
Designing A Secure Reliable File System for Sensor
Networks

Neerja Bhatnagar
Storage Systems Research Center
University of California, Santa Cruz

neerja@cs.ucsc.edu

Ethan L. Miller
Storage Systems Research Center
University of California, Santa Cruz

elm@cs.ucsc.edu

ABSTRACT
Wireless sensor networks are increasingly being used to mon-
itor habitats, analyze traffic patterns, study troop move-
ments, and gather data for reconnaissance and surveillance
missions. Many wireless sensor networks require the protec-
tion of their data from unauthorized access and malicious
tampering, motivating the need for a secure and reliable file
system for sensor nodes. The file system presented in this
paper encrypts data stored on sensor nodes’ local storage in
such a way that an intruder who compromises a sensor node
cannot read it, and backs it up regularly on to its neighbor
nodes. The file system utilizes algebraic signatures to detect
data tampering.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems management—
Distributed file systems; D.4.6 [Operating Systems]: Se-
curity and Protection—Authentication, Cryptographic con-
trols

General Terms
security, reliability

Keywords
secure, reliable, sensor network file system

1. INTRODUCTION
A wireless sensor network is composed of sensor nodes

that have extremely constrained resources in terms of mem-
ory, computation, storage, and energy. Most sensor nodes
follow a sleep-awake-sense-sleep duty cycle, and are typically
up only about 1% of the time. Wireless sensor networks
are increasingly being used for various applications, such
as enemy reconnaissance, battlefield surveillance, studying

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’07, October 29, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-891-6/07/0010 ...$5.00.

troop movements, monitoring habitats, analyzing traffic pat-
terns, and for observing the structural movement and in-
tegrity of buildings and bridges for purposes such as seismic
retrofitting and general reinforcement. In many of these ap-
plications, it is important that the observations recorded by
sensor nodes are protected from unauthorized access and
tampering. It is also important for these applications to
ensure the persistence of these observations despite individ-
ual node failures. To address this need, we are developing
a secure and reliable file system for sensor nodes. This file
system encrypts stored data in order to prevent unautho-
rized data access; even the sensor node itself cannot read
the data once it has been stored. The file system uses al-
gebraic signatures to detect and prevent tampering. Each
sensor node backs up its data by dividing it into small chunks
and distributing these chunks to its back-up buddies—a com-
bination of its one-hop and multi-hop neighbors that help
back-up its data. Periodically, each originating sensor node
checks to ensure that its back-up buddies are storing the
chunks designated to them correctly. By encrypting data,
backing it up on to other nodes, and periodically checking
its integrity, the sensor network can ensure that the data it
has recorded remains both secure and available despite the
compromise of individual nodes.

The rest of this paper is organized as follows: Section 2
discusses the factors that motivated the development of the
file system, and the file system’s usage scenarios; Section 3
presents the threat model; Section 4 presents the design of
the reliable and secure file system, including its advantages
and disadvantages; Section 5 compares and contrasts the
file system presented in this paper with other research; and
Section 6 presents conclusions and future work.

2. MOTIVATION
Several factors, including energy efficiency in storage, avail-

ability of high-capacity storage, inability to transmit to base
station, and increased deployment of sensor networks in spe-
cialized and hostile environments, motivate the design of a
secure and reliable file system for sensor nodes. These fac-
tors are discussed in detail in the following paragraphs.

Storage Efficiency. Transmitting data over radio con-
sumes 200 times more energy than storing the same amount
of data locally on a sensor node, and radio reception uses
500 times more energy than reading the same amount of data
from local storage [15]. Moreover, according to Moore’s law,
the cost of storing data on to a flash device will continue to
decrease [4]. This is in contrast to a minimal amount of
energy, dictated by physics, that will always be required for

radio operations. These statistics, coupled with the avail-
ability of gigabyte-scale storage on sensor nodes promote
the “sense and store” [17] paradigm in sensor networks, as
opposed to “sense and relay”. A secure and reliable file sys-
tem will prove to be valuable in “sense and store” sensor
networks because it will enable the secure, long-term persis-
tence of data.

