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Abstract

 

We have developed a scheme to secure network-
attached storage systems against many types of
attacks. Our system uses strong cryptography to
hide data from unauthorized users; someone gain-
ing complete access to a disk cannot obtain any
useful data from the system, and backups can be
done without allowing the super-user access to
unencrypted data. While denial-of-service attacks
cannot be prevented (attackers with sledgeham-
mers can deny service to 

 

any

 

 system), our system
detects forged data. The system was developed
using a raw disk, and can be integrated into com-
mon file systems.

All of this security can be achieved with little pen-
alty to performance. Our experiments show that,
using a relatively inexpensive commodity CPU
attached to a disk, our system can store and retrieve
data with only a 15-20% performance loss over
raw transfer rates for sequential disk requests, and
virtually no penalty for random disk requests. With
such a minor performance penalty, there is no
longer any reason not to include strong encryption
and authentication in network file systems.

 

1  Introduction

 

Computer storage is an increasingly important part
of the Internet, and ensuring the security and integ-
rity of stored data is a crucial problem. Attacks by
hackers and insiders have led to billions of dollars
in lost revenue and expended effort to fix the prob-
lems. Most organizations rely heavily on their dis-
tributed computing environment, which usually
consists of workstations and a shared file system.
This file system is typically stored on a centralized
file server that is managed by a system administra-
tor with super-user privileges, leaving the data vul-
nerable to anyone who can prove (legitimately or
otherwise) that he is the system administrator.

Recently, however, network-attached disks have
begun to replace traditional centralized storage sys-
tems [1,9]. In such systems, disks are attached

directly to a network, and rely upon their own
security rather than using the server’s protection.
This arrangement makes security more difficult
because the disk is directly exposed to potential
attacks instead of being hidden behind a single
server that can be “hardened.”

We have developed a security system for network-
attached storage that relies upon strong cryptogra-
phy to protect data stored in a distributed file sys-
tem. Our system stores and transfers all data
encrypted, only decrypting it at a client worksta-
tion. The drives lack sufficient information to
decrypt the data they hold or to undetectably forge
new data, so physically stealing the media will not
enable an attacker to gain access to the data or to
plant false data. Similarly, an administrator back-
ing up the file system only has access to encrypted
copies of the files; the authorized users of a partic-
ular file are the only ones with access to its unen-
crypted contents.

Despite this level of security, our system does not
impose much overhead on the file system. Our
experiments using raw disks (the worst case — any
real file system will impose additional overhead
further hiding any cryptographic overhead) show
that the encryption and verification provided by our
system imposes less than a 20% penalty for large
sequential transfers and almost no penalty for
small random accesses to blocks on disk.

We begin by describing previous work in securing
file systems, discussing the strengths and weak-
nesses of each system. We then describe Secure
Network-Attached Disks (SNAD), our system for
protecting data on network-attached disks. We
present three alternate security schemes, each
appropriate for different levels of client and server
CPU performance. Next, we describe the experi-
ments we ran to test our system’s performance and
show that security for network-attached disks is
possible without much performance penalty. We
conclude with a description of our plans for inte-
grating strong security into modern file systems.

elm
This paper has been submitted to the 2001 USENIX Technical Conference (June 2000 in Boston, MA).
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2  Related Work

 

Many systems have been designed to address the
security problems of modern distributed file sys-
tems. However, these systems have suffered either
from weak security, poor performance, or both. It
is only recently that CPU performance has
advanced to the point where strong cryptography
can be done quickly with inexpensive processors.
This allows its use on low-cost processors that can
be associated with each disk in a distributed file
system [9].

 

2.1  Controlling Access to File Systems

 

Most file systems include some measure of secu-
rity. However, systems such as NFS [19], xFS [1],
and Petal [13] pass nearly all of their data in the
clear, relying on relatively insecure networks and
trusted hosts for data protection. Such a tactic
works well if a network is totally disconnected
from the rest of the world, but is a poor solution for
modern systems that are exposed to the Internet.
Some protection can be provided via firewalls or
by secure network protocols [2,11,16], but these
mechanisms do not protect data stored on disk.

Other systems, such as AFS [10,21] and NASD
(Network Attached Secure Disk) [9] use Kerberos
[17] to provide security. These systems provide
stronger security by requiring users to obtain “tick-
ets” from a third party. The tickets are then pre-
sented to the file server (AFS) or NASD disk as
proof of identity and access rights. These systems
are considerably stronger than those that rely upon
simple authentication, but they still suffer from
several problems. First, files are left in the clear on
the disks themselves, and are normally transferred
in the clear. Second, Kerberos-based systems rely
upon a centralized security authority that is sepa-
rate from the disks themselves. This is advanta-
geous for sharing within a well-connected
organization, but can become more difficult for
widely distributed systems.

SCARED [18] is another file system that uses
encryption to authenticate remote network storage.
The SCARED design supports the use of end-to-
end encryption of data, and, similar to SNAD, uses
timestamps and counters to protect against replay
attacks. However, SCARED does not implement
end-to-end data encryption, leaving that for the
underlying file system. SCARED, like the authenti-

cation we propose in Scheme 3, uses secure hashes
for authentication.

