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Abstract results in high latency and low bandwidth to web-enabled 
clients and prevents the timely delivery of software. 

We present an algorithm for modifying delta compressed 
files so that the compressed versions may be reconstructed 
without scratch space. This allows network clients with lim- 
ited resources to efficiently update software by retrieving 
delta compressed versions over a network. 

Delta compression for binary files, compactly encoding a 
version of data with only the changed bytes from a previous 
version, may be used to efficiently distribute software over 
low bandwidth channels, such as the Internet. Traditional 
methods for rebuilding these delta files require memory or 
storage space on the target machine for both the old and new 
version of the file to be reconstructed. With the advent of 
network computing and Internet-enabled devices, many of 
these network attached target machines have limited addi- 
tional scratch space. We present an algorithm for modifying 
a delta compressed version file so that it may rebuild the new 
me version in the space that the current version occupies. 

Differential or delta compression [5, 11, compactly en- 
coding a new version of a file using only the changed bytes 
from a previous version, can be used to reduce the size of the 
file to be transmitted and consequently the time to perform 
software update. Currently, decompressing delta encoded 
files requires scratch space, additional disk or memory stor- 
age, used to hold a required second copy of the file. Two 
copies of the compressed file must be concurrently available, 
as the delta file contains directives to read data from the old 
file version while the new file version is being materialized 
in another region of storage. This presents a problem. Net- 
work attached devices often have limited memory resources 
and no disks and therefore are not capable of storing two 
file versions at the same time. Furthermore, adding storage 
to network attached devices is not viable, as keeping these 
devices simple limits their production costs. 

1 Introduction 

Recent developments in portable computing and computing 
appliances have resulted in a proliferation of small network 
attached computing devices. These include personal digi- 
tal assistants (PDAs), Internet set-top boxes, network com- 
puters, control devices with analog sensors, and cellular de- 
vices. The software and operating systems of these devices 
may be updated by transmitting the new version of a pro- 
gram over a network. However, low bandwidth channels 
to network devices often makes the time to perform soft- 
ware update prohibitive. In particular, heavy Internet traffic 

We address this problem by post-processing delta en- 
coded files so that they are suitable for reconstructing the 
new version of the file in-place, materializing the new ver- 
sion in the same memory or storage space that the previous 
version occupies. A delta file can be considered a set of in- 
structions to a computer to materialize a new file version in 
the presence of a reference version, the old version of the 
file. When rebuilding a version encoded by a delta file, data 
are both copied from the reference file to the new version 
and added explicitly when portions of the new version do 
not appear in the reference version. 
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If we attempt to reconstruct an arbitrary delta file in- 
place, the resulting output can often be corrupt. This occurs 
when the delta encoding instructs the computer to copy data 
from a file region where new file data has already been writ- 
ten. The data the command attempts to read have already 
been altered and the rebuilt file is not correct. By detecting 
and avoiding such conflicts, our method allows us to rebuild 
versions with no scratch space. 

We present a graph-theoretic algorithm for post-process- 
ing delta files that detects situations where a delta file would 
attempt to read from an already written region and permutes 
the order that the commands in a delta file are applied to re- 
duce the occurrence of these conflicts. The algorithm elim- 
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inates the remaining data conflicts by removing commands 
that copy data and explicitly adding these data to the delta 
file. Eliminating data copied between versions increases the 
size of the delta encoding but allows the algorithm to always 
output an in-place reconstructible delta file. 

Experimental results verify that modifying delta files for 
in-place reconstruction is a viable and efficient technology. 
Our findings indicate that a small fraction of compression 
is lost in exchange for in-place reconstructibility. Also, in- 
place reconstructible files can be generated efficiently; creat- 
ing a delta file takes less time than modifying it to be in-place 
reconstructible. 

In $2, we summarize the preceding work in the field of 
delta compression. We describe how delta files are encoded 
in $3. In $4, we present an algorithm that modifies delta en- 
coded files to be in-place reconstructible. In $5, we further 
examine the exchange of run-time and compression perfor- 
mance. In $6, we present limits on the size of the digraphs 
our algorithm generates. Section 7 presents experimental re- 
sults for the execution time and compression performance of 
our algorithm and we presents our conclusions in $8. 

