
In-Place Reconstruction of Delta Compressed Files

Randal C. Burns
IBM Almaden Research Center

650 Harry Rd., San Jose, CA 95 120

Darrell D. E. Long’
Department of Computer Science

University of California, Santa Cruz, CA 95064
randal@almaden.ibm.com darrell@cs.ucsc.edu

Abstract results in high latency and low bandwidth to web-enabled
clients and prevents the timely delivery of software.

We present an algorithm for modifying delta compressed
files so that the compressed versions may be reconstructed
without scratch space. This allows network clients with lim-
ited resources to efficiently update software by retrieving
delta compressed versions over a network.

Delta compression for binary files, compactly encoding a
version of data with only the changed bytes from a previous
version, may be used to efficiently distribute software over
low bandwidth channels, such as the Internet. Traditional
methods for rebuilding these delta files require memory or
storage space on the target machine for both the old and new
version of the file to be reconstructed. With the advent of
network computing and Internet-enabled devices, many of
these network attached target machines have limited addi-
tional scratch space. We present an algorithm for modifying
a delta compressed version file so that it may rebuild the new
me version in the space that the current version occupies.

Differential or delta compression [5, 11, compactly en-
coding a new version of a file using only the changed bytes
from a previous version, can be used to reduce the size of the
file to be transmitted and consequently the time to perform
software update. Currently, decompressing delta encoded
files requires scratch space, additional disk or memory stor-
age, used to hold a required second copy of the file. Two
copies of the compressed file must be concurrently available,
as the delta file contains directives to read data from the old
file version while the new file version is being materialized
in another region of storage. This presents a problem. Net-
work attached devices often have limited memory resources
and no disks and therefore are not capable of storing two
file versions at the same time. Furthermore, adding storage
to network attached devices is not viable, as keeping these
devices simple limits their production costs.

1 Introduction

Recent developments in portable computing and computing
appliances have resulted in a proliferation of small network
attached computing devices. These include personal digi-
tal assistants (PDAs), Internet set-top boxes, network com-
puters, control devices with analog sensors, and cellular de-
vices. The software and operating systems of these devices
may be updated by transmitting the new version of a pro-
gram over a network. However, low bandwidth channels
to network devices often makes the time to perform soft-
ware update prohibitive. In particular, heavy Internet traffic

We address this problem by post-processing delta en-
coded files so that they are suitable for reconstructing the
new version of the file in-place, materializing the new ver-
sion in the same memory or storage space that the previous
version occupies. A delta file can be considered a set of in-
structions to a computer to materialize a new file version in
the presence of a reference version, the old version of the
file. When rebuilding a version encoded by a delta file, data
are both copied from the reference file to the new version
and added explicitly when portions of the new version do
not appear in the reference version.

t The work of this author was performed while a Visiting Scientist at the
IBM Ahnaden Research Center.

Ptis~i~n to make digital or hard copies of all or part of this wok for
personal of classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the fvst page. To copy
oth&Se, to republish, to post on servers or to redistribute to lists,
EqUires prior Specific permission ador a fee.
PoDc 98 Puerto Vallarta Mexico
Copyri&t ACM 1998 O-89791-977-7/981 6...$5.00

If we attempt to reconstruct an arbitrary delta file in-
place, the resulting output can often be corrupt. This occurs
when the delta encoding instructs the computer to copy data
from a file region where new file data has already been writ-
ten. The data the command attempts to read have already
been altered and the rebuilt file is not correct. By detecting
and avoiding such conflicts, our method allows us to rebuild
versions with no scratch space.

We present a graph-theoretic algorithm for post-process-
ing delta files that detects situations where a delta file would
attempt to read from an already written region and permutes
the order that the commands in a delta file are applied to re-
duce the occurrence of these conflicts. The algorithm elim-

267

inates the remaining data conflicts by removing commands
that copy data and explicitly adding these data to the delta
file. Eliminating data copied between versions increases the
size of the delta encoding but allows the algorithm to always
output an in-place reconstructible delta file.

Experimental results verify that modifying delta files for
in-place reconstruction is a viable and efficient technology.
Our findings indicate that a small fraction of compression
is lost in exchange for in-place reconstructibility. Also, in-
place reconstructible files can be generated efficiently; creat-
ing a delta file takes less time than modifying it to be in-place
reconstructible.