The Secure File System (SFS) [8,15] provides
strong authentication and a secure channel for
communications. It includes an extensive authenti-
cation mechanism for individual users, and pro-
vides strong security for data in transit between
clients and servers. It also allows servers to authen-
ticate their users and clients to authenticate servers.
However, it still relies upon trusted file servers that
do not alter data stored on them. If a “trusted”
server is physically compromised, the data on it
may be readable to the intruder. In an environment
where data storage is outsourced to companies, this
security risk is unacceptable.

 

2.2  Protecting Data on Disk

 

While most file system security has focused on
access control and protecting data in transit, there
have been a few file systems that have protected
data on disk as well. There has been some work on
protecting data on disk by making it impossible to
delete [22]; however, our focus is on protecting
data on disk from discovery by an intruder.

Many users have implemented their own “secure
file system” by simply encrypting their files using
standard encryption software. This provides secu-
rity and, if the user also signs the file, a mechanism
for ensuring that the server did not corrupt the data.
However, this is an 

 

ad hoc

 

 mechanism, and does
not deal with many issues such as sharing files
between users.

The Cryptographic File System (CFS) developed at
AT&T Bell Laboratories [3,4] encrypted all data
and potentially sensitive metadata stored on disk.
When a user desired access to an encrypted direc-
tory, he issued a command to attach the encrypted
directory to a subdirectory of /crypt. If the correct
password was entered, the data was subsequently
available in decrypted form. Because the structures
to support this were stored in a “normal” directory
structure, they could be used with NFS and other
file systems. However, CFS also required that the
server be trusted to “actually store (and eventually
return) the bits that were originally sent to it.” In
the Internet era, there is no guarantee that a server
will do this, so there must be a mechanism to
ensure that the server has not maliciously altered
the data. In addition, CFS does not discuss mecha-
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nisms for distributing keys among users for sharing
files.

The design of a trusted database system such as
Trusted DataBase (TDB) [14] could be adapted to
file systems; however, TDB is not easily scalable,
making it less useful for large-scale file systems.

 

3  System Design

 

The goal of our system is to address the security
shortcomings of previous file systems while pre-
serving the flexibility and performance of standard
distributed file systems. We propose three security
alternatives for network-attached storage; the first
two are considerably more CPU-intensive, but are
also more secure. The third alternative is feasible
given current low-cost CPUs, and provides nearly
as much security as the first two alternatives.

 

3.1  Design Goals

 

Our security schemes provide several important
features for a secure file system. The first feature is
end-to-end encryption of all file system data,
including storage on disk. This is necessary to
restrict access to data to only authorized users, spe-
cifically excluding system administrators and
backup systems. An adversary with full access to
all of the bits on the disk or the network should be
unable to decipher any user files — the disk must
not contain sufficient information to decrypt the
data stored on it. Rather, data should only exist in
unencrypted form on the client.

A second desirable feature is data integrity. A user
reading data from the server must be sure that the
files received are those he originally stored. It is no
longer a good idea to trust that a disk is secure
against intruders; data modified at the disk or intro-
duced into the system by an malicious intruder
must be detectable. Storing a non-linear checksum
of the unencrypted data in a block along with the
encrypted block, as described in Section 3.4.3,
allows any authorized user to detect a change made
to the encrypted block by an intruder who did not
have the symmetric key to encrypt the file.

Flexibility is a third feature that is desirable in a
secure file system. While it would certainly be pos-
sible to simply encrypt each file with a user’s pass-
word, this approach is impractical because it makes
file sharing difficult. Instead, a file system should
have sharing at least as powerful as that in standard

Unix, and preferably as flexible as the access con-
trol lists provided by AFS [10].

High performance and scalability is the fourth fea-
ture desirable for a secure distributed file system.
Though it may be possible to build a secure file
system, no one will use it if the file system is too
slow. If encryption and decryption are performed at
the client, encryption throughput will limit a single
client’s bandwidth. By minimizing the effort
required by the network-attached disk’s CPU, how-
ever, it is possible to build a distributed file system
that can be used by hundreds of clients, each of
which can decrypt the data intended for itself.

 

3.2  Basic Mechanisms

 

The basic mechanism behind our security system is
to encrypt all data at the client and give the server
sufficient information to authenticate the writer and
the reader sufficient information to verify the end-
to-end integrity of the data.

SNAD relies upon several standard cryptographic
tools. The client uses the RC5 algorithm [20] to
encrypt the data before it leaves the client, though
other algorithms such as Blowfish [20] would also
be acceptable. This ensures that the data is unread-
able by anyone until it is decrypted by the client
that reads it. Public-key cryptography is used to
allow disks to store information that can be used to
decrypt their files; because public-key encryption
is asymmetric, however, only a user with the
appropriate private key can use this information.
This process is described in Section 3.4. The secu-
rity provided by SNAD is very strong; the symmet-
ric algorithms use 128 bit keys — the key length
Schneier recommends for highly secure informa-
tion with a lifetime longer than 40 years [20]. If
128 bit keys are too short, longer keys may be used
at the expense of extra processing at the client.

SNAD also makes extensive use of cryptographic
hashes and keyed hashes. Cryptographic hashes
such as MD4, MD5, and SHA-1 [20] use a one-
way function to compute a large number (128 or
160 bits) from a block of data. Any modification in
the input data will cause the resulting hash value to
change. While it is possible to find two sets of
input data that will result in the same MD4 hash
(weak collision) [5], there is still no known way to
produce a second input that hashes to the same
value as a given first input. MD5 and SHA are vari-
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ations on MD4 for which it is currently believed
NP-hard to find two input texts that result in the
same hash value.