2 Related Work 

Encoding versions of data compactly by detecting altered 
regions of data is a well known problem. The first applica- 
tions of delta compression found changed lines in text data 
for analyzing the recent modifications to files [6]. Consider- 
ing data as lines of text fails to encode minimum sized delta 
files, as it does not examine data at a minimum gramdarity 
and only finds matching data that are aEigned at the begin- 
ning of a new line. 

The problem of compactly representing the changes be- 
tween version of data was formalized as string-to-stringcor- 
rection with block move [ 141 - detecting maximally match- 
ing regions of a file at an arbitrarily fine granularity without 
alignment. Even though the general problem of detecting 
and encoding version to version modifications was well de- 
fined, delta compression applications continued to rely on 
the alignment of data, as in database records [13], and the 
grouping of data into block or line granularity, as in source 
code control systems [ 12, 151, to simplify the combinatorial 
task of finding the common and different strings between 
files. 

Efforts to generalize delta compression to data that are 
not aligned and to minimize the granularity of the smallest 
change resulted in algorithms for compressing data at the 
granularity of a byte. Early algorithms were based upon ei- 
ther dynamic programming [9] or the greedy method [I I] 
and performed this task using time quadratic in the length 
of the input files. Recent advances in differencing algo- 
rithms have produced efficient algorithms that detect match- 
ing strings between versions at an arbitrarily fine granularity 
without alignment restrictions [l, 51. These differencing al- 

gorithms trade an experimentally verified small amount of 
compression in order to run using time linear in the length 
of the input files. The improved algorithms allow large files 
without known structure to be efficiently differenced and 
permits the application of delta compression to backup and 
restore [4], file system replication, and software distribution. 

Recently, applications distributing HTTP objects using 
delta files have emerged [IO, 21. This permits web servers to 
both reduce the amount of data to be transmitted to a client 
and reduce the latency associated with loading web pages. 
Efforts to standardize delta files as part of the HTTP proto- 
col and the trend towards making small network devices, for 
example hand-held organizers, HTTP compliant indicate the 
need to efficiently distribute data to network devices. 

3 Encoding Delta Files 

Differencing algorithms compactly encode the changes be- 
tween file versions by finding strings in the new file that may 
be copied from the prior version of the same file. Differenc- 
ing algorithms perform this task by partitioning the data in 
the file into strings that may be encoded using copies and 
strings that do not appear in the prior version and must be 
explicitly added to the new file. Having partitioned the file 
to be compressed, the algorithm outputs a delta file that en- 
codes this version compactly. This delta file consists of an 
ordered sequence of copy commands and add commands. 
An add command is an ordered pair, (t, Z), where t (to) en- 
codes the string offset in the file version and I (length) en- 
codes the length of the string. This pair is followed by the I 
bytes of data to be added (Figure 1). 

The encoding of a copy command is an ordered triple, 
(f, t ,l> where f (f rom) encodes the offset in the reference 
file from which data are copied, t encodes the offset in the 
new file where the data are to be written, and 1 encodes that 
length of the data to be copied. The copy command is a 
directive that copies the string data in the interval [f, f+Z-l] 
in the reference file to the interval [t , t + 1 - l] in the version 
file. 

In the presence of the reference file, a delta file rebuilds 
the version file with add and copy directives. The intervals 
in the version file encoded by these directives are disjoint. 
Therefore, any permutation of the order these commands are 
applied to the reference file materializes the same output ver- 
sion file. 

4 An In-Place Reconstruction Algorithm 

This algorithm modifies an existing delta file so that it can 
correctly reconstruct a new file version in the space the cur- 
rent version occupies. At a high level, our technique ex- 
amines the input delta file to find copy commands that read 
from the write interval of other copy commands. These po- 
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Figure 1: Encoding delta files. Common strings are encoded as copy commands (f, t, 1) and new strings in the new file are 
encoded as add commands (t, 1) followed by the string of length I that the command adds. 

tential data conflicts are encoded into a digraph. This di- 
graph is then topologically sorted to produce an ordering on 
these copy commands that reduces data conflicts. We elim- 
inate the remaining conflicts by converting copy commands 
to add commands and output the permuted and converted 
commands as an in-place reconstructible delta file. 

