The Bible and a German
dictionary are labeled in Figure 2 in order to provide a
context for these values. These show that even large doc-
uments are usually bounded in their number of unique
words, and those that aren’t, are extremely specialized
e. g. dictionaries.

Given the average unique word count for a corpus,
Equations 1 and 2 can be used to determine the ideal
number of hash functions, assuming a false positive rate
of 0.01%, and defined the ratio of m/n for the Gutenberg
Library resulting in a filter size of 100,000 bits. Keeping
the same number of hash functions used when process-
ing the Gutenberg corpus, the overall Bloom filter size
required for the WikiPedia corpus is 40,000 bits.
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Figure 2: Gutenberg - Comparison of total word count
versus the number of unique words per document. The
Bible and a German dictionary are shown as reference
points.
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Figure 3: Wikipedia - Comparison of total word count
versus the number of unique words per document.

Table 2 summarizes the ideal Bloom filter parameters
for each corpus.

However, that standard process, which aims to mini-
mize the false positive rate, only serves as a starting point
for this design. Since minimizing the false positive rate is
analogous to minimizing the bit group coincidence, it is
desirable to detune the Bloom filters below this optimal
size as a first step towards obfuscating bit groups from
an attacker. Bit group coincidence is the relative number
of bits that two bit groups have in common: if two bit
groups share three out of four bits, they have a bit group
coincidence of 75%. The following section addresses

Total Size | Avg. # of | # of Hash

(bits) Words Functions
Gutenberg | 100,000 3,000 13
Wikipedia | 40,000 2,000 13

Table 2: Optimal Bloom filter parameters for each test
corpus. Chosen sizes result in the same 0.01% false
hit rate when using the same number of hash functions.
However, these design parameters decrease the bit group
coincidence, which potentially exposes the bit groups to
an attacker.

this critical design change in the context of a threat as-
sessment.

4.2 Searching

Blinded searching is accomplished by storing the search
terms, along with any desired chaff, in a unique Bloom
filter tailored for each repository using the appropri-
ate key for that repository. Chaff is defined as a set
of additional random bits added to a single Bloom fil-
ter. These Bloom filters are then sent to the archive,
one per repository, for processing. Each repository then
stores the filters in a two-way mapping between share
ID and resultant Bloom filter, allowing the repository to
search Bloom filters for matches to subsequent queries.
Searches are done by checking each share’s Bloom filter
against the query Bloom filter, with the result set consist-
ing of all shares whose Bloom filter contains sufficiently
many of the set bits from the query filter. An overview
of this process is depicted in Figure 4.

Client Generated SRBF for
Repository #n

Resultant Bloom filters and
Share IDs Returned to Client

Repository #n Combines SRBF
with each Share’s Bloom filter
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Figure 4: Overview of the searching process. A unique
search Bloom filter, SRBF, for each repository is gen-
erated that contains the search terms and any additional
chaff (1). Each repository then processes the received
Bloom filter with each of its stored share-Bloom filter
bundles (2), and returns to the client a mapping of share
ID to result Bloom filter for client-side processing (3).



4.2.1 Step : Client Side

The first step in processing a search request is to gener-
ate a unique Bloom filter for each repository containing
the search terms using the same algorithm described in
Section 4.1. At this time, a different set of random chaff
bits for each repository may be added in order to further
obfuscate the hit patterns across repositories and hide the
relationship between bit groups and terms.

Once the search Bloom filters are prepared, they are
sent to each respective repository along with a hit thresh-
old that allows the repositories to do pre-filtering prior
to sending the search results back to the client. The hit
threshold is the number of bits that need to be in common
when comparing the search Bloom filter to the Bloom
filter stored with each share; the hit threshold is set to
the number of bits in the bit groups corresponding to the
search term. For example, a Bloom filter containing three
terms with k = 8 would require 24 bit matches, even if
additional chaff bits were added. Any filters with fewer
than 24 bits in common cannot contain all three terms.

4.2.2 Step 2: Repository Side

The goal of the server is to generate a mapping of share
identifiers to resultant Bloom filters; these filters are cre-
ated by ANDing the search Bloom filter provided by the
client with the Bloom filter bundled with each of the
shares being stored by the repository. The cardinality
of the resulting Bloom filter is then checked against the
hit threshold. If it is found to be greater than or equal to
the threshold, the share ID and resultant Bloom filter are
added to the mapping. Once all shares in the repository
have been processed, the resultant mapping is sent back
to the client.