Keyed hashes such as HMAC [12] use a crypto-
graphic hash in conjunction with a shared secret to
check integrity and authenticate a writer. If the
sender and receiver share a key, the key can be
included in the cryptographic hash, preventing any-
one who intercepts the data from undetectably
modifying it unless they know the shared key.

 

3.3  SNAD Data Structures

 

All of the SNAD security schemes use four basic
structures: data objects, file objects, key objects,
and certificate objects. While these objects are all
shown as contiguous blocks of data, there is no
requirement that they be stored contiguously on
disk. In particular, data objects may be broken
apart, storing the data itself in a “normal” file sys-
tem and the remainder of the data object in a spe-
cial structure (analogous to inodes and index
blocks in Unix) if desired.

 

3.3.1  Secure Data Objects

 

A secure data object (SDO) is the minimum unit of
data that can be read or written in the secure file
system, and corresponds to a file block in a stan-
dard file system. Files are composed of one or
more secure data objects; a sample secure data
object is shown in Figure 1.

The block security information is different for each
of the three schemes discussed in Section 3.4, but
is on the order of 32 bytes long. The block ID is a
unique identifier for the block in the file system,

and could be a combination of a a unique file iden-
tifier and block number in the file. The first user ID
in the list is the creator of the secure data object
and is used by the SNAD server to determine
which public key or writer authentication key to
use to check the security of the block.

The initialization vector (IV) is used to prevent
identical data blocks encrypted with the same key
from encrypting to the same ciphertext. Using a
unique value such as the block ID concatenated
with the file ID will guarantee that blocks with
identical content encrypt to different ciphertexts.
The timestamp is used simply to prevent replay
attacks; it need not be an actual timer, but instead
could simply be a counter incremented at each cli-
ent.

The data stored in the data object is encrypted
using a symmetric encryption algorithm such as
RC5. The key used to encrypt the data is obtained
from the key object associated with the file, as
described in Section 3.3.3.

If the data contained in each object is too large,
each file will waste relatively large amounts of
space. However, minimizing cryptographic over-
head, both storage and operational, requires that
objects not be too small. Like file blocks, secure
data objects could be variably sized within a single
file system; however, we assumed fixed sized
secure data objects. We explore the performance
tradeoffs with respect to object size in Section 4.

 

3.3.2  File Objects

 

File objects are composed of one or more data
objects along with per-file metadata. In addition to
the usual file metadata such as block pointers, file
size, and timestamps, a file object contains a
pointer to a key object. This pointer is used to find
the keys that may be used to access the file. Except
for the pointer to the key object and perhaps point-
ers to the extra information for secure data objects,
the structures for file objects are identical to those
for standard files.

 

3.3.3  Key Objects

 

Each key object, shown in Figure 2, contains sev-
eral types of information. The key file ID is just the
unique identifier for the block on the system. The
user ID in the header of the key object is that of the
last user to modify the key object. When a user

Figure 1. Secure data object.

Block security information

Block ID

User IDs

Timestamp

Initialization vector

Data
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writes the object, he hashes the entire object and
signs the hash with his private key, storing the
result in the signature field. Anyone using the key
object verifies the integrity of the object by per-
forming the same hash and verifying the provided
signature. This mechanism prevents the disk (or
anyone with access to it, such as a system adminis-
trator) from undetectably modifying a key object
— a client using the key object can check to ensure
that the signature on a key object belongs to some-
one authorized to change the key object. Because
someone who modifies a key object must sign it,
there is a way of tracing illegitimate modifications
to a particular user.

Each tuple in the body of the key object includes a
user ID, encrypted key, and permissions for that
user. The user ID need not correspond to a single
user; it could, instead, be an equivalent to a Unix
group and correspond to several users with shared
access to a single private key. The second field in
the tuple contains the key for the symmetric RC5
algorithm. Rather than storing this key in the clear,
the key object stores the key encrypted with the
user’s public key. The disk cannot decrypt any key
unless it obtains a user’s private key, but the only
way to get a user’s private key is to steal it from a
client or the user himself because keys are kept on
the client and never sent to the disk. The permis-
sions field is used by the disk to determine whether
the user is allowed to write the key object.

A key object may be used for more than one file. If
this is done, all files that use the key object are
encrypted with the same symmetric encryption key
and are readable by the same set of users. In this
way, a key object corresponds to a Unix group.

 

3.3.4  Certificate Objects

 

Each network-attached disk contains a single cer-
tificate object, shown in Figure 3, which contains
administrative and cryptographic information
about each SNAD user. The disk uses the informa-
tion in the certificate object to authenticate users
and do basic storage management.

The certificate object contains a list of tuples, each
of which includes a user ID, public key, HMAC
key (for Schemes 2 and 3), and timestamp. The
user ID identifies the user or group to which the
remainder of the tuple pertains. The public key is
stored on the disk for two reasons: as a conve-
nience so that the disk and those using it need not
consult a centralized key server, and for writer
authentication in Scheme 1 as described in
Section 3.4.1.

The HMAC key is used in the second and third
schemes to verify the identity of the user writing
data, and is stored encrypted, with the decryption
key for the HMAC keys held in non-volatile mem-
ory on the disk. Storing the HMAC keys encrypted
allows them to be backed up without compromis-
ing them. When the certificate object is loaded into
memory on disk startup, the HMAC keys are
decrypted and cached in volatile memory.