Inability to Transmit to Base Station. Sensor nodes
may not always be able to transmit their observations to a
base station because the base station may not be available
due to failure or power depletion. A base station is a sin-
gle point of failure, and highly vulnerable to detection. The
failure of a base station is especially troublesome in “sense
and relay” sensor networks since in such networks, sensor
nodes do not store data locally. Moreover, heavy transmis-
sion traffic to a base station might cause power depletion
in sensor nodes that are one-hop away from the base sta-
tion. A secure and reliable file system for sensor nodes can
be helpful in the case of both “sense and store” and “sense
and relay” sensor networks since it will allow the long-term
secure survival of data within the network.

Even if a base station were available, sensor nodes may
be unable to transmit all their data to it due to power con-
straints. Scientists, military personnel in the intelligence
and national defense communities, and engineers–typical in-
tended audiences of sensor network data—will likely prefer
raw observations based on time series rather than aggre-
gated and representative values. Raw observations can help
scientists develop more accurate models.

Specialized and Hostile-Environment Deployments.
Wireless sensor networks deployed in hostile environments
cannot use a base station due to its high vulnerability to
detection. A base station is easily detectable by traffic anal-
ysis, or simply due to the fact that being more powerful, it
is more visible. Additionally, wireless sensor networks that
study long-term phenomena, such as the changes in stress
and strain in a bridge over time (perhaps for seismic rein-
forcement) or a simple understanding of material fatigue,
do not require a base station to be installed along with the
sensor nodes. This is because such networks do not need
to transmit any data to a base station immediately upon
sensing. Such sensor networks can continue to record their
observations on local storage for long periods of time—six
months or longer. Data can be collected manually as re-
quired to build models and study the patterns reflected in
the collected data. A secure and reliable file system for sen-
sor nodes can be very helpful in such deployments because
it can ensure the secure long-term survival of data despite
individual node failures. Other examples of specialized de-
ployments include sensor networks that study animal or bird
migration, or those that monitor the presence or absence of
pollutants over a long period of time, or those that study
inactive volcanoes.

Although both “sense and store” and “sense and relay”
wireless sensor networks can benefit from the secure and re-
liable file system presented here, wireless sensor networks
deployed in hostile and specialized sensor networks can es-
pecially benefit from such a file system. Deployments of
wireless sensor networks in hostile environments include net-
works that engage in battlefield reconnaissance, critical fa-
cilities such as nuclear power plants or armed forces base
surveillance, or spying on embassies. It may not be possible
to install a base station, due to its greater vulnerability for

detection and it being a single point of failure, along with
such a wireless sensor network. Therefore, a secure and re-
liable file system such as the one described in this paper
becomes especially important for the success of the mission
for which the sensor nodes are deployed. A secure file sys-
tem can ensure the prevention of unauthorized access of data
stored on the sensor nodes. The reliability portion can en-
sure the long-term survival of the data despite the failure of
the sensor node that collected the data originally.

3. THREAT MODEL
The main goals of the secure and reliable file system pre-

sented in this paper are to prevent unauthorized access to
and tampering with data stored on a sensor node’s local stor-
age, and to ensure the survival of data, with some degree of
probability, despite node failures. The secure and reliable
file system presented in this paper should be successful in
achieving all of these objectives.

In order to prevent unauthorized data access, the file sys-
tem encrypts the data collected by each sensor node. The
file system uses a block cipher for encryption with CBC or
CTR mode within each block. Since CBC or CTR mode is
used within each block, the effects of a block getting garbled
or deciphered are restricted to a single encryption block, typ-
ically 128-bits long. Each key is used only once: to encrypt
the current file system block, and to generate the next key
in the sequence. The key is then discarded after use. The
seed used to kick-start key generation is kept secret and is
not stored on the sensor node after the first block is stored.
Therefore, sensor nodes are only able to generate new keys;
keys that have been used and discarded cannot be regener-
ated at the sensor node since the node does not know the
seed used to kick-start the key generation. This ensures
that encrypted data remains secure at the sensor node by
ensuring that neither the sensor node nor an adversary, who
subverts or physically captures the sensor node, is able to
decrypt the encrypted data. Unencrypted data, however,
remains vulnerable to unauthorized access. An adversary,
upon capturing a sensor node, is free to inject spurious traf-
fic into the wireless sensor network. He or she will also be
able to encrypt this spurious data, and generate the corre-
sponding algebraic signatures, which the file system uses to
detect data tampering, but the adversary cannot use this
information to retrieve already-stored data.