In $2, we summarize the preceding work in the field of
delta compression. We describe how delta files are encoded
in $3. In $4, we present an algorithm that modifies delta en-
coded files to be in-place reconstructible. In $5, we further
examine the exchange of run-time and compression perfor-
mance. In $6, we present limits on the size of the digraphs
our algorithm generates. Section 7 presents experimental re-
sults for the execution time and compression performance of
our algorithm and we presents our conclusions in $8.

2 Related Work

Encoding versions of data compactly by detecting altered
regions of data is a well known problem. The first applica-
tions of delta compression found changed lines in text data
for analyzing the recent modifications to files [6]. Consider-
ing data as lines of text fails to encode minimum sized delta
files, as it does not examine data at a minimum gramdarity
and only finds matching data that are aEigned at the begin-
ning of a new line.

The problem of compactly representing the changes be-
tween version of data was formalized as string-to-stringcor-
rection with block move [141 - detecting maximally match-
ing regions of a file at an arbitrarily fine granularity without
alignment. Even though the general problem of detecting
and encoding version to version modifications was well de-
fined, delta compression applications continued to rely on
the alignment of data, as in database records [13], and the
grouping of data into block or line granularity, as in source
code control systems [12, 151, to simplify the combinatorial
task of finding the common and different strings between
files.

Efforts to generalize delta compression to data that are
not aligned and to minimize the granularity of the smallest
change resulted in algorithms for compressing data at the
granularity of a byte. Early algorithms were based upon ei-
ther dynamic programming [9] or the greedy method [I I]
and performed this task using time quadratic in the length
of the input files. Recent advances in differencing algo-
rithms have produced efficient algorithms that detect match-
ing strings between versions at an arbitrarily fine granularity
without alignment restrictions [l, 51. These differencing al-

gorithms trade an experimentally verified small amount of
compression in order to run using time linear in the length
of the input files. The improved algorithms allow large files
without known structure to be efficiently differenced and
permits the application of delta compression to backup and
restore [4], file system replication, and software distribution.

Recently, applications distributing HTTP objects using
delta files have emerged [IO, 21. This permits web servers to
both reduce the amount of data to be transmitted to a client
and reduce the latency associated with loading web pages.
Efforts to standardize delta files as part of the HTTP proto-
col and the trend towards making small network devices, for
example hand-held organizers, HTTP compliant indicate the
need to efficiently distribute data to network devices.

3 Encoding Delta Files

Differencing algorithms compactly encode the changes be-
tween file versions by finding strings in the new file that may
be copied from the prior version of the same file. Differenc-
ing algorithms perform this task by partitioning the data in
the file into strings that may be encoded using copies and
strings that do not appear in the prior version and must be
explicitly added to the new file. Having partitioned the file
to be compressed, the algorithm outputs a delta file that en-
codes this version compactly. This delta file consists of an
ordered sequence of copy commands and add commands.
An add command is an ordered pair, (t, Z), where t (to) en-
codes the string offset in the file version and I (length) en-
codes the length of the string. This pair is followed by the I
bytes of data to be added (Figure 1).

The encoding of a copy command is an ordered triple,
(f, t ,l> where f (f rom) encodes the offset in the reference
file from which data are copied, t encodes the offset in the
new file where the data are to be written, and 1 encodes that
length of the data to be copied. The copy command is a
directive that copies the string data in the interval [f, f+Z-l]
in the reference file to the interval [t , t + 1 - l] in the version
file.

In the presence of the reference file, a delta file rebuilds
the version file with add and copy directives. The intervals
in the version file encoded by these directives are disjoint.
Therefore, any permutation of the order these commands are
applied to the reference file materializes the same output ver-
sion file.

4 An In-Place Reconstruction Algorithm

This algorithm modifies an existing delta file so that it can
correctly reconstruct a new file version in the space the cur-
rent version occupies. At a high level, our technique ex-
amines the input delta file to find copy commands that read
from the write interval of other copy commands. These po-

268

Reference File Version File Delta File

:~~‘::~~:~:~:~:~:~: ,,.,.,.,.,.,.,.,.,.,.,
$$>a:;:;:;:;:;:;:,

----I

-“““---.~.__._._______.~~~~~~~~~~
:&:::::y$:::::::::::::: COPY 1, <RA, vB,b- %>

z::;::>,::::::::::::::: .,.......,.,.,.. .,.,...,.A *z:x::::::::::::
mz$:::::::::: ____.._.... ‘..

,,_.___.... ...-- Add \ <v,,v,,- vC>

\ ..> cvE,vF- v,>
,....’