4.2.3 Step 3: Client Side

The final step in a search begins by removing any chaff
bits from each of the Bloom filters in the resultant map-
pings sent by the repositories. Once the chaff has been
removed, the hit threshold is again checked against the
cardinality of the resultant Bloom filters to remove any
false hits from the mapping. This can be quickly calcu-
lated by ANDing the search Bloom filter, without chaff,
with the Bloom filters returned by the repository; if any
bits are zero, the corresponding share does not contain
all of the query terms.

Since the act of requesting a subset of share IDs
can potentially reveal associations between the requested
shares, it must be done with care. However, since re-
questing share ids is ultimately a secure communication
problem, it is outside the scope of this research.

4.3 Chaff

Chaff plays a critical role in obfuscating search hit pat-
terns across repositories, as well as concealing the con-
tents of both the Bloom filter stored with each share as
well as the filter generated during search operations.

4.3.1 Index Bloom Filters

During file ingestion, the addition of chaff to the index
Bloom filters stored with each share has several bene-
fits. First, it obfuscates the bit groups present in each fil-
ter. Second, it makes each filter have the same cardinal-
ity, which negates the potential attack described in Sec-
tion 6 in order to estimate the number of terms present
in a given Bloom filter. Lastly, it removes an attacker’s
ability to correlate shares across repositories based on the
cardinality of the index Bloom filter.

This is accomplished by adding chaff to each Bloom
filter up to a desired loading level, i. e. set random bits
in the filter to 1 until its cardinality reaches the desired
percentage loading. The design tradeoff is that the num-
ber of terms to be ingested into a filter must be known at
design time so that adequate room remain open for chaff,
as well as ensuring that no filter’s cardinality is already
higher than the desired chaff loading level.

4.3.2 Search Bloom Filters

In addition to adding chaff during file ingestion, it may
be added during search operations in either the form of
random bits added to the search Bloom filters sent to each
repository, or as additional random or deliberately cho-
sen false search terms. The primary purpose of adding
chaff to the search Bloom filters is to inhibit an attacker
from correlating search results across repositories. It also
obscures what the true bit groups are in the filter, since
the search Bloom filter is a primary vehicle an attacker
can use to aid in bit group definition. In contrast to chaff
added to the index Bloom filter, search chaff is easily
removed by the client since it can keep a record of the
search true search Bloom filter.

4.4 Share Headers

The client can reduce the potentially large result set stem-
ming from file ingestion chaff via the use of share head-
ers, each of which is a small representational piece of in-
formation that can be returned in the result set instead of
the entire share. As described in Section 4.3.1, the client
would normally need to request the applicable shares and
then attempt their reconstruction, which would filter out
all hits in which fewer than T sibling shares were re-
turned by the archive. This assumption relies on the low



probability that at least T sibling shares are falsely re-
turned due to chaff.

The main drawback of this process is that it has the
potential to be very costly in terms of workload that is
now shifted to the client from each repository. In order
to reduce this computational burden on the client, we use
share headers, instead of the full share, to dramatically
reduce the amount of data that must be rebuilt to verify
query results across repositories; reducing the volume of
data that must be reconstructed to test results greatly im-
proves performance.

The share header is generated during file ingestion,
and consists of the share IDs for each of the sibling
shares that together form a document as well as the CRC
of those IDs, allowing for validation.

[ IDy [ ID; | ... [ IDy_; | CRC |

Table 3: Headers consist of the sibling share IDs and the
CRC of those IDs.

Once generated, the header is secret split and stored
with the Bloom filter that would have been stored with
each share. The introduction of the header not only as-
sists the client with reconstruction, but also has several
security-related benefits. These newly-formed Bloom
filter-header pairs can be stored separately from the
shares generated during file ingestion. Furthermore, the
headers can be secret split using different parameters,
i. e. a different number of shares, N', and a different re-
construction threshold, 7, relative to those used when
secret splitting the data. This allows more flexibility
when designing the system, since differing threat mod-
els can be addressed at different layers in the system.