In order to ensure the survival of data collected by sensor
nodes despite node failures, the file system divides its en-
crypted blocks of data into smaller chunks, and distributes
these chunks among an optimal combination of its one-hop
and multi-hop neighbors (also referred to as its back-up bud-
dies). as determined by using one of three methods: a fixed
list of back-up buddies, choose m out of a list of n buddies,
or dynamically choosing back-up buddies. The first method
assigns each sensor node a fixed list of backup buddies. The
second method allows a sensor node to choose m out of n

buddies for a particular back-up session. The choice of these
m buddies may be based on which of them are up at the time
or which ones have sufficient remaining energy. The third
method might allow a sensor node to dynamically choose its
back-up buddies based on which ones are up, and which ones
have sufficient power available. These back-up buddies will
provide reliability via redundancy to the sensor network. Pe-
riodically, the originating sensor node can query its back-up
buddies for algebraic signature corresponding to a random

data chunk specified by start and end offsets, and verify
the stored data using the technique described by Schwarz
and Miller [20]. This approach is collusion-resistant; more-
over, severely constrained resources—power, processing, and
storage—also restrict the sensor nodes’ ability to collude.

An adversary, upon physically capturing a sensor node,
can impersonate the sensor node, and prompt the originat-
ing sensor node to repeatedly back-up its data on to itself.
Consider a scenario where the originating sensor node (say,
node A), backs up its data on to its buddy, node B. Node
B, having been captured by an adversary, throws away the
chunks sent to it. When node A queries node B for algebraic
signatures corresponding to some portion of the original data
chunk, node B replies with the wrong answer or no answer
at all. Node A, realizing that a particular data chunk is not
being stored correctly, resends the chunk for back-up. Node
B can, in this way, cause node A to repeatedly resend its
data for back-up, ultimately causing the power depletion of
several sensor nodes (especially node A) in the process.

The secure and reliable sensor node file system does not
attempt to protect the sensor network from denial of ser-
vice (DoS) attacks. It also does not protect sensor nodes
from getting squished by a person or an animal. This is
because adding hardware tamper-proofing to sensor nodes
makes them prohibitively expensive. Node failures in sensor
networks are common, and the failure or destruction of a
large number of nodes can adversely affect the overall re-
liability achieved in the network. Chunks for back-up are
already encrypted, therefore, sensor nodes do not need to
worry about data tampering or confidentiality.

4. FILE SYSTEM DESIGN
This section presents the basic design of the secure and

reliable file system. We first describe the assumptions made
by the file system, including the storage that is available on
individual sensor nodes. We then detail the file system de-
sign and discuss its security features, focusing on advantages
and disadvantages of the design.

Assumptions. Since base stations are highly vulnerable
to detection, especially in the case of hostile-environment de-
ployments, and are single points of failure, the secure and re-
liable file system presented here assumes a distributed wire-
less sensor network architecture in which all sensor nodes are
homogeneous. These sensor nodes are randomly deployed
in a non-hierarchical manner without the presence of a base
station or a data sink, as shown in Figure 1. The sensor
nodes follow the “sense and store” paradigm, and continue
to store recorded observations on their local storage, securely
and reliably, until collection.