,..’

Figure 1: Encoding delta files. Common strings are encoded as copy commands (f, t, 1) and new strings in the new file are
encoded as add commands (t, 1) followed by the string of length I that the command adds.

tential data conflicts are encoded into a digraph. This di-
graph is then topologically sorted to produce an ordering on
these copy commands that reduces data conflicts. We elim-
inate the remaining conflicts by converting copy commands
to add commands and output the permuted and converted
commands as an in-place reconstructible delta file.

While our algorithm can most easily be described as a
post-processing step on an existing delta file, as done in this
work, it also integrates easily into a compression algorithm
so that an in-place reconstructible file may be output directly.

4.1 Conflict Detection

Since we are reconstructing files in-place, we need concern
ourselves with the order that the copy commands are ap-
plied. Assume that we attempt to read from an offset that
has already been written. This will result in an incorrect re-
construction since the reference file data we are attempting
to read have been overwritten. This is termed a wrire before
read (WR) conllict [3].

For COPY commands (fi, ti, l;) and (fj , tj , lj), with i <
j, there is a WR conflict when

[ti, ti + li - l] n [fj, fj + lj - 11 # 0. (1)

In other words, copy command i and copy command j con-
flict if i writes to the interval from which copy command j
reads data. By convention, we consider copy commands that
are numbered and ordered so that, if i < j, copy command
i is read and written before copy command j. By enforcing
this constraint on copy commands i and j, we limit ourselves
to applying the delta file commands serially, which is appro-
priate for limited capability network devices.

This definition only considers WR conflicts between copy
commands and neglects add commands. Add commands
only write data to the new file; they do not read data from
the reference file. Consequently, all potential WR conflicts
associated with adding data may be avoided by placing add
commands at the end of a delta file. This way, all reads as-
sociated with copy commands are completed before the first
add command is processed.

Additionally, we define WR conflicts so that a copy com-
mand cannot conflict with itself. Yet, a single copy com-
mand’s read and write intervals may intersect and would
seem to cause a conflict. Copy commands whose read and
write intervals are overlapping can be dealt with by perform-
ing the copy in either a left-to-right or right-to-left manner.
For copy command (f, t , I), if f 1 t , then when the file is
being reconstructed, copy the string byte by byte starting at
the left-hand side. Since, the f (from) offset in the reference
file is always greater than the t (to) offset in the new file,
a lefi-to-right copy never reads a byte that has been over-
written by a previous byte in the string. When f < t, a
symmetric argument shows that we should start our copy at
the right hand edge of the string and work backwards. For
this example, we performed the copies in a byte-wise fash-
ion. However, the notion of a left-to-right or right-to-left
copy applies to moving a read/write buffer of any size.

To avoid WR conflicts and achieve the in-place recon-
struction of delta files, we employ the following three tech-
niques.

1. Place all add commands at the end of the delta file to
avoid data conflicts with copy commands.

2. Permute the order of application of the copy commands

269

to reduce the number of write before read conflicts.

3. For remaining WR conflicts, remove the conflicting op-
eration by converting a copy command to an add com-
mand and place it at the end of the delta file.

Any delta file may be post-processed using these methods
to create a delta file that can be reconstructed in-place. For
many delta files, a permutation that eliminates all WR con-
flicts is unattainable. Consequently, we require the conver-
sion of copy commands to add commands to create correct
in-place reconstructible files for all inputs.

Having post-processed a delta file for in-place reconstruc-
tion, the permuted and modified delta file obeys the property

I (

j-l

Vj> Lfj , fj + lj - 11 n U [ti, ti + 1 - l] = 0 , (2)
1=1) 1

indicating the absence of any WR conflict. Equivalently, it
guarantees that the data a copy command reads and transfers
are always data from the original file.

4.2 Generating Conflict Free Permutations

In order to find a permutation that minimizes WR conflicts,
we encode potential conflicts between the copy commands
in a digraph and topologically sort this digraph. A topologi-
cal sort on digraph G = (V, E) produces a linear order on all
vertices so that if G contains edge & then vertex u precedes
vertex v in topological order.

Our technique constructs a digraph so that each copy
command in the delta file has a corresponding vertex in the
digraph. On this set of vertices, we construct an edge rela-
tion with a directed edge u”v from node u to node v when
copy command u’s read interval intersects copy command
V’S write interval. Edge u”v indicates that by performing
command u before command V, the delta file avoids a WR
conflict. For digraphs with this edge relation, a topologi-
tally sorted version of a digraph adheres to the requirement
for in-place reconstruction (Equation 2).