The timestamp field is updated each time a user
writes a file object, and is used to prevent replay
attacks. A centralized clock is not necessary unless
requests for a particular user ID may come from
several clients at about the same time. This can
occur if a user ID actually corresponds to a group,
or if a user is logged on to several systems at once.
The sole purpose of the timestamp is to prevent
replay attacks; clocks may be synchronized using
any number of common approaches, or replay

Figure 2. Key object.
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User ID Encrypted key Permissions

User ID Encrypted key Permissions
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Figure 3. Certificate object.
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attacks may be thwarted as described in
Schneier [20].

 

3.3.5  Overall Data Structure Organization

 

The relationship between the objects described
above is shown in Figure 4. The diagram shows
multiple file objects using a single key object; this
corresponds to a situation where two files have the
same access controls. It is likely that there will be
relatively few key objects on a disk, just as there
are relatively few unique groups in a standard Unix
file system.

All of the objects shown in Figure 4 require rela-
tively little overhead. Each data object requires 36-
100 bytes of overhead, depending on which secu-
rity scheme is being used. Even for 100 bytes of
overhead, using 8 KB blocks requires just 1.2%
overhead for cryptographic metadata. File objects
require little overhead — just a pointer to a key
object. Key objects are also small: a key object
requires 72 bytes for the header and 72 bytes for
each user. If each of 10,000 users is part of 200 dif-
ferent groups, there will need to be 144 MB of key
objects, or 0.7% of a 20 GB disk. The certificate
object requires less than 100 bytes per user, adding
just 1 MB to the total. Thus, all of the security
information for SNAD occupies less than 2% over-
head for a 20 GB disk.

 

3.4  SNAD Security Schemes

 

The three schemes we considered differ only in the
way in which authentication is done, resulting in
different performance levels because of the num-
ber, type, and location of the cryptographic opera-
tions. We focus on the operations performed in
each of the schemes; details on the security of the
schemes can be found in [6].

All of the SNAD protection schemes provide
strong security by encrypting each block of data
using RC5 at the client. Because the RC5 keys are
stored on the drive encrypted with the public key of
any user permitted to access the file, even gaining
access to both the encrypted data and the encrypted
keys would be of no use without the necessary pri-
vate key. As a result, the disks provide an encrypted
block of data and encrypted keys to anyone who
requests them. Assuming that the encryption is suf-
ficiently strong, the encrypted information will not
benefit an attacker, so there is little use in having
the disk attempt to verify the identity of a
requester. If the user can decrypt the symmetric
key, he can read the data in the block.

Writing blocks in all three schemes is controlled in
much the same way as a standard file system: only
users with permission to write a block are allowed
by the disk to do so. Traditional file systems, how-
ever, are vulnerable to attackers placing bogus data
on the disk by gaining access to low-level write
routines. SNAD guards against this with encryp-
tion and checksumming; secure data objects writ-
ten without knowledge of the symmetric key for
the object will give a checksum error when
decrypted by a client. The only way for an unau-
thorized write to occur is for an authorized reader
to gain physical access to the disk, use his symmet-
ric key to write a secure data object, and (for
Schemes 1 and 2) sign the cryptographic hash. This
weakness is present in any security scheme that
uses symmetric key encryption to protect files:
anyone that can decrypt the file can encrypt it as
well.

Reading and writing data in each of the three
schemes have much in common. First, the user
must give his private key to the client, which is
assumed to be trusted by the user. This can be done
via password, authentication server (e.g., as used in
Kerberos [17]), or smartcard. For each file, the user
opens the file and reads the key object for the file;

Figure 4. Relationships between objects in a 
Secure Network-Attached Disk.
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for this operation as any others, file system caching
may be transparently used. The appropriate field of
the key object is then decrypted the to obtain the
symmetric encryption key for the file. This key is
then used to encrypt the data before sending it to
the server and after receiving it from the server.

 

3.4.1  SNAD Scheme 1

 

The first SNAD scheme provides security on each
block of data similar to that provided by some
cryptographic electronic mail security schemes.
Writes in this scheme encrypt each data block,
compute a hash over the entire data object (includ-
ing the metadata), and sign the hash using the
user’s private key. This hash can then be verified by
anyone with the user’s public key. In particular, the
disk can recompute the hash and compare it against
the hash signed by the user who sent the block. If
they match, the disk successfully verifies the pro-
vided signature, and the user has the permission to
write the file, the SNAD server writes the block to
disk.

Reads in this scheme require no operations by the
SNAD server CPU, but do require that the client
CPU check the hash and signature just as the
SNAD server did on a write.

Table 1 summarizes the operations that must be
done for each read and write request. Note that this
scheme requires relatively expensive signature and
verification operations for each disk request; in
particular, the CPU on the network-attached disk
must perform an expensive signature verification
for each block write. Because this CPU is likely to
be slow, the verification will reduce write perfor-
mance.

 

3.4.2  SNAD Scheme 2

 

Scheme 2 replaces the SNAD server’s verification
with an HMAC. In this scheme, the client performs

a cryptographic hash on the block and signs it.
However, this signature is only verified by the cli-
ent when it reads a block. The client also calculates
an HMAC on the secure data object using the
shared secret HMAC key and sends it to the SNAD
server. The SNAD server computes an HMAC
using the shared secret key from the certificate
object and checks it against the HMAC received
from the client. Recalculating the entire hash
including the HMAC key would be time-consum-
ing; instead, the client simply performs an HMAC
over the hash.