Sensor Node Local Storage. The primary local stor-
age on sensor nodes is a NAND flash device. Flash devices,
characterized by lower energy consumption, ultra-low idle
current, high reliability, high storage capacity and density,
and lower cost, are well-suited for the requirements of wire-
less sensor networks [15]. A NAND flash device is divided
into pages, typically 512 bytes in size. Each page has an
extra 16 bytes of “out-of-band” storage space to be used for
either metadata or error correcting codes. Based on this,
the secure and reliable file system assumes that a page (and
a block) is 512 bytes in size with 16 bytes of extra storage.
The extra 16 bytes of storage can be used to store algebraic
signatures, or for error correcting codes. Alternatively, this
extra storage can also be used to store a mapping between

N0
N9

N8

N7

N6
N5

N4

N3
N2

N1

N10

Radio links

No Base Station

Randomly Deployed
Homogeneous Sensor Nodes

Entirely Distributed

Figure 1: Network Architecture

the key generator and a specific key (i.e., a mapping be-
tween a unique id that represents a specific key generator
and a specific key number). Such a mapping will allow the
use of several key generators in one sensor node. Another
possibility is to utilize this space to store information re-
garding a specific key generator and the key sequence that
will be required to decrypt the block.

A battery-backed SRAM or DRAM can be used to buffer
writes, and to store the next key to be used for encrypting
the next block of data. SRAM is especially useful for stor-
ing keys because it is easier to erase old values in SRAM.
SRAM and DRAM are unsuitable for sensor nodes because
both lose their contents when their power supply is removed.
MRAM [16] and phase-change flash [12] may also be used for
sensor node local storage. Both MRAM and phase-change
flash offer faster read and write speeds over flash, and do
not require wear-leveling. Phase-change flash is still largely
under development.

Reliability. To ensure that the observations recorded
by a particular sensor node survive the originating sensor
node’s failure, the secure and reliable file system divides the
encrypted data stored in its local storage into chunks. It
then distributes these chunks to its back-up buddies. The
back-up buddies are some optimal combination of its one-
hop and multi-hop neighbors. The goal of the file system
is to gain reliability through redundancy so that the data
collected by the sensor nodes survives failure of individual
sensor nodes. The reliability scheme will be similar to the
one described in [20], which provides several advantages over
RAID-like redundancy schemes. These advantages include
error correction, the option to not retain the original copy
of the data, and low overhead for verification of correct stor-
age at remote sites. All these advantages will benefit sensor
nodes since they have constrained storage and processing
resources. Provable data possession [1] cannot be used be-
cause of its high performance overhead. Unlike a machine
equipped with Intel Pentium IV processor, a sensor node is
severely constrained in resources in terms of memory and
processing.

The goal of this reliability scheme is not mirroring since
mirroring will increase the number of sensor nodes in the
network significantly, thereby, increasing the overall cost of
deployment [11]. This reliability scheme also does not deploy
a back-up scheme such as the one described in [11]. Peri-
odically, the originating sensor node checks to make sure
that its back-up buddies correctly store the data designated
to them. A POTSHARDS-type [22] group authentication

scheme may be utilized in order to achieve this goal. Several
issues related to reliability and group authentication arise,
and will be addressed in future work.

Simulation. The behavior of “sense and store” sensor
nodes described here will be simulated by adding a middle-
ware layer to J-Sim. A power model for storage, encryption,
and key generation will also be added. Due to the overhead
of key generation, encryption, computation of algebraic sig-
natures, division of encrypted data into chunks for back-ups,
it is expected that the performance of reads and writes expe-
rienced by the secure and reliable file system presented here
will be slower as compared to that of a generic file system
(such as, JFFS2) designed for flash devices.

4.1 Security
Before deployment, at the staging area, each sensor node

is assigned a unique seed. The mapping between a sen-
sor node and its unique seed is stored securely at the stag-
ing area, as shown in Figure 2. The unique seed never
leaves the staging area, and is never stored on the sen-
sor node. The unique seed assigned to each sensor node
is used to kick-start key generation for that sensor node.
The unique seed is provided as an input to a one-way key
generating function. The first ever key could also be com-
puted as a function of the node ID and a single secret key,
i.e., F (nodeId, singleSecretKey), assigned to the sensor node.
This will avoid the overhead associated with tracking n dif-
ferent initial keys for each key generator. This key generat-
ing function may be any one-way function, such as, a pseudo-
random number generator (PRNG) or a one-way hash. The
key generating function with the unique seed as its input
generates the first 128-bit key.