While our algorithm can most easily be described as a 
post-processing step on an existing delta file, as done in this 
work, it also integrates easily into a compression algorithm 
so that an in-place reconstructible file may be output directly. 

4.1 Conflict Detection 

Since we are reconstructing files in-place, we need concern 
ourselves with the order that the copy commands are ap- 
plied. Assume that we attempt to read from an offset that 
has already been written. This will result in an incorrect re- 
construction since the reference file data we are attempting 
to read have been overwritten. This is termed a wrire before 
read (WR) conllict [3]. 

For COPY commands (fi, ti, l;) and (fj , tj , lj), with i < 
j, there is a WR conflict when 

[ti, ti + li - l] n [fj, fj + lj - 11 # 0. (1) 

In other words, copy command i and copy command j con- 
flict if i writes to the interval from which copy command j 
reads data. By convention, we consider copy commands that 
are numbered and ordered so that, if i < j, copy command 
i is read and written before copy command j. By enforcing 
this constraint on copy commands i and j, we limit ourselves 
to applying the delta file commands serially, which is appro- 
priate for limited capability network devices. 

This definition only considers WR conflicts between copy 
commands and neglects add commands. Add commands 
only write data to the new file; they do not read data from 
the reference file. Consequently, all potential WR conflicts 
associated with adding data may be avoided by placing add 
commands at the end of a delta file. This way, all reads as- 
sociated with copy commands are completed before the first 
add command is processed. 

Additionally, we define WR conflicts so that a copy com- 
mand cannot conflict with itself. Yet, a single copy com- 
mand’s read and write intervals may intersect and would 
seem to cause a conflict. Copy commands whose read and 
write intervals are overlapping can be dealt with by perform- 
ing the copy in either a left-to-right or right-to-left manner. 
For copy command (f, t , I), if f 1 t , then when the file is 
being reconstructed, copy the string byte by byte starting at 
the left-hand side. Since, the f (from) offset in the reference 
file is always greater than the t (to) offset in the new file, 
a lefi-to-right copy never reads a byte that has been over- 
written by a previous byte in the string. When f < t, a 
symmetric argument shows that we should start our copy at 
the right hand edge of the string and work backwards. For 
this example, we performed the copies in a byte-wise fash- 
ion. However, the notion of a left-to-right or right-to-left 
copy applies to moving a read/write buffer of any size. 

To avoid WR conflicts and achieve the in-place recon- 
struction of delta files, we employ the following three tech- 
niques. 

1. Place all add commands at the end of the delta file to 
avoid data conflicts with copy commands. 

2. Permute the order of application of the copy commands 
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to reduce the number of write before read conflicts. 

3. For remaining WR conflicts, remove the conflicting op- 
eration by converting a copy command to an add com- 
mand and place it at the end of the delta file. 

Any delta file may be post-processed using these methods 
to create a delta file that can be reconstructed in-place. For 
many delta files, a permutation that eliminates all WR con- 
flicts is unattainable. Consequently, we require the conver- 
sion of copy commands to add commands to create correct 
in-place reconstructible files for all inputs. 

Having post-processed a delta file for in-place reconstruc- 
tion, the permuted and modified delta file obeys the property 

I ( 

j-l 

Vj> Lfj , fj + lj - 11 n U [ti, ti + 1 - l] = 0 , (2) 
1=1 ) 1 

indicating the absence of any WR conflict. Equivalently, it 
guarantees that the data a copy command reads and transfers 
are always data from the original file. 

4.2 Generating Conflict Free Permutations 

In order to find a permutation that minimizes WR conflicts, 
we encode potential conflicts between the copy commands 
in a digraph and topologically sort this digraph. A topologi- 
cal sort on digraph G = (V, E) produces a linear order on all 
vertices so that if G contains edge & then vertex u precedes 
vertex v in topological order. 