As a total topological ordering is only possible on acyclic
digraphs and the digraphs we construct on delta files may
contain cycles, we enhance a standard topological son to
break cycles and output a total topological order on a sub-
graph. Common implementations of topological sort can de-
tect cycles [8]. Upon detecting a cycle, our modified topo-
logical sort breaks the cycle by removing a vertex. When
completing this enhanced sort, the result consists of a di-
graph containing a subset of all vertices in topological or-
der and a set of vertices that were removed. This algorithm
re-encodes the data contained in the copy commands of the
removed vertices as add commands in the output in-place
reconstructible delta file.

As these converted add commands are followed by the
string that contains the encoded data, this replacement re-
duces compression in the delta file. An in-place conversion

algorithm can minimize the amount of compression lost by
selecting the optimal set of copy commands for converting
the input digraph into a acyclic digraph. However, this nat-
ural optimization problem is NP-hard. For our implemen-
tation of in-place conversion, we examine two policies for
breaking cycles. The constant time policy picks the easiest
vertex to remove, based on the execution order of the topo-
logical sort, and deletes this node. This policy performs no
extra work when breaking cycles. The locally minimum pol-
icy detects a cycle and loops through all nodes in the cycle
to determine and then delete the minimum cost node, i.e. the
node that encodes the smallest copied string. The locally
minimum policy may perform as much additional work as
the total length of cycles found by the algorithm. We further
examine the issues of efficiently breaking cycles in $5.

Our algorithm for converting delta files into in-place re-
constructible delta files takes the following steps to find and
eliminate WR conflicts between a reference file and the new
version to be materialized.

Algorithm

1. Given an input delta file, the first step is to partition the
commands in the file into a set C of copy commands
and a set A of add commands.

2. Sort the copy commands by increasing write offset,
c sorted = {Cl, c2, ..‘, cn}. For ci and cj, this set O?XYS:
i<jt-,ti<tj.

3. Construct a digraph from the copy commands. For the
copy commands cl, cs, c,, we create a vertex set
V={ vi, 212, v,). The edge set E is built by adding
an edge from node zli to node Vj when copy command
ci reads from the interval to which cj writes:

WJGj t) [fi, fi + li - l] n [tj, tj + lj - l] # 0.

4. Perform a topological sort on the nodes of the digraph.
This sort also detects cycles in the digraph and breaks
them. When breaking a cycle, one node is selected,
using either the locally minimum or constant time cy-
cle breaking policy, and removed. The data encoded in
its copy command are replaced by an equivalent com-
mand and put into set A. The output of the topological
sort is an ordering of the remaining copy commands
that obeys the property in Equation 2.

5. Traverse the sorted digraph, writing to the delta file, in
topological order, the copy command encoded by each
node.

6. Output all add commands in the set A to the delta file.

The resulting delta file reconstructs the new version out
of order, both out of write order in the version file and out of

270

the order that the commands appeared in the original delta
file.

4.3 Algorithmic Performance

Given the set of copy commands C with ICI members, the
presented algorithm uses time 0(ICI log ICI) for both sort-
ing the copy commands by write order and for finding con-
flicting commands, using binary search on the sorted write
intervals for the [VI nodes in V - recall that (VI = ICI.
Additionally, the algorithm separates and outputs add com-
mands using time 0([AI) and builds the edge relation using
time O(lEl). The total execution time is O(lCl log ICI +
I,?31 + IAl). This result relies upon a topological sort algo-
rithm that runs in time 0(/V/ + IEI) [8]. Additionally, we
have assumed that cycles found in the digraph will be bro-
ken with the constant time policy (0(1)). The algorithm uses
space 0(IEl + ICI + IAl) to store the data associated with
each set.

The algorithm accepts as input a delta file of length n. It
generates as many nodes as copy commands and the num-
ber of copy commands can grow linearly in the size of the
input delta file, IV/ = ICI = O(n). The same is true of
add commands, IAl = O(n). However, we have no bound
for the number of edges, excepting the theoretical bound on
general digraphs 0([VIZ). In §6, we demonstrate by exam-
ple that the subclass of digraphs generated by our algorithm
can realize this bound. On the other hand, we also show that
the number of edges in the class of digraphs our algorithm
generates is linear in the length of the version file V that the
delta file encodes (Lemma 1). We denote the length of V by
hf.