S Experimental Results

Percival’s design was tested using a 64 bit Linux sys-
tem, with 24GB of RAM and four hyper-threading cores.
For all experiments, unless otherwise stated, two cor-
pora were used: the Gutenberg Library and Wikipedia.
They contained approximately 25,000 and 4 million doc-
uments respectively, and were chosen because their dif-
fering features required different Bloom filter parame-
ters for each corpus, which allowed for validation of this
design under varying conditions. All unique, stemmed
words present in the document were used to populate the
index Bloom filters.

It was found that the number of hash functions had no
significant impact on ingestion time, and that the over-
head ingestion rate this design imposes is approximately
50 ms/MB, or 20 MB/sec.

5.1 Searching Performance

Since Bloom filter performance, specifically its false pos-
itive rate, is heavily dependent on its core parameters, we
now present the empirical data that can be used to tai-
lor the Bloom filter parameters according to the require-
ments of a specific implementation.

Bloom filters inherently have a non-zero false positive
rate, which is compounded by detuning the filters below
optimal in order to improve bit group obfuscation. It is
therefore necessary to quantify the impact of this detun-
ing on the accuracy of the search results. As a reference
point, it was found that a plain text search for the terms
‘motorcycle’ and ‘Chicago’ yielded a focused result set
from the Gutenberg Library. This reference search was
used as the control group for all subsequent searches us-
ing the Bloom filter search algorithm.

Figure 5 shows the impact on the false hit rate by vary-
ing the number of hash functions and filter sizes com-
pared to a reference search. It can be seen that as the
number of hash functions increases, the false hit rate in-
creases. It is also worth noting that the apparent decrease
in false hit rate for the 4000 bit Bloom filter when chang-
ing from one to two hash functions is due to the combi-
nation of the high level of saturation in the filter and the
decrease in bit group coincidence when adding an addi-
tional hash function.
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Figure 5: Hit counts for various numbers of hash func-
tions and filter sizes when performing the reference
search of ‘motorcycle’ and ‘Chicago’.

A benefit to this design is that search time is not depen-
dent on the size of the files in the archive, nor the number
of terms for which the user is searching, since searching
simply involves a simple comparison of Bloom filters.
As a result, the average time to search a single file was
found to be just over 5 us.
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Figure 6: Effect of adding chaff to the Bloom filter stored
with each share. Using fewer hash functions greatly am-
plifies the effect of chaff loading.

Figure 6 shows the effect on the search results of
adding varying levels of chaff to the Bloom filters during
file ingestion. The cost of this obfuscation is an increase
in bandwidth required to handle the responses from each
repository, as well as an increase in the post-processing
now required by the client in order to separate the false
hits from true ones. That process takes the form of re-
questing applicable shares from each repository and at-
tempting their reconstruction, which has the potential to
be a very costly operation depending on the size of the
search results.

The effect of adding chaff during searches differs
greatly from that of adding it during file ingestion. First,
the resulting increase in false hit rate is not dependent on
the number of hash functions used, as was shown in fig-
ure 6. Second, it takes much less chaff to have a large
impact on the size of the result set. Lastly, that false hit
rate can be easily mitigated by the client by combining
each resultant Bloom filter in the result set by the real
search filter, i. e. the search filter generated prior to the
addition of chaff.

5.2 Header Performance

Since the work required to reconstruct a set of sibling
shares is proportional to the size of each share, it isn’t
feasible to use reconstruction on the shares generated
from the data itself as a way to mitigate the false hit rate.
This is exponentially compounded when the result set is
large.

It was found that on average full shares could be re-
constructed at a rate of 2kB per second, which means
that it would take approximately an hour and half to re-
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Figure 7: Effect of adding chaff to the search Bloom fil-
ter.

construct a 10MB piece of data. By way of comparison,
using share headers is not dependent on the size of the
corresponding data they represent, and as a result it was
found that a single header could be reconstructed in ap-
proximately 2ms.

Table 4 shows the time required to reconstruct the
headers for the 28 shares returned from the reference
search as the false hit rate increases. The false hit rate is
represented by the number of additional shares in the re-
sult set returned by each repository. These ‘false’ shares
have no siblings, and as such cannot be successfully
matched with any other shares in the result set to form
a complete header.

Number of Shares | Reconstruction| Elapsed Time
in Result Set Attempts (min:sec)
28+0 21,952 0:38
28 + 25 148,877 9:59
28 + 50 474,522 40:52
28 + 100 2,097,152 229:21

Table 4: Header reconstruction times as the false hit rate
increases. The number of shares in the result set indicates
the base 28 shares plus varying amounts of ‘false’ shares.