……

zzzN

yyy2

xxx1

SeedNode Id

……

zzzN

yyy2

xxx1

SeedNode Id

Figure 2: Node-Seed Mapping

The key generating function used to generate the first key
is stored on the sensor node’s local storage. The first key
generated from it is not stored on the sensor node’s local
storage. This is important because if keys are stored on
the flash device, it will be difficult to erase them later on.
Instead, keys (the first and all subsequent ones) are stored on
battery-backed SRAM or DRAM, as shown in Figure 3. The
first key is used as an input into the one-way key generating
function to generate subsequent keys in the sequence. Key
generation continues in this manner—the previous key is
input into the key generator to generate the next key in
the sequence. A key, after the encryption of one block of
data and the generation of the next key in the sequence, is
permanently discarded.

Sensor Node Flash

Key Generator

stored

Unique seed not stored

First Key

Battery-backed
SRAM or DRAM

stored

Figure 3: Sensor Node Storage

After deployment, sensor nodes follow their usual duty cy-
cle and continue to record observations based on their mis-
sion’s objectives. Data recorded by a sensor node on its local
storage media remains unencrypted until a block (512 bytes)
worth of data has been recorded. Unencrypted data resides
on a sensor node’s battery-backed SRAM or DRAM, and
not on the sensor node’s local flash device. This is because,
if stored on flash, unencrypted blocks will remain there un-
til they are garbage collected, which might not happen for
a long period of time. In the mean time, the unencrypted
data remains vulnerable. Moreover, the existence of the
same data in both encrypted and unencrypted form may
help reveal the encryption key, thus defeating the entire en-
cryption scheme. After a sensor node has collected one block
(512 bytes) worth of data, it proceeds to encrypt this block
of data, as shown in Figure 4.

Encryption Engine

Keyn Unencrypted Block

Flash Device

1

Key Generator

Keyn+1

2

3

store

Battery-Backed SRAM or DRAM

Encrypted Block

store

Discard

retrieve

input

Figure 4: Encryption

The first step in the encryption process is to retrieve, from
the sensor node’s battery-backed SRAM or DRAM, an un-
encrypted block of data and the encryption key to be used;
and provide them as inputs to the encryption engine. This
is shown in step 1 in Figure 4. The encryption engine uses a
block cipher, such as RC5 or AES, with CBC or CTR mode
within a block. This enables each block to be independent
of other blocks. This also restricts the adverse effects of a
block getting garbled or deciphered to that particular block
itself [5]. Symmetric ciphers are preferred in sensor networks
over public key encryption because of the heavy overhead
they inflict [28]. The encrypted block of data thus obtained
is stored on the sensor node’s flash device. The key used to
encrypt the data block in step 1 is input into the key gen-
erator, as shown in step 2 of Figure 4. The key generator
generates the next encryption key in the sequence and saves
it on the sensor node’s battery-backed SRAM or DRAM.
The encryption key used in steps 1 and 2 is then discarded.
The encryption of subsequent blocks of data, and the gen-
eration of subsequent encryption keys proceeds in a similar
manner.

4.2 Analysis
The encryption scheme described above is highly suit-

able for sensor nodes because sensor nodes typically follow a
“write-once, modify-never, access-never” storage and access
paradigm. In other words, in “sense and store” wireless sen-
sor networks, observations recorded by the sensor nodes are
seldom accessed or modified by the sensor nodes themselves.
Most of the access and modification of observations collected
by sensor nodes occurs post-deployment at the staging area
where data is decrypted for its intended audience. The en-
cryption scheme described here is not suitable for typical file

systems in which users must be able to access and modify
the encrypted data.