The replacement of a signature verification by an
HMAC reduces the load on the SNAD disk CPU,
but does not reduce the load on the client CPU,
which still must perform signatures on writes and
verifications on reads. Table 2 shows the operations
that the client and server perform for SDO reads
and writes.

 

 

3.4.3  SNAD Scheme 3

 

The previous two schemes use a public-key signa-
ture to identify the originator of a data block and
ensure that the block hash has not been modified.
The third scheme uses a keyed-hash (HMAC)
approach to authenticate a writer of a data block
and verify the block’s integrity. HMACs differ
from signed hashes in that a user able to verify a
keyed-hash is also able to create it. Scheme 3 still
uses public-key authentication for key objects
because writing key objects, while slower with
public-key controls, is very infrequent.

Write operations in this scheme require the client
to encrypt the SDO and calculate an HMAC over
the ciphertext. This information is then sent to the
disk, which authenticates the sender by recomput-
ing the HMAC using the shared secret key from the

 

Operation
Read Write

Host NAS Host NAS

 

En/Decrypt

 

√ √

 

Hash

 

√ √ √

 

Signature

 

√

 

Verification

 

√ √

 

Table 1. Cryptographic operations necessary for 
Scheme 1.

 

Operation
Read Write

Client NAS Client NAS

 

En/Decrypt

 

√ √

 

Hash

 

√ √ √

 

Signature

 

√

 

Verification

 

√

 

Table 2. Cryptographic operations necessary for 
Scheme 2.
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certificate object. If the write is authentic and the
user has the permissions to modify or create the
SDO, the SNAD disk commits the write to disk,
updating structures as necessary. Note that the disk
does not store the HMAC because it must recalcu-
late a new HMAC if the reader is a different user
from the user who wrote the SDO.

Unlike the previous two schemes, this scheme
requires the SNAD disk to perform a cryptographic
operation on a read: the disk must calculate a new
HMAC using the key from the user requesting the
data. The data object, along with the new HMAC,
is then sent to the client requesting the data. If the
disk were forced to write blocks without the proper
encryption key, a client could detect this during a
read by checking the non-linear checksum against
the decrypted data.

The operations performed by the client and SNAD
disk are summarized in Table 3. Note that this
scheme requires no signature generation or verifi-
cation operations; however, the SNAD disk must
now compute an HMAC on both reads and writes.

 

4  Performance

 

All of the security schemes we presented would go
a long way towards securing data in distributed file
systems. However, few would use such strong
security if doing so meant crippling the file sys-
tem’s performance. Our measurements, however,
show that strong security can be achieved without
sacrificing too much performance. Using slightly
longer keys has relatively little effect on encryption
speed, but doubles the time required for brute-force
cryptanalysis for each bit added to the key length.

 

4.1  Cryptographic Overhead

 

We first tested the raw speed of the cryptographic
algorithms used by SNAD; this provided insight
into how fast each of our schemes was likely to be.

We previously found that using encryption in time-
critical systems is feasible [7]; performance tests
on additional (newer) hardware are summarized in
Figure 5.

As Figure 5 shows, the most expensive operation
by far is signature generation. We used a modulus
of 512 bits in the RSA algorithm. with 32,767 as
the public exponent, which allowed verification
times to be much faster than signature generation
times. Similar tests on a 200 MHz Pentium Pro
with 1024 bit keys [23] required 43 ms for a public
key signature; the faster processors available today
should be able to complete this operation in times
similar to those we measured for 512 bit keys.

The length of time required to compute a signature
suggests that Schemes 1 and 2 are likely to be con-
siderably slower than Scheme 3 on a workload that
includes many writes. On a read-mostly file sys-
tem, however, the long time required to calculate a
signature is less important and the benefits of the
stronger protection available from Schemes 1 and 2
may be more important.

While this data was measured on relatively modern
CPUs, progress marches on. As a result, a
500 MHz AMD K6 is currently available for $50
retail; a 300 MHz K6 is even less expensive, and
both are inexpensive enough to serve as an embed-
ded processor.

By combining Tables 1, 2, and 3 and Figure 5, we
can derive the theoretical overhead for each secu-
rity scheme. Figure 6 shows the overhead for each

 

Operation
Read Write

Client NAS Client NAS

 

En/Decrypt

 

√ √

 

Hash

 

√ √ √ √

 

Signature

Verification

 

Table 3. Cryptographic operations necessary for 
Scheme 3.

Figure 5. Performance of cryptographic algorithms 
on modern CPUs. Block size is 32 KB except for 
sign & verify, which are done on 128 bit inputs.
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scheme if the MPC750 is used in both client and
server; different processors will have different
overheads, but the ratios between the schemes will
be similar.

From Figure 6, we can derive the theoretical
“speed limit” for performance using a MPC750 for
both client and disk. Schemes 1 and 2 are limited to
nearly 6.4 MB/s for reads, but only 1.4 MB/s for
writes. Scheme 3, on the other hand, can read at up
to 10 MB/s and write even faster — 12.7 MB/s.
These rates are based on cryptographic overhead
only; they do not include network and disk delays.
However, they are useful in showing how fast a
cryptographic file system 

 

could

 

 go given suffi-
ciently fast disks and networks. Note, too, that
Schemes 1 and 2 are limited primarily by the
amount of time needed by the client to compute the
signature; thus, they may work well in environ-
ments with many clients and relatively few disks.