It can be seen that the number of reconstruction at-
tempts, and as a result the time required, increases ex-
ponentially as the false hit rate increases. Unfortunately,
even a result set containing a few false shares, e. g. 100,
requires the client to spend an unacceptable amount of
time to reconstruct the share headers. This is because a
false share must be tested up to % times before it
can confirmed as invalid. Section 8 discusses a possible
solution for this problem.



6 Threat Analysis

With a newly ingested archive that hasn’t yet been
searched, it is not possible for an attacker to uncover the
exact mapping from a particular term to its specific bit
group. Furthermore, unless a Bloom filter only contains
a single term, it is not possible for an attacker to deter-
mine which bits form a bit group simply by analyzing the
static repository.

An attacker can attempt to determine similarities be-
tween the filters attached to shares stored in the compro-
mised repository. For example, Swamidass et al. [26]
showed that the approximate number of terms present in
each Bloom filter can be found using equation 5, where
B is the number of bits set to 1 in the Bloom filter, and
recall that m is the size of the filter and k is the number
of hash functions used during ingestion.

—m In[1— 2]
k

While this does not inherently reveal anything about
the data, it allows an attacker to organize the shares based
on an estimate of the number of keywords stored in the
Bloom filters.

In classic encryption schemes, an attacker uncovering
the key obviously results in a full release of information.
While this situation is undesirable for any secure archive,
in a Percival system it does not result in catastrophic loss
of security since if an attacker is able to uncover the key
to their compromised repository, only a modest amount
of information is revealed. Once an attacker has the key
for a repository, they are able to correlate all terms to
their associated bit group. However, since the Bloom fil-
ters only contain the set of unique stemmed words found
in the data, all contextual and semantic information re-
mains secure by the secret sharing method.

As a concrete example, the book Moby Dick [15] con-
tains approximately 200,000 words and has a Shannon
entropy of 4.55 [11,22]. The Shannon entropy is “the
average unpredictability in a random variable, which is
equivalent to its information content [29].” In contrast,
the book only has approximately 6,800 unique stemmed
words, which drops the Shannon entropy to 3.15. This il-
lustrates that the real data is indeed greater than the sum
of its parts.

The other attack scenario addressed is when an at-
tacker controls more than one repository, specifically at
most 7 — 1, which affords an attacker the possibility
of correlating shares across repositories. If no chaff is
added to the Bloom filters stored with each share, then
sibling shares differ only in which bits are set due to
each repository’s key. The cardinality of the filter for sib-
ling shares is identical, and as a result greatly limits the
search space for an attacker attempting to identify sib-

Term Count Estimate =
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ling shares. Again, this attack in and of itself is limited
because the attacker requires at least 7' shares to attempt
reconstruction, but since compromising a repository is
not necessarily a binary action it is worth mentioning.

If chaff is added to the index Bloom filters, it greatly
reduces the potential for correlating shares across repos-
itories when an attacker controls more than one, specif-
ically at most T — 1. Correlation based on cardinality
is obviously no longer possible. An attacker is able to
group shares based on what is not in the filters, but this
is of limited usefulness due to the chaff. For example,
using four hash functions and a filter size of 32,000, the
average filter loading for the Gutenberg library due to
just the terms is roughly 30%. Therefore, if a signifi-
cant chaff loading is chosen, e. g. > 60%, grouping the
shares by what is not in their filter only slightly reduces
the search space when trying to correlate shares based on
their stored Bloom filter.

In the event a repository’s key is revealed to an at-
tacker, it lowers the confidence an attacker will have in
the terms actually present in the filter due to the addition
of random terms. The probability a particular random
term will be added to an individual filter is 0.5%, which
means that the additional percentage of the repository
that contains a particular term can be found by equa-
tion 6, where |R| is the total number of shares in the
repository, and A% is the percentage of the repository
that actually contains the particular term prior to adding
chaff.

Additional % = |R|(1 —A%)0.5* (6)

Detuning the Bloom filters while using a low number
of hash functions on their own is not enough to have a
significant impact on bit group coincidence, i. e. with
no additional steps taken, an attacker will be able to de-
termine the bit groups present in a search. Additionally,
even though there is a significant number of terms that
share a single bit, as shown in figure 8, the actual bit
group coincidence, which is directly proportional to the
number of hash functions and inversely proportional to
the filter size, is low enough as to not provide enough
obfuscation on its own.