Encrypting stored data is nothing new for file systems.
Several file systems, such as, Cryptfs [27], Plutus [9], and
CFS [2], among several others encrypt stored data; the key
rotation used by the file system presented here was inspired
by Plutus. However, these file systems cannot simply discard
an encryption key after one use because they need to ensure
that their users are able to access and modify the encrypted
data. Unlike the encryption scheme described in this paper,
a majority of file systems also cannot function without stor-
ing the seed used to kick-start key generation on their local
storage. The file system presented here, unlike Cryptfs, does
not need to bother with self-authentication since an adver-
sary, upon capturing or subverting a sensor node, will be
able to perform exactly the same functions that the sensor
node itself can perform. Unlike Plutus, the file system pre-
sented in this paper does not need to differentiate between
readers and writers. This is because the sensor node, which
is the writer, can only encrypt data going forward. It has
no way of decrypting data. At the staging area, the data is
decrypted by the intended audience.

The security scheme described above offers several advan-
tages. One major advantage of this scheme is that it is
simple and easy to understand. Therefore, there are fewer
chances of making a mistake in its implementation, and the
simple code can easily be run on low-powered sensor nodes.
Another major advantage of this scheme is that the sensor
node is not burdened with the responsibilities of key man-
agement and revocation. Since a key is discarded after one
use, neither a sensor node nor an adversary is able to de-
crypt the already encrypted data. This is because both the
sensor node and the adversary are unable to generate keys
going backward since they do not possess the unique seed
used to kick-start the key generation. Even if an adversary
deciphers one cipher text block, it does not compromise or
affect other blocks since CBC or CTR mode is used only
within a block. However, this holds only if a block’s decryp-
tion does not reveal the encryption key. If the encryption
key is revealed, then all future encryptions are lost because
an adversary will be able to generate all keys, going forward,
starting from the revealed key.

The encryption scheme used by the secure and reliable file
system enables both the sensor node and an adversary to en-
crypt data going forward since both possess the mechanism
to generate keys going forward. Therefore, unencrypted
data remains vulnerable to unauthorized access and mali-
cious tampering. An adversary can also inject spurious data
into a sensor node and encrypt it. Malicious tampering of
encrypted data can be detected with the use of algebraic
signatures.

The intended audience of the observations recorded by the
sensor network will be able to decrypt all the data recorded
by each sensor node because they can regenerate keys from
the very beginning. This is because they possess the unique
seed assigned to each sensor node. The regeneration of keys
at the staging area can be optimized by indexing every nth

(say, 500th or 1000th) key generated by a particular key gen-
erator. Such indexing can reduce the overhead of regenerat-
ing all the keys up to the desired key. As an example, assume
that the index stores every 500th key; and that the 520th is
required for decryption. The 500th key from the index can
be used to kick-start key generation. With the index, only

20 keys (instead of 520 keys) need to be generated to get to
the 520th key.

5. RELATED WORK
This section compares and contrasts the features and char-

acteristics of the reliable and secure file system presented in
this paper with that of other file systems and security sys-
tems for sensor nodes and wireless sensor networks.

Matchbox [7] does not offer sufficient storage to add se-
curity to severely constrained Mica motes. It is difficult to
add security into ELF [3] and eNVy [25] because these are
complex and heavyweight. JFFS2 [24] is a good candidate
for a local file system. But, data blocks will still need to
be encrypted, and the encryption scheme presented here is
a good choice to do so. PRESTO [4], TinyDB [14], Data-
Centric Storage [21], Dimensions [6], Directed Diffusion [8],
ANSWER [18] and SecureSense [26], and file abstractions
designed by Tilak et al. [23], and Pisupati et al. [19] assume
hierarchical network architecture organized around a base
station or a data sink. This is in contrast to the distributed,
flat network architecture, devoid of a base station, assumed
by the file system presented here. A centralized network ar-
chitecture with a command node, which is similar to a base
station, is a single point of failure.