 

4.2  SNAD Performance Measurements

 

Though measuring the performance of crypto-
graphic operations is useful, it does not show the
full impact of end-to-end security on a distributed
file system. We constructed prototype SNAD disks
and clients, and ran experiments to see how much
performance degradation was incurred when cryp-
tographic overhead was added to a block-level
SNAD server. The observations in this section
present the worst-case scenario for cryptographic
overheads because real file systems will likely have
other overheads not present in a raw block server.

Our experimental setup consisted of multiple VME
boards running a real-time kernel (Wind River’s
VxWorks). Each board was based on the MPC750
running at either 333 or 360 MHz. The VME chas-
sis was used only for power; the boards were con-
nected to each other by 100 Mbit/s Ethernet
switched through a Cisco 2900 XL switch. In addi-
tion, each server was connected to a Seagate Chee-
tah 10K RPM Ultra SCSI disk drive. We used
360 MHz boards for both client and server for the
one-to-one tests; our multiple client and server
tests used different configurations that are detailed
later.

 

4.2.1  Baseline: No Security

 

Our first set of tests stressed the system without
any cryptography, showing how fast the system
could read and write data unencrypted and unen-
cumbered by any security mechanisms. Figure 7
shows the performance of a one client, one disk
SNAD system without any cryptographic over-
head. There is a knee in the performance curve
around 8 KB, and a block size of 32 KB delivers
nearly the maximum performance permitted by a
100 Mbit/s Ethernet for sequential access. As
expected, random accesses are slower than sequen-
tial accesses, though the large write buffer on the
disk allows write performance for random writes to
approach that of sequential writes for large blocks.

We used the performance measurements shown in
Figure 7 as a baseline for our other performance
measurements, showing the effect of strong crypto-

Figure 6. Cryptographic overhead for SNAD using 
a 360 MHz MPC750 for both client and disk, 

assuming 32 KB data blocks.
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Figure 7. SNAD performance without 
cryptographic controls.
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graphic security on file system performance for
each security scheme in Section 3.4.

 

4.2.2  Performance of Scheme 1

 

As described in Section 3.4.1, Scheme 1 provides
the best security, albeit at the cost of lower perfor-
mance. Our experiments showed that, as expected,
Scheme 1 suffers greatly on both sequential and
random writes. However, Scheme 1 can keep up
with random reads of blocks up to 32 KB, though it
cannot keep up with sequential reads. These results
are shown in Figure 8.

The performance shown in Figure 8 indicates that,
with current processors, Scheme 1 is unsuitable for
distributed file systems that require good perfor-
mance with one exception: file systems that are
dominated by small random reads. This is exactly
the access pattern exhibited by clients accessing
key objects, so Scheme 1 would be a good choice
for protecting key objects. For most access pat-
terns, though, we must use other security schemes
until processor speeds increase sufficiently to per-
mit use of Scheme 1.

 

4.2.3  Performance of Scheme 2

 

Scheme 2 improves upon the first scheme by
changing the write operation to be less CPU-inten-
sive at the SNAD server with little loss in security.
The read operations in both Schemes 1 and 2 are
identical, and the graph in Figure 9 indeed shows
that the two schemes perform identically, with
sequential reads suffering a significant perfor-
mance loss and random reads running at the same
speed encrypted and in the clear. However, the
hoped-for performance gains on writes did not
materialize with a single client. Instead, the write
performance of Scheme 2 is similar to that of
Scheme 1; neither is currently suitable for systems
with large sequential writes.

 

4.2.4  Performance of Scheme 3

 

Scheme 3 replaces the signed hash for block integ-
rity and writer authentication with a keyed hash
(HMAC). While this results in slightly less secu-
rity, performance for this scheme is greatly
improved over the first two schemes, as shown in
Figure 10.

Figure 8. Performance of Scheme 1.
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Figure 9. Performance of Scheme 2.
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Figure 10 shows that, for Scheme 3, random I/O
operations (read and write) suffer little or no per-
formance penalty for cryptographic controls with
block sizes between 2 KB and 32 KB. Long
sequential transfers, on the other hand, do suffer a
performance penalty. However, large sequential
writes with encryption run at 88% of the band-
width of unencrypted writes, and large sequential
reads run at 81% of the bandwidth of unprotected
reads. We believe that this relatively small perfor-
mance penalty is an acceptable price to pay for a
large increase in file system security.

 

5  SNAD Design Issues

 

There are many design issues that must be consid-
ered when building a secure file system, particu-
larly in the area of key management. Mazieres, et
al. [15] discuss many of these issues in more detail;
however, we feel that there a few problems of par-
ticular importance that should be mentioned here.
These issues include creating key objects, adding
and removing users from a key object, and provid-
ing an key escrow system.

 

5.1  Creating a Key Object

 

The creation of file objects and data objects is rela-
tively straightforward, assuming that an appropri-
ate key object and certificate object already exist.
However, there must be a way to create new key
objects.

The primary requirement for a new key object is a
new RC5 key that will be used to encrypt files that
use the key object. The key object creator must
ensure that the RC5 key is truly random (not
merely pseudo-random), and then encrypt it with
his own public key as well as that of anyone else he
wishes to have access to the file. Once this is done,
the key object may be stored on a SNAD disk, and
is ready for use. This procedure is relatively sim-
ple, and only relies on the ability to generate truly
random numbers for the RC5 key.