Due to Percival’s design, the repository keys are un-
able to be brute forced without at least one term to bit
group correlation. This is because without a correlation
there is no way to validate the output when trying candi-
date keys since every output is valid and equally likely.
Therefore, a logical first step for an attacker is to uncover
at least one correlation.

This could possibly be accomplished using a form of
CCA, or chosen cypher-text attack. An attacker could
cause a real world event or disaster, and then monitor the
search Bloom filters for a shift in the high frequency bit
groups. Additionally an attacker could employ a form of
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Figure 8: Effect on the average number of terms sharing
an index position in a Bloom filter as a result of varying
the filter size.

adaptive chosen cypher-text attack, CCA2. For example,
during the Sturgis motorcycle rally in South Dakota an
attacker might assume that the bit groups with the two
highest frequencies correlate to ‘motorcycle’ and ‘Stur-
gis’. The attacker then causes a real world event or dis-
aster involving motorcycles in Chicago, and monitors for
the shift in bit group frequencies.

If they are able to uncover a bit group correlation, the
upper bound for brute forcing the key is k! x 2/61=(k+24)
possible orderings and values for the bits that form a bit
group, which is due to both the unknown ordering of the
indexes, index;, and the discarded |b| - (k * 24) bits. Each
additional correlation that an attacker is able to discover
lowers this upper bound. It is evident that this upper
bound can be increased by maximizing the length of b,
the output from the hash used for index generation, and
by minimizing k, the number of hash functions used.

7 Related Work

Our work on Percival builds on two ares of related work:
secret split archives and searching encrypted data sets
while keeping the custodian blinded to the search.
Secret-split storage was first developed practically in
the PASIS project [30], which also contains a good
overview of p-m-n threshold encoding schemes suitable
for use in secret-split archives. In response to sev-
eral calls for providing archival storage that can operate
through system compromises and provide resilience to
insider threat [3,23], this approach was later adapted for
archival storage by Storer ef al. in the POTSHARDS sys-
tem [24]. Percival’s share storage most closely resembles
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POTSHARDS, though Percival uses a different approach
for determining whether shares from different reposito-
ries can be combined to rebuild a data object. POT-
SHARDS also uses an index, stored in POTSHARDS it-
self, to track the relationships between shares; however,
this index cannot be searched without the client first re-
trieving it.

An alternative to secret split archives was developed
by Zage et al. [31]. In this approach, an algebraic-based
encoding solution, Matrix Block Chaining (MBC), is
used to “maintain data security and protocol performance
when encoding large files. The design of MBC allows for
encoding multiple partitions of the original data in paral-
lel as subsequent encoding operations are not dependent
on the output of previous encoding steps” [31]. Their
technique was developed specifically for cloud storage,
however, and as such does not maintain data availability
in a compromised environment.

The main concern in Percival is an attacker correlat-
ing search results across repositories. There has been a
significant amount of work done in recent years regard-
ing encrypted searching [1, 4, 6-10, 12, 14, 21, 28], but
these works are all based on a single repository storing
all of the user’s encrypted data. Since they run on a single
repository, they do not need to address the vulnerability
of search result correlation, particularly across multiple
repositories.

Furthermore, they rely on the inherent security of the
encryption method itself since both the data and the
search terms simply use fixed key encryption. However,
given enough time and computing power, as well as de-
liberately poor design, it is possible that fixed key en-
cryption methods will be broken; thus, these approaches
are essentially delayed release. As a result, they are not
well suited for applications when data lifetime is mea-
sured in decades.

By way of comparison, Octopus [27], does not rely
on encryption. It is an anonymous way for P2P nodes
to communicate via a distributed hash table that pro-
vides a mechanism for individual queries to be sent along
“multiple anonymous paths, [while introducing] dummy
queries to make it difficult for an adversary to learn the
eventual target of a lookup.” [27] In contrast to using
dummy queries as a means of obfuscation, Percival in-
jects dummy bits into the search queries themselves to
accomplish the same goal.