The primary focus of security in TinySec [10] and MiniSec [13]
is secure communication between nodes. Both do not focus
on storage security. Moreover, both TinySec and MiniSec,
unlike the file system presented here, are riddled with the
burden of key management. With TinySec, an adversary
might be able to decrypt encrypted data upon physically
capturing or subverting a sensor node. This is not the case
with the reliable and secure file system presented here be-
cause both the sensor node and the adversaries can gener-
ate keys going forward only. Most of the security systems
described above are burdened with key management and
safety, and do not focus on secure and reliable storage.

6. CONCLUSIONS AND FUTURE WORK
The secure and reliable file system presented in this pa-

per assumes a flat, distributed network organization devoid
of a base station. It relies on “sense and store” paradigm,
and utilizes a block cipher (such as, AES or RC5) in CBC
or CTR mode to encrypt stored data. Each sensor node is
assigned a unique seed before deployment. This unique seed
never leaves the staging area, and is used as an input into
the key generator to generate the first key in a sequence.
This first key and the key generator are stored on the sen-
sor node. Each key is used only once to encrypt data. It
is then input into the key generator to generate the next
key in the sequence and then discarded. By doing this, sen-
sor nodes as well as adversaries are able to generate keys
only going forward. Therefore, both are unable to decrypt
already encrypted data. Algebraic signatures are used to
prevent malicious tampering of data. Unencrypted data re-
mains vulnerable. For reliability, each sensor node divides its
encrypted data into chunks and backs-up these chunks on an
optimal combination of single-hop and multi-hop neighbors.
Periodically, each originating sensor node verifies whether or
not one of its neighbors belongs to its back-up buddies list,
and whether or not it stores the chunk assigned to it cor-
rectly. The performance of the reliable and secure file system
presented in this paper will be evaluated by adding “sense

and store” paradigm to J-Sim. Several open issues (such
as determining an optimal mix of single-hop and multi-hop
neighbors, and the frequency of incremental back-ups and
their verifications) exist and will be addressed in future re-
search efforts.

7. REFERENCES
[1] Ateniese, G., Burns, R., Curtmola, R., Herring,

J., Kissner, L., Peterson, Z., and Song, D.

Provable data possession at untrusted stores.
Cryptology ePrint Archive, Report 2007/202, 2007.

[2] Blaze, M. A cryptographic file system for Unix. In
Proceedings of the 1st ACM Conf. on Computer and
Communication Security (Nov. 1993), pp. 9–15.

[3] Dai, H., Neufeld, M., and Han, R. ELF: an
efficient log-structured flash file system for micro
sensor nodes. In SenSys ’04 (New York, NY, USA,
2004), ACM Press, pp. 176–187.

[4] Desnoyers, P., Ganesan, D., Li, H., Li, M., and

Shenoy, P. PRESTO: A predictive storage
architecture for sensor networks. In Proc. of the 10th
Workshop on Hot Topics in OS (June 2005).

[5] Ferguson, N., and Schneier, B. Practical
Cryptography. Wiley, 2003.

[6] Ganesan, D., Greenstein, B., Estrin, D.,

Heidemann, J., and Govindan, R. Multiresolution
storage and search in sensor networks. Trans. Storage
1, 3 (2005), 277–315.

[7] Gay, D. Matchbox: A Simple Filing System for
Motes. http://www.tinyos.net/tinyos-
1.x/doc/matchbox-design.pdf, August
2003.

[8] Intanagonwiwat, C., Govindan, R., and Estrin,

D. Directed diffusion: a scalable and robust
communication paradigm for sensor networks. In
Mobile Computing and Networking (2000), pp. 56–67.

[9] Kallahalla, M., Riedel, E., Swaminathan, R.,

Wang, Q., and Fu, K. Plutus: scalable secure file
sharing on untrusted storage. In Proceedings of the
Second USENIX Conference on File and Storage
Technologies (FAST) (San Francisco, CA, Mar. 2003),
USENIX, pp. 29–42.

[10] Karlof, C., Sastry, N., and Wagner, D. TinySec:
a link layer security architecture for wireless sensor
networks. In SenSys ’04, ACM, pp. 162–175.