Substituting these bounds into performance expression,
for an input delta file on length n encoding a version file of
length Lv, our algorithm runs in time O(n log n + Lv) and
space O(n + Lv).

5 Strategies for Breaking Cycles

The topological sort algorithm described above generates an
ordering on the nodes of a digraph and detects cycles that
are in conflict with the ordering. Having found the cycles
in a digraph, we are faced with the problem of choosing a
method to break all of these cycles. We previously men-
tioned a c~nsful~t time policy that breaks individual cycles
using time O(1). This policy can easily be implemented
in a topological sort by selecting the last node in sort or-
der before the cycle was found. However, this method does
not guarantee to break cycles with a minimum compression
cost. Yet, other techniques for breaking cycles turn out to be
either intractable or offer no compression advantage in the
worst case. In fact, determining the minimum cost, in terms
of lost compression, set of nodes in a digraph to be removed
turns out to be NP-hard.

We note that the digraphs the algorithm generates are a
subclass of general digraphs. We denote this subclass con-
jlicting read write interval (CRWI) digraphs. To the best of
our knowledge, this class has not previously been studied.
While we know little about the its structure, it is clear that
the class of CRWI digraphs is smaller than that of general
digraphs. For example, the CRWI class does not include any
complete digraphs with more than two vertices.

We define the amount of compression lost upon deleting
a node the COST of deletion. Based on this cost function, we
formulate the optimization problem of finding the minimum
cost set of nodes to delete to make a digraph acyclic. A copy
command is an ordered triple of constant size, c = (f, t, 1).
An add command is an ordered double a = (t, 1) followed
by the 1 bytes of data to be added to the new version of the
file. Replacing a copy command with an add commands in-
creases the delta file size by exactly 1 - IfI, where IfI is the
size of the encoding off.

Given cost function labeling each node vi with cost Zi -
Ifi I, we can express the elimination of cycles in an optimiza-
tion problem:

Input: CRWI digraph G = (V, E) with function
Cost(vi) assigning a positive integer to every node
vi E v.

Optimization Problem: Minimize xs,ES COst(si) in
S c V so that the digraph resulting from G by elimi-
nating all the vertices in S and their adjacent edges is
acyclic.

This problem is NP-hard. The related decision problem
can be shown NP-complete by reduction from Karp’s well
known problem [7] of determining if there exists a set of ver-
tices and their adjacent edges to remove in a general digraph
that make that digraph acyclic and the set has fewer mem-
bers than some fixed target. The fundamental concept of the
reduction is a construction that encodes the input general di-
graph for Karp’s problem into a digraph with membership in
class CRWI. We will not present the reduction in this work.

Having established the intractability of the globally op-
timal solution, let us consider local solutions, minimizing
the increase in file size when breaking each cycle individu-
ally. When encountering a cycle, a locally minimum solu-
tion loops through that cycle determining the minimum cost
vertex and removes it.

An adversarial example establishes the incapability of the
locally minimum solution to produce a reasonable global
solution. In the digraph of Figure 2, with membership in
CRWI, the locally minimum policy for breaking cycles looks
atallcycles(vo ,..., vi,vo)fori E 1,2 ,..., k. Foreach
cycle, it chooses to delete the minimum cost node at cost
= C. As a result, the algorithm deletes nodes ~1, ~2, . . . , wk.
However, deleting node vg is the globally optimal solution.

271

Figure 2: A CRWI digraph constructed from a binary tree by adding a directed edge from each leaf to the root node. The
locally minimum cycle breaking policy performs poorly on this CRWI digraph, removing each leaf vertex, instead of the root
vertex.

In this example, the size of the delta associated with the lo-
cally minimum solution grows arbitrarily larger than that of
the globally optimal solution as n increases.

The locally minimum solutionloops through the cycles it
finds and uses total execution time proportional to the length
of these cycles. For the example in Figure 2, the algorithm
does log IV1 work to break each cycle and takes total time
O((V(log IVl). The locally minimum solutionon thisexam-
ple does not degrade the asymptotic performance of the in-
place algorithm. However, a worst case bound on the length
of the cycles examined by the locally minimum solution on
CRWI digraphs remains an open problem and could be as
large of O(lVl”).

Breaking cycles in constant time, arbitrarily selecting a
node in the cycle to delete, also fails to approximate the
globally optimal solution to within a constant. However, by
choosing a node in the cycle in constant time, the asymptotic
run-time of the algorithmis preserved.