 

5.2  Modifying Access Permissions

 

One of the largest difficulties with many systems
for maintaining security is dealing with the modifi-
cation of access groups. Adding users to an access
group is relatively straightforward — a user with
the rights to add a new user can simply use his pri-
vate key to obtain the RC5 key, and encrypt that
key with the new user’s public key. The new user
can now access the files associated with this key
object.

Revoking permissions is a more difficult problem
for which there are several possible solutions. The
first solution is to simply delete the user’s line from
the key object; if this is done, the user will be
unable to obtain a new copy of the RC5 key,
though he may still have the RC5 key cached
somewhere. A second solution is to immediately
reencrypt the file using a different key object con-
taining only those users who should still have
access to the file. This solution is slower, but will
ensure that the revoked user cannot access the file.
A third solution is to apply the second solution
lazily. This allows the revoked user to continue to
access old data, but denies him access to any new
data, which is encrypted with a different key.

The choice of revocation method is still an open
issue with no well-accepted solution. We are cur-
rently investigating tradeoffs between these three
mechanisms for changing access permissions.

Figure 10. Performance of Scheme 3.
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5.3  Key Escrow

 

One potential problem with an encrypted file sys-
tem is that a user may abscond with his key (or
simply lose it), making it impossible to access files
that only he was allowed to see. In many organiza-
tions, this is an important argument against encryp-
tion.

However, this problem can be solved with key
escrow: including an escrow “user” in every key
object. This private key for this escrow “user” may
be kept in a safe (or even spread across multiple
safes); the system only requires that the corre-
sponding public key be available for the creation of
entries in new key objects. This solution in no way
weakens the strong security present in the file sys-
tem; an intruder would still need the private key
(which is not kept online) to break into any file.

Note that escrow is 

 

not

 

 required in SNAD, though
it may be included if desired.

 

6  Integrating SNAD into a File System

 

The security schemes we presented are not them-
selves a file system; rather, they are mechanisms to
be used by a distributed file system or network-
attached storage system to provide strong system
security. Thus, it is crucial that existing file systems
be able to use these techniques to greatly reduce
the risk of compromised data.

All of the security schemes described in
Section 3.4 use the same basic structures from
Section 3.3 and similar algorithms and security
procedures. Thus, all should be equally easy (or
difficult) to integrate into an existing file system.

We integrated the cryptographic controls into a
Linux ext2fs system using FiST [24] and hand-
crafted code. While this implementation does not
transfer data over a network, it does show the mag-
nitude of the cryptographic overhead for our design
when implemented in a real file system. For this
implementation, we stored key objects as regular
files and interposed routines to do encryption and
decryption on file reads and writes. We did not
store verification information for each file because
it is unlikely that a user will not trust the local file
system. Storing HMACs or signatures for each
block is required for security over a network, how-
ever, and will be implemented in the future.

Our implementation cached shared keys for
decrypting files; this is a reasonable situation
because most users will only belong to a few
groups and thus need only a few key objects at any
time. We used 128 bit Blowfish encryption and
1024 bit public keys running on a 266 MHz Pen-
tium; a 1 GHz processor should be able to run 3-4
times faster. We ran experiments with both stan-
dard ext2fs and ext2fs protected with encryption.
Each experiment created 1000 files of a particular
size, with the size varying by experiment, as shown
in Figure 11. Our preliminary results show that our
security mechanism results in an overhead of about
15% over standard ext2fs for most file sizes.

This experiment, combined with our more exten-
sive experiments on block-level operations, dem-
onstrate that strong encryption and authentication
can be included in file systems with an acceptably
small performance penalty.

 

7  Future Work

 

There is still much work to do on cryptographically
secure file systems, particularly with real imple-
mentations. Issues such as key revocation and
security infrastructure in general need to be
explored further.

One area that we are currently investigating is the
scalability of the different security schemes.
Schemes 1 and 2 are slow in part because the cli-
ents must generate a signature. With one client and
one server, this reduces performance. However,
with many relatively low-bandwidth clients, the
overhead of generating signatures is distributed to
many machines. In such a system, even a relatively

Figure 11. Time required for 1000 creates of 
varying sized files with and without encryption.
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slow CPU on a SNAD server can handle several
clients simultaneously.

The performance of SNAD is quite good; it can
provide strong security and authentication for a
penalty of between 1% and 20%, depending on
workload. This overhead can be reduced further by
placing special-purpose encryption hardware on
CPUs, making it possible to do cryptographic oper-
ations considerably faster than the general purpose
processors used in this study. If this is done, SNAD
with Scheme 1 security would be feasible.

 

8  Conclusions

 

We presented the details of the Secure Network
Attached Disk system along with performance
measurements showing that cryptographic security
is possible for distributed file systems and network-
attached storage. This type of system is feasible
with today’s computing power, and will become
even more attractive as processors become faster. A
cryptographically controlled write operation was
able to run at over 88% of the optimal perfor-
mance, while the read was limited to 81% of opti-
mal performance.

This security mechanism for distributed file sys-
tems solves many of the performance and security
problems in existing systems today. This system
provides user data confidentiality and integrity
from the moment it leaves the client computer. The
distributed disks should perform substantially bet-
ter than centralized file servers, and provide better
reliability. Having the security functionality decen-
tralized will improve performance and scalability.
Distributed security also removes the single point
of failure that plagues many proposed centralized
security schemes to date.