[11] Koushanfar, F., Potkonjak, M., and

Sangiovanni-Vincentelli, A. Fault tolerance
techniques in wireless ad-hoc sensor networks. In Proc.
of IEEE Sensors ’02, vol. 2, pp. 1491– 1496.

[12] Lai, S. Current status of the phase change memory
and its future. IEDM ’03 Technical Digest , 10.1.1–
10.1.4.

[13] Luk, M., Mezzour, G., Perrig, A., and Gligor,

V. Minisec: a secure sensor network communication
architecture. In IPSN ’07 (New York, NY), ACM,
pp. 479–488.

[14] Madden, S. R., Franklin, M. J., Hellerstein,

J. M., and Hong, W. TinyDB: an acquisitional
query processing system for sensor networks. ACM
Trans. Database Syst. 30, 1 (2005), 122–173.

[15] Mathur, G., Desnoyers, P., Ganesan, D., and

Shenoy, P. Ultra-low power data storage for sensor

networks. In IPSN ’06 (New York, NY), ACM,
pp. 374–381.

[16] Miller, E. L., Brandt, S. A., and Long, D. D. E.

HeRMES: High-performance reliable MRAM-enabled
storage. In Proceedings of the 8th IEEE Workshop on
Hot Topics in Operating Systems (HotOS-VIII)
(Schloss Elmau, Germany, May 2001), pp. 83–87.

[17] Mitra, A., A., B., W., N., Zeinalipour-Yazti, D.,

V., K., and Gunopulos, D. High-Performance Low
Power Sensor Platforms Featuring Gigabyte Scale
Storage. In IEEE/ACM 3rd Int’l Workshop on
Measurement, Modelling, and Perf. Analysis of
Wireless Sensor Networks (2005).

[18] Olariu, S., Eltoweissy, M., and Younis, M.

ANSWER: Autonomous Wireless Sensor Network. In
Q2SWinet ’05 (New York, NY, 2005), ACM,
pp. 88–95.

[19] Pisupati, B., and Brown, G. File System
Framework for Organizing Sensor Networks. In SAC
’06: (New York, NY, 2006), ACM Press, pp. 935–936.

[20] Schwarz Thomas, S. J., and Miller, E. L. Store,
forget, and check: Using algebraic signatures to check
remotely administered storage. In IEEE International
Conference on Distributed Computing Systems
(ICDCS ’06) (2006).

[21] Shenker, S., Ratnasamy, S., Karp, B., Govindan,

R., and Estrin, D. Data-centric storage in
sensornets. SIGCOMM Comput. Commun. Rev. 33, 1
(2003), 137–142.

[22] Storer, M. W., Greenan, K. M., Miller, E. L.,

and Voruganti, K. POTSHARDS: secure long-term
storage without encryption. In USENIX ’07 (June
2007), pp. 143–156.

[23] Tilak, S., Pisupati, B., Chiu, K., Brown, G., and

Abu-Ghazaleh, N. A file system abstraction for sense
and respond systems. In Workshop on End-To-End,
Sense-and-Respond Systems, Applications and Services
(2005), USENIX, International Conference On Mobile
Systems, Applications And Services.

[24] Woodhouse, D. JFFS : The Journalling Flash File
System, 2001.

[25] Wu, M., and Zwaenepoel, W. eNVy: a non-volatile,
main memory storage system. In Proceedings of the
6th International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS) (Oct. 1994), ACM, pp. 86–97.

[26] Xue, Q., and Ganz, A. Runtime security
composition for sensor networks (SecureSense). In
IEEE Vehicular Technology Conference (October
2003), vol. 5, pp. 2976– 2980.

[27] Zadok, E., Badulescu, I., and Shender, A.

Cryptfs: A stackable vnode level encryption file
system. Tech. rep., Columbia University, 1998.
http://www.am-utils.org/docs/cryptfs/cryptfs.html.

[28] Zhou, L., Ni, J., and Ravishankar, C. V. Efficient
Key Establishment for Group-Based Wireless Sensor
Deployments. In WiSe ’05 (New York, NY, 2005),
ACM, pp. 1–10.