Our technique constructs a digraph so that each copy 
command in the delta file has a corresponding vertex in the 
digraph. On this set of vertices, we construct an edge rela- 
tion with a directed edge u”v from node u to node v when 
copy command u’s read interval intersects copy command 
V’S write interval. Edge u”v indicates that by performing 
command u before command V, the delta file avoids a WR 
conflict. For digraphs with this edge relation, a topologi- 
tally sorted version of a digraph adheres to the requirement 
for in-place reconstruction (Equation 2). 

As a total topological ordering is only possible on acyclic 
digraphs and the digraphs we construct on delta files may 
contain cycles, we enhance a standard topological son to 
break cycles and output a total topological order on a sub- 
graph. Common implementations of topological sort can de- 
tect cycles [8]. Upon detecting a cycle, our modified topo- 
logical sort breaks the cycle by removing a vertex. When 
completing this enhanced sort, the result consists of a di- 
graph containing a subset of all vertices in topological or- 
der and a set of vertices that were removed. This algorithm 
re-encodes the data contained in the copy commands of the 
removed vertices as add commands in the output in-place 
reconstructible delta file. 

As these converted add commands are followed by the 
string that contains the encoded data, this replacement re- 
duces compression in the delta file. An in-place conversion 

algorithm can minimize the amount of compression lost by 
selecting the optimal set of copy commands for converting 
the input digraph into a acyclic digraph. However, this nat- 
ural optimization problem is NP-hard. For our implemen- 
tation of in-place conversion, we examine two policies for 
breaking cycles. The constant time policy picks the easiest 
vertex to remove, based on the execution order of the topo- 
logical sort, and deletes this node. This policy performs no 
extra work when breaking cycles. The locally minimum pol- 
icy detects a cycle and loops through all nodes in the cycle 
to determine and then delete the minimum cost node, i.e. the 
node that encodes the smallest copied string. The locally 
minimum policy may perform as much additional work as 
the total length of cycles found by the algorithm. We further 
examine the issues of efficiently breaking cycles in $5. 

Our algorithm for converting delta files into in-place re- 
constructible delta files takes the following steps to find and 
eliminate WR conflicts between a reference file and the new 
version to be materialized. 

Algorithm 

1. Given an input delta file, the first step is to partition the 
commands in the file into a set C of copy commands 
and a set A of add commands. 

2. Sort the copy commands by increasing write offset, 
c sorted = {Cl, c2, ..‘, cn}. For ci and cj, this set O?XYS: 
i<jt-,ti<tj. 

3. Construct a digraph from the copy commands. For the 
copy commands cl, cs, . . . . c,, we create a vertex set 
V={ vi, 212, . . . . v,). The edge set E is built by adding 
an edge from node zli to node Vj when copy command 
ci reads from the interval to which cj writes: 

WJGj t) [fi, fi + li - l] n [tj, tj + lj - l] # 0. 

4. Perform a topological sort on the nodes of the digraph. 
This sort also detects cycles in the digraph and breaks 
them. When breaking a cycle, one node is selected, 
using either the locally minimum or constant time cy- 
cle breaking policy, and removed. The data encoded in 
its copy command are replaced by an equivalent com- 
mand and put into set A. The output of the topological 
sort is an ordering of the remaining copy commands 
that obeys the property in Equation 2. 

5. Traverse the sorted digraph, writing to the delta file, in 
topological order, the copy command encoded by each 
node. 

6. Output all add commands in the set A to the delta file. 

The resulting delta file reconstructs the new version out 
of order, both out of write order in the version file and out of 
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the order that the commands appeared in the original delta 
file. 

4.3 Algorithmic Performance 

Given the set of copy commands C with ICI members, the 
presented algorithm uses time 0( ICI log ICI) for both sort- 
ing the copy commands by write order and for finding con- 
flicting commands, using binary search on the sorted write 
intervals for the [VI nodes in V - recall that (VI = ICI. 
Additionally, the algorithm separates and outputs add com- 
mands using time 0( [AI) and builds the edge relation using 
time O(lEl). The total execution time is O(lCl log ICI + 
I,?31 + IAl). This result relies upon a topological sort algo- 
rithm that runs in time 0(/V/ + IEI) [8]. Additionally, we 
have assumed that cycles found in the digraph will be bro- 
ken with the constant time policy (0( 1)). The algorithm uses 
space 0( IEl + ICI + IAl) to store the data associated with 
each set. 