The merit of the locally minimum solution, as compared
to breaking cycles in constant time, is difficult to determine.
On delta files whose digraphs have sparse edge relations,
cycles are infrequent and looping through cycles saves com-
pression at little cost. However, worst case analysis indicates
no preference for the locally minimum solution when com-
pared to the constant time policy, even though our intuition
may indicate otherwise. This motivates a performance in-
vestigation of the run-time and compression associated with
these two policies ($7).

6 Bounding the Size of the Digraph

The performance of digraph construction, topological sort-
ing and cycle breaking depends upon the number of edges
in the digraphs our algorithm constructs. We previously as-
serted ($4.3) that the number of edges in a CRWI digraph
constructed can grow quadratically with the number of copy
commands and is also bounded by the length of the version
file. We present analysis to verify these assertions.

No digraph may have more than 0(1 V 12) edges. We now
show an example of two file versions whose CRWI digraph
realizes this bound to establish that it is tight. Consider a
file of length L that is broken up into blocks of size fi
(Figure 3). There are fi such blocks, bl, bt, b&. As-
sume that all blocks excluding the first block in the new file,
b2, b2, ...I bay are all copies of the first block in the refer-
ence file. Also, the first block in the new tile consists of a
copies of length 1 from any location in the reference file.

Since each length 1 command writes into each length
fi command’s read interval, there is a edge between ev-
ery fi length node and every length 1 node. This digraph
has fi - 1 nodes each with out-degree X& for total edges
in R(L) = n(lCl”). While the length 1 copies of seem im-
probable, more reasonable variations of this example with
larger constant size copies and more sparse edge relations
may be constructed in a similar fashion.

The Q(L) bound also turns out to be the maximum num-
ber of possible edges.

272

Reference File

Version File

Figure 3: Reference and version file that have 0(lC12) conflicts.

Lemma 1 For an input delta fle encoding a version V of
length Lv, the number of edges in the digraph generated to
encode potential WR conflicts is less than or equal to LV .

Proof: There is an edge encoding a potential WR conflict
from copy commands i to j when

Vi Y fi + li - I] n [tj , tj + Zj - l] # 0. (3)

Copy command i has a read interval of length li. Recalling
that the write intervals of all copy commands are disjoint,
command i conflicts with a maximum of li other copy com-
mands - this OCCUTS when the region [fi, fi + li - l] in the
new version is encoded by Zi copy commands of length 1.

We also know that, for any delta encoding, the sum of the
length of all read intervals is less than or equal to Lv, as no
encoding reads more symbols than it writes.

As all read intervals sum to less than the length of the
version IiIe and no read interval may generate more edges
than its length, the number of edges in the digraph from a
delta file encoding V is less than or equai to Lv. I

By bounding the number of edges in CRWI digraphs, we
verify the performance bounds presented in $4.3.

7 Experimental Results

As we are interested in using in-place reconstruction meth-
ods to distribute software over the Internet, we extracted a
large body of Internet available software and examined the
performance of our algorithm on these files. They include
multiple versions of the GNU tools and the BSD operating
system distributions, among other data, with both binary and
source files being compressed and permuted for in-place re-
construction. These data were examined with the goals of:

l determining the compression lost due to making delta
files suitable for in-place reconstruction;

l comparing the relative compression performance of the
constant time and locally minimum policies for break-
ing cycles; and

l showing the in-place conversion algorithms to be effi-
cient when compared to delta compression algorithms
on the same data.

Previous studies have indicated that delta compression
algorithms can compact data for the transmission of software
[l]. Delta compression algorithms compatible with in-place
reconstruction compress a large body of distributed software
by a factor of 4 to 10 and reduce the amount of time required
to transmit these files over low bandwidth channels accord-
ingly.

Over our sample software distributions, we found that
the delta algorithm we used compressed data, on average, to
15.3% its original size and that after running our algorithm
to make these files suitable for in-place reconstruction, we
lost only 2.4% compression when breaking cycles using the
locally minimum policy and 5.9% compression when break-
ing cycles in constant time.