Integrating SNAD and schemes like it into modern
distributed file systems is essential. As we have
shown, such integration costs relatively little in
performance but provides tremendous advantages
in security. Given the hostile environment on the
Internet, distributed file systems can no longer
afford to be without strong security.

 

Code availability

 

The code for our encrypted file system running
under Linux will be available online well before
the 2001 USENIX Technical Conference.

 

References

 

[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D.
Roselli, and R. Wang, “Serverless Network File
Systems,” 

 

ACM Transactions on Computer Sys-
tems

 

, Feb. 1996, pages 41-79.
[2] M. Blaze, “Transparent Mistrust: OS Support for

Cryptography-in-the-Large,” 

 

Proceedings of the
Fourth Workshop on Workstation Operating Sys-
tems

 

, 1993, pages 98-102.
[3] M. Blaze, “A Cryptographic File System for

Unix,” 

 

Proceedings of the First ACM Conference
on Computer and Communication Security

 

,
November 1993, pages 9-15.

[4] M. Blaze, “Key Management in an Encrypting File
System,” 

 

Proceedings of the Summer 1994
USENIX Conference

 

, 1994.
[5] H. Dobbertin, “Cryptanalysis of MD4,” 

 

Fast Soft-
ware Encryption Workshop, Lecture Notes in Com-
puter Science

 

, vol. 1039, Springer Verlag, 1996,
pages 53-69.

[6] W. Freeman, 

 

Decentralized Security for Network
Attached Storage

 

, Ph.D. thesis, University of
Maryland Baltimore County, April 2000.

[7] W. Freeman and E. Miller, “An Experimental
Analysis of Cryptographic Overhead in Perfor-
mance-Critical Systems,” 

 

Proceedings of the 7th
International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS 99)

 

, College Park, MD,
October 1999, pages 348-357.

[8] K. Fu, M. F. Kaashoek, and D. Mazieres, “Fast and
secure distributed read-only file system,” 

 

4th Sym-
posium on Operating Systems Design and Imple-
mentation 

 

(San Diego, CA), October 2000, pages
181-196.

[9] G. Gibson, et al., “A cost-effective, high-band-
width storage architecture,” 

 

Proceedings of the 8th
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems

 

 (San Jose, CA), October 1998, pages 92-103.
[10] J. Howard, et al., “Scale and Performance in a Dis-

tributed File System,” 

 

ACM Transactions on Com-
puter Systems

 

 

 

6

 

(1), February 1988, pages 51-81.
[11] J. Ioannidis and M. Blaze, “The Architecture and

Implementation of Network-Layer Security Under
Unix,” 

 

Proceedings of the Fourth Usenix Unix
Security Symposium

 

, October 1993, pages 29-39.
[12] H. Krawczyk, M. Bellare, and R. Canetti,

“HMAC: Keyed-Hashing for Message Authentica-
tion,” 

 

IETF Network Working Group RFC2104

 

,
February 1997.



 

14

 

Strong Security for Network-Attached Storage

 

[13] E. Lee and C. Thekkath, “Petal: Distributed Virtual
Disks,” 

 

Proceedings of the 7th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems

 

, 1996, pages
84-92.

[14] U. Maheshwari, R. Vingralek, and W. Shapiro,
“How to Build a Trusted Database System on
Untrusted Storage,” 

 

4th Symposium on Operating
Systems Design and Implementation 

 

(San Diego,
CA), October 2000, pages 135-150.

[15] D. Mazieres, M. Kaminsky, M. Kaashoek, and E.
Witchel, “Separating key management from file
system security,” 

 

Proceedings of the 17th ACM
Symposium on Operating System Principles

 

,
December 1999, pages 124-139.

[16] K. Nakayoshi, N. Yamai, T. Matsuura, K. Abe, and
K. Murakami, “A Secure Private Network File
System with Minimal System Administration,”

 

IEEE Communications, Computers, and Signal
Processing

 

, 1997, pages 251-255.
[17] B. Neuman and T. Ts’o, “Kerberos: An Authenti-

cation Service for Computer Networks,” IEEE
Communications Magazine 32(9), September
1994, pages 33-38.

[18] B. Reed, E. Chron, R. Burns, and D. Long,
“Authenticating Network Attached Storage,” IEEE
Micro, 20(1)January 2000, pages 49-57.

[19] J. Reid, “Plugging the Holes on Host-Based
Authentication,” Computers and Security, 1996,
pages 661-671.

[20] B. Schneier, Applied Cryptography, Wiley (New
York), 1994.

[21] M. Spasojevic and M. Satyanarayanan, “An
Empirical Study of a Wide-Area Distributed File
System,” ACM Transactions on Computer Systems
14(2), May 1996, pages 171-199.

[22] J. Strunk, G. Goodson, M. Scheinholtz, C. Soules,
and G. Ganger, “Self-Securing Storage: Protecting
Data in Compromised Systems,” 4th Symposium
on Operating Systems Design and Implementation
(San Diego, CA), October 2000, pages 165-180.

[23] M. J. Wiener, “Performance Comparison of Pub-
lic-Key Cryptosystems,” RSA CryptoBytes, 4(1),
Summer 1998.

[24] E. Zadok and J. Nieh, “FiST: A Language for
Stackable File Systems,” Proceedings of the 2000
USENIX Technical Conference (San Diego, CA),
June 2000, pages 55-70.

View publication statsView publication stats

https://www.researchgate.net/publication/2526766