The algorithm accepts as input a delta file of length n. It 
generates as many nodes as copy commands and the num- 
ber of copy commands can grow linearly in the size of the 
input delta file, IV/ = ICI = O(n). The same is true of 
add commands, IAl = O(n). However, we have no bound 
for the number of edges, excepting the theoretical bound on 
general digraphs 0( [VIZ). In §6, we demonstrate by exam- 
ple that the subclass of digraphs generated by our algorithm 
can realize this bound. On the other hand, we also show that 
the number of edges in the class of digraphs our algorithm 
generates is linear in the length of the version file V that the 
delta file encodes (Lemma 1). We denote the length of V by 
hf. 

Substituting these bounds into performance expression, 
for an input delta file on length n encoding a version file of 
length Lv, our algorithm runs in time O(n log n + Lv) and 
space O(n + Lv). 

5 Strategies for Breaking Cycles 

The topological sort algorithm described above generates an 
ordering on the nodes of a digraph and detects cycles that 
are in conflict with the ordering. Having found the cycles 
in a digraph, we are faced with the problem of choosing a 
method to break all of these cycles. We previously men- 
tioned a c~nsful~t time policy that breaks individual cycles 
using time O(1). This policy can easily be implemented 
in a topological sort by selecting the last node in sort or- 
der before the cycle was found. However, this method does 
not guarantee to break cycles with a minimum compression 
cost. Yet, other techniques for breaking cycles turn out to be 
either intractable or offer no compression advantage in the 
worst case. In fact, determining the minimum cost, in terms 
of lost compression, set of nodes in a digraph to be removed 
turns out to be NP-hard. 

We note that the digraphs the algorithm generates are a 
subclass of general digraphs. We denote this subclass con- 
jlicting read write interval (CRWI) digraphs. To the best of 
our knowledge, this class has not previously been studied. 
While we know little about the its structure, it is clear that 
the class of CRWI digraphs is smaller than that of general 
digraphs. For example, the CRWI class does not include any 
complete digraphs with more than two vertices. 

We define the amount of compression lost upon deleting 
a node the COST of deletion. Based on this cost function, we 
formulate the optimization problem of finding the minimum 
cost set of nodes to delete to make a digraph acyclic. A copy 
command is an ordered triple of constant size, c = (f, t, 1). 
An add command is an ordered double a = (t, 1) followed 
by the 1 bytes of data to be added to the new version of the 
file. Replacing a copy command with an add commands in- 
creases the delta file size by exactly 1 - IfI, where IfI is the 
size of the encoding off. 

Given cost function labeling each node vi with cost Zi - 
Ifi I, we can express the elimination of cycles in an optimiza- 
tion problem: 

Input: CRWI digraph G = (V, E) with function 
Cost(vi) assigning a positive integer to every node 
vi E v. 

Optimization Problem: Minimize xs,ES COst(si) in 
S c V so that the digraph resulting from G by elimi- 
nating all the vertices in S and their adjacent edges is 
acyclic. 

This problem is NP-hard. The related decision problem 
can be shown NP-complete by reduction from Karp’s well 
known problem [7] of determining if there exists a set of ver- 
tices and their adjacent edges to remove in a general digraph 
that make that digraph acyclic and the set has fewer mem- 
bers than some fixed target. The fundamental concept of the 
reduction is a construction that encodes the input general di- 
graph for Karp’s problem into a digraph with membership in 
class CRWI. We will not present the reduction in this work. 

Having established the intractability of the globally op- 
timal solution, let us consider local solutions, minimizing 
the increase in file size when breaking each cycle individu- 
ally. When encountering a cycle, a locally minimum solu- 
tion loops through that cycle determining the minimum cost 
vertex and removes it. 