Chang et al. [7] developed an approach using bit
masked dictionaries to enable searching of encrypted re-
mote data without revealing information to the data’s
custodian. The outcome is similar to using a Bloom fil-
ter based system where a single bit is used to represent
a term stored in the filter. The main difference is that it
does not address conjunctive or disjunctive searches, nor
does it address mapping multiple terms to the same bit in



the dictionary.

8 Future Work

There are several open areas of research with regard to
Percival. The first area is an improved search scheme
on each repository, potentially improving archive effi-
ciency. We may be able to use reverse indexing to or-
ganize the shares within a repository based on their at-
tached Bloom filters. This could reduce search times
could be reduced to linear in the number of documents.
Furthermore, while we have seen great successes in data
ingestion and look up, we plan to develop experiments
that provide more detailed testing and results for com-
plex searches using realistic query workloads.

We also plan to reduce the high reconstruction time re-
quired by the client in order to mitigate the chaff added
during file ingestion, possibly using a technique similar
to that employed in POTSHARDS [24]. By using ap-
proximate pointers in order to form rings of shares to
greatly narrow down the search space during reconstruc-
tion, POTSHARDS was able to achieve performance im-
provements of up 95%; we will investigate whether sim-
ilar approaches can help performance in Percival.

The current design of Percival assumes that once a
user is authenticated into the system, there is no sense
of file ownership: all users authenticated into the system
have full access to all files stored in it. This leads to an-
other potential way Percival may be expanded. Metadata
can be injected into the filter at the time of file ingestion.
For example, by automatically injecting the username of
the file owner into the filter attached to each share, and
then requiring all valid hit results to have the same k
bits set as the username of the current user performing
a search, access controls can be enforced. In this way, all
levels of access control can be implemented, not just at
the user level. However, the use of chaff may partially
defeat this approach, since chaff bits may overlap those
used to index a username, potentially allowing a user to
gain access to shares she should not be able to access.

One of the current limitations with Percival’s design
is that it can only ingest text based data, or data that has
been manually tagged with keywords of interest. A use
case that does not fit into this model is Sandia’s Hash-
Ninja project, which is a repository of MDS5 hashes. The
project’s purpose is to provide a standard process for
malware triage and analysis while increasing collabora-
tion between trusted organizations that analyze malware.
If Percival was extended to ingest MDS5 hashes, Hash-
Ninja would be able to share its repository in such a way
that its custodian is blinded to all searches on the reposi-
tory. However, it is not clear how terms would be gener-
ated and searches done on such an archive.

We are also exploring techniques for building very
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large-scale, highly-reliable Percival archives, possibly
built from low-power clusters of nodes [2,25]. Ensuring
reliability both within an archive and between archives
is a difficult challenge, since the repositories themselves
do not know which shares belong together, complicating
rebuilding in case of device or entire repository failure.

9 Conclusion

Even though secret-splitting archival storage removes
many of the issues present in fixed key encryption
schemes, such archives are difficult to search without
compromising security. We have developed Percival, a
system that uses Bloom filters and chaff to facilitate blind
searches on secret-split archives without revealing infor-
mation about the searches to the repositories. Moreover,
an attacker who compromises a repository cannot dis-
cover correlations between shares on the repository, even
using the queries. An attacker also lacks the ability to
correlate shares between repositories, making it difficult
to identify shares that need to be combined to rebuild a
piece of data.

The use of chaff during both file ingestion and query
execution obfuscates the bits that correspond to individ-
ual terms, foiling attacks that rely on identifying bits set
on multiple documents. Chaff also prevents an attacker
from calculating the number of terms stored in each fil-
ter, further hiding information about the shares stored on
each repository.

Percival’s use of share headers during the test recon-
struction phase greatly improves the bandwidth require-
ment when searching while reducing the time required
by the client to identify the “true” responses to a query.
It also improves overall system security by permitting
repositories to store the Bloom filter-header pairs sepa-
rately from the shares themselves, and by allowing dif-
ferent types of secret splitting with different information-
theoretic security levels to cover the share headers.

As society needs to store an ever-increasing volume
of potentially sensitive data for a long time, the use of
secret-split archives will become increasingly necessary
to ensure both long-term data security and guard against
key loss. The techniques for secure searches developed
for Percival will help to make such archives much more
usable, ensuring that the long-term data in them will not
be simply stored, but rather be available for effective ac-
cess and use via search queries. By increasing the util-
ity and value of long-term data storage, this approach
can make it cost-effective to maintain secure long-term
archives.
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