An adversarial example establishes the incapability of the 
locally minimum solution to produce a reasonable global 
solution. In the digraph of Figure 2, with membership in 
CRWI, the locally minimum policy for breaking cycles looks 
atallcycles(vo ,..., vi,vo)fori E 1,2 ,..., k. Foreach 
cycle, it chooses to delete the minimum cost node at cost 
= C. As a result, the algorithm deletes nodes ~1, ~2, . . . , wk. 
However, deleting node vg is the globally optimal solution. 
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Figure 2: A CRWI digraph constructed from a binary tree by adding a directed edge from each leaf to the root node. The 
locally minimum cycle breaking policy performs poorly on this CRWI digraph, removing each leaf vertex, instead of the root 
vertex. 

In this example, the size of the delta associated with the lo- 
cally minimum solution grows arbitrarily larger than that of 
the globally optimal solution as n increases. 

The locally minimum solutionloops through the cycles it 
finds and uses total execution time proportional to the length 
of these cycles. For the example in Figure 2, the algorithm 
does log IV1 work to break each cycle and takes total time 
O((V( log IVl). The locally minimum solutionon thisexam- 
ple does not degrade the asymptotic performance of the in- 
place algorithm. However, a worst case bound on the length 
of the cycles examined by the locally minimum solution on 
CRWI digraphs remains an open problem and could be as 
large of O(lVl”). 

Breaking cycles in constant time, arbitrarily selecting a 
node in the cycle to delete, also fails to approximate the 
globally optimal solution to within a constant. However, by 
choosing a node in the cycle in constant time, the asymptotic 
run-time of the algorithmis preserved. 

The merit of the locally minimum solution, as compared 
to breaking cycles in constant time, is difficult to determine. 
On delta files whose digraphs have sparse edge relations, 
cycles are infrequent and looping through cycles saves com- 
pression at little cost. However, worst case analysis indicates 
no preference for the locally minimum solution when com- 
pared to the constant time policy, even though our intuition 
may indicate otherwise. This motivates a performance in- 
vestigation of the run-time and compression associated with 
these two policies ($7). 

6 Bounding the Size of the Digraph 

The performance of digraph construction, topological sort- 
ing and cycle breaking depends upon the number of edges 
in the digraphs our algorithm constructs. We previously as- 
serted ($4.3) that the number of edges in a CRWI digraph 
constructed can grow quadratically with the number of copy 
commands and is also bounded by the length of the version 
file. We present analysis to verify these assertions. 

No digraph may have more than 0( 1 V 12) edges. We now 
show an example of two file versions whose CRWI digraph 
realizes this bound to establish that it is tight. Consider a 
file of length L that is broken up into blocks of size fi 
(Figure 3). There are fi such blocks, bl, bt, . . . . b&. As- 
sume that all blocks excluding the first block in the new file, 
b2, b2, ...I bay are all copies of the first block in the refer- 
ence file. Also, the first block in the new tile consists of a 
copies of length 1 from any location in the reference file. 

Since each length 1 command writes into each length 
fi command’s read interval, there is a edge between ev- 
ery fi length node and every length 1 node. This digraph 
has fi - 1 nodes each with out-degree X& for total edges 
in R(L) = n(lCl”). While the length 1 copies of seem im- 
probable, more reasonable variations of this example with 
larger constant size copies and more sparse edge relations 
may be constructed in a similar fashion. 

The Q(L) bound also turns out to be the maximum num- 
ber of possible edges. 

272 



Reference File 

Version File 

Figure 3: Reference and version file that have 0( lC12) conflicts. 

Lemma 1 For an input delta fle encoding a version V of 
length Lv, the number of edges in the digraph generated to 
encode potential WR conflicts is less than or equal to LV . 

Proof: There is an edge encoding a potential WR conflict 
from copy commands i to j when 

Vi Y fi + li - I] n [tj , tj + Zj - l] # 0. (3) 

Copy command i has a read interval of length li. Recalling 
that the write intervals of all copy commands are disjoint, 
command i conflicts with a maximum of li other copy com- 
mands - this OCCUTS when the region [fi, fi + li - l] in the 
new version is encoded by Zi copy commands of length 1. 

We also know that, for any delta encoding, the sum of the 
length of all read intervals is less than or equal to Lv, as no 
encoding reads more symbols than it writes. 

As all read intervals sum to less than the length of the 
version IiIe and no read interval may generate more edges 
than its length, the number of edges in the digraph from a 
delta file encoding V is less than or equai to Lv. I 

By bounding the number of edges in CRWI digraphs, we 
verify the performance bounds presented in $4.3. 

7 Experimental Results 

As we are interested in using in-place reconstruction meth- 
ods to distribute software over the Internet, we extracted a 
large body of Internet available software and examined the 
performance of our algorithm on these files. They include 
multiple versions of the GNU tools and the BSD operating 
system distributions, among other data, with both binary and 
source files being compressed and permuted for in-place re- 
construction. These data were examined with the goals of: 

l determining the compression lost due to making delta 
files suitable for in-place reconstruction; 

l comparing the relative compression performance of the 
constant time and locally minimum policies for break- 
ing cycles; and 

l showing the in-place conversion algorithms to be effi- 
cient when compared to delta compression algorithms 
on the same data. 

Previous studies have indicated that delta compression 
algorithms can compact data for the transmission of software 
[l]. Delta compression algorithms compatible with in-place 
reconstruction compress a large body of distributed software 
by a factor of 4 to 10 and reduce the amount of time required 
to transmit these files over low bandwidth channels accord- 
ingly. 

Over our sample software distributions, we found that 
the delta algorithm we used compressed data, on average, to 
15.3% its original size and that after running our algorithm 
to make these files suitable for in-place reconstruction, we 
lost only 2.4% compression when breaking cycles using the 
locally minimum policy and 5.9% compression when break- 
ing cycles in constant time. 

Almost all of the lost compression can be attributed to 
an encoding inefficiency inherent to in-place reconstruction. 
We have described add commands (t , 1) and copy commands 
(f, t, I), where both commands explicitly encode the to t or 
write offset in the version tile. However, delta algorithms 
that reconstruct data in order need not explicitly encode a 
write offset - an add command can simply be (1) and a copy 
command (f, 2). Since commands are applied in write or- 
der, the write offset is implicitly defined by the end offset 
of the previous command. By adding write offsets, a delta 
compression algorithm loses 1.9% of its compression before 
modifying the delta file for in-place reconstruction. We see 
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Algorithm A Compress A Compress In-Place 
No Write Offsets Write Offsets (Constant Time) tzl 

Compression 15.3% 17.2% 17.7% 21.2% 
Encoding Loss 1.9% 1.9% 1.9% 
Loss from Cycles 0.5% 4.0% 
Total Loss 1.9% 2.4% 5.9% 

Table 1: Compression performance of A compression algorithms and in-place conversion algorithms. For in-place conversion, 
lost compression is partitioned into loss from encoding inefficiencies and loss from breaking (cycles for in-place reconstructibil- 
ity. 

in Table 1 the difference between the delta compression al- 
gorithm run without write offsets, compressing input files to 
15.3% their original size, and the same algorithm with write 
offsets, compressing input files to 17.2% their original size. 
Except for the codewords the algorithms use, they are iden- 
tical, finding the same matching strings in the input files. 

We adopt the format of the add and copy codewords di- 
rectly from a standard differential compression algorithms 
[l 1, 11. While this decision eases implementation, the code- 
words are poorly suited to in-place reconstruction. The en- 
coding scheme uses only a single byte to encode the length 
of add commands and therefore generates many short add 
commands. For in-place reconstructibility, the add com- 
mand includes a write offset and becomes much more ex- 
pensive. The many small add commands produced by the 
delta compression algorithm create an unnecessary encoding 
overhead. A redesign of the delta compression codewords 
for in-place reconstructibility wouldfurtherreduce lost com- 
pression. 

Subtracting the encoding inefficiency, we observe that 
the algorithm loses an additional 4.0% compression when 
breaking cycles in constant time and 0.5% compression for 
the locally minimum policy (Table 1). The locally mini- 
mum policy reclaims nearly all lost compression with re- 
spect to the constant time policy and we will later see that, 
in practice, it incurs no additional run-time expense. While 
we cannot compare the compression performance of the lo- 
cally minimum policy to a solution to the NP-hard global 
optimization problem, 0.5% bounds the amount of possible 
improvement on these files. Since this improvement is sig- 
nificantly less than the encoding overhead for write offsets 
(1.9%), we feel that the locally minimum policy performs 
extremely well in practice. 

The delta compression algorithm used to create delta files 
[ll before permutation operates using time O(Lv + LR) 
and space in O(1) for reference file R of size LR and ver- 
sion file V of size Lv. Our in-place conversion algorithm 
(O(nlogn + Lv)) does not guarantee as small an asymp- 
totic bound, since the length of n is O(Lv). Despite worst 
case analysis, we can claim in-place conversion to be effi- 
cient experimentally with data indicating that generating an 
in-place reconstructible file takes significantly less time than 

generating the input delta file. 
We compare the amount of time required to generate a 

delta file from an input reference and version file to time 
used to create an in-place permutation of that delta file. Over 
all inputs, the in-place conversion algorithm completed in 
56% the amount of total time used by the delta compres- 
sion algorithm. The run-time of the in-place conversion al- 
gorithm only exceeded the delta compression run-time on 
0.1% of all inputs and never took more that twice as much 
time. 

The performance of the in-place conversion algorithm 
depends on the number of commands in the delta file. In 
practice, this value is sig,nificantly smaller than either the 
size of the reference and version Iile or the delta file itself. 

Surprisingly, breaking cycles with the locally minimum 
policy has no apparent impact on the run-time performance 
of the algorithm. The time differences between these poli- 
cies are insignificant as compared to the variations of sys- 
tem performance over many trials. While the performance 
difference is on average negligible, on some inputs the lo- 
cally minimum policy runs noticeably slower. Infrequently, 
an input will contain many long cycles, and the locally min- 
imum policy will create a slow down of up to 25% when 
compared to the constant time policy. However, the locally 
minimum policy recoups lost time on other inputs by encod- 
ing more compact delta files. Since the locally minimum 
policy converts smaller commands from copies to adds, it 
performs fewer and smaller I/O requests. 

We determine experimentally that the locally minimum 
cycle breaking policy recovers nearly all the lost compres- 
sion from breaking cycles that occurs with the constant time 
policy. Additionally, it does not increase the time required 
for the algorithm to complete. Therefore, locally minimum 
cycle breaking is the superior policy for every performance 
metric we have considered. 

8 Conclusions 

We have presented an algorithm that modifies delta files so 
that the encoded version may be reconstructed in the ab- 
sence of scratch memory or storage space. Such an algo- 
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rithm facilitates the distribution of software to network at- 
tached devices over low bandwidth channels. Delta com- 
pression lessens the time required to transmit files over a 
network by compactly encoding the data to be transmitted. 
In-place reconstruction allows devices that do not have ad- 
ditional disk or memory storage resources to take advantage 
of delta compression technology. 

The graph-theoretic algorithm to modify a delta file to he 
in-place reconstructible, rebuilt in the same storage the pre- 
vious version occupies, rearranges the order of application 
of the commands in a delta file to create the new delta ver- 
sion. By rearranging the order of commands, data conflicts, 
where the delta file attempts to read from a region that it has 
already written, are avoided. Often, the algorithm finds an 
ordering of commands with no conflicts. Sometimes, the al- 
gorithm must convert data that the delta file encoded as a 
copy to an add command, placing that data wholly in the 
delta tile. By converting copy commands to add commands, 
the algorithm trades a small degree of compression in order 
to achieve in-place reconstructibility. 

Experimental results indicate that converting a delta file 
into an in-place reconstructible delta file has limited impact 
on compression, less than 2.5%, and that experimentally the 
algorithm to do so requires less time than the algorithm to 
generate the delta file in the first place. 

In-place reconstructible delta file compression provides 
the benefits of delta compression for software distribution to 
a special class of applications - devices with limited stor- 
age and memory. In the current network computing envi- 
ronment, with the proliferation of network attached devices, 
this technology greatly decreases the time to distribute soft- 
ware without increasing the development cost or complexity 
of the receiving devices. 
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