Almost all of the lost compression can be attributed to
an encoding inefficiency inherent to in-place reconstruction.
We have described add commands (t , 1) and copy commands
(f, t, I), where both commands explicitly encode the to t or
write offset in the version tile. However, delta algorithms
that reconstruct data in order need not explicitly encode a
write offset - an add command can simply be (1) and a copy
command (f, 2). Since commands are applied in write or-
der, the write offset is implicitly defined by the end offset
of the previous command. By adding write offsets, a delta
compression algorithm loses 1.9% of its compression before
modifying the delta file for in-place reconstruction. We see

273

Algorithm A Compress A Compress In-Place
No Write Offsets Write Offsets (Constant Time) tzl

Compression 15.3% 17.2% 17.7% 21.2%
Encoding Loss 1.9% 1.9% 1.9%
Loss from Cycles 0.5% 4.0%
Total Loss 1.9% 2.4% 5.9%

Table 1: Compression performance of A compression algorithms and in-place conversion algorithms. For in-place conversion,
lost compression is partitioned into loss from encoding inefficiencies and loss from breaking (cycles for in-place reconstructibil-
ity.

in Table 1 the difference between the delta compression al-
gorithm run without write offsets, compressing input files to
15.3% their original size, and the same algorithm with write
offsets, compressing input files to 17.2% their original size.
Except for the codewords the algorithms use, they are iden-
tical, finding the same matching strings in the input files.

We adopt the format of the add and copy codewords di-
rectly from a standard differential compression algorithms
[l 1, 11. While this decision eases implementation, the code-
words are poorly suited to in-place reconstruction. The en-
coding scheme uses only a single byte to encode the length
of add commands and therefore generates many short add
commands. For in-place reconstructibility, the add com-
mand includes a write offset and becomes much more ex-
pensive. The many small add commands produced by the
delta compression algorithm create an unnecessary encoding
overhead. A redesign of the delta compression codewords
for in-place reconstructibility wouldfurtherreduce lost com-
pression.

Subtracting the encoding inefficiency, we observe that
the algorithm loses an additional 4.0% compression when
breaking cycles in constant time and 0.5% compression for
the locally minimum policy (Table 1). The locally mini-
mum policy reclaims nearly all lost compression with re-
spect to the constant time policy and we will later see that,
in practice, it incurs no additional run-time expense. While
we cannot compare the compression performance of the lo-
cally minimum policy to a solution to the NP-hard global
optimization problem, 0.5% bounds the amount of possible
improvement on these files. Since this improvement is sig-
nificantly less than the encoding overhead for write offsets
(1.9%), we feel that the locally minimum policy performs
extremely well in practice.

The delta compression algorithm used to create delta files
[ll before permutation operates using time O(Lv + LR)
and space in O(1) for reference file R of size LR and ver-
sion file V of size Lv. Our in-place conversion algorithm
(O(nlogn + Lv)) does not guarantee as small an asymp-
totic bound, since the length of n is O(Lv). Despite worst
case analysis, we can claim in-place conversion to be effi-
cient experimentally with data indicating that generating an
in-place reconstructible file takes significantly less time than

generating the input delta file.
We compare the amount of time required to generate a

delta file from an input reference and version file to time
used to create an in-place permutation of that delta file. Over
all inputs, the in-place conversion algorithm completed in
56% the amount of total time used by the delta compres-
sion algorithm. The run-time of the in-place conversion al-
gorithm only exceeded the delta compression run-time on
0.1% of all inputs and never took more that twice as much
time.

The performance of the in-place conversion algorithm
depends on the number of commands in the delta file. In
practice, this value is sig,nificantly smaller than either the
size of the reference and version Iile or the delta file itself.

Surprisingly, breaking cycles with the locally minimum
policy has no apparent impact on the run-time performance
of the algorithm. The time differences between these poli-
cies are insignificant as compared to the variations of sys-
tem performance over many trials. While the performance
difference is on average negligible, on some inputs the lo-
cally minimum policy runs noticeably slower. Infrequently,
an input will contain many long cycles, and the locally min-
imum policy will create a slow down of up to 25% when
compared to the constant time policy. However, the locally
minimum policy recoups lost time on other inputs by encod-
ing more compact delta files. Since the locally minimum
policy converts smaller commands from copies to adds, it
performs fewer and smaller I/O requests.

We determine experimentally that the locally minimum
cycle breaking policy recovers nearly all the lost compres-
sion from breaking cycles that occurs with the constant time
policy. Additionally, it does not increase the time required
for the algorithm to complete. Therefore, locally minimum
cycle breaking is the superior policy for every performance
metric we have considered.

8 Conclusions

We have presented an algorithm that modifies delta files so
that the encoded version may be reconstructed in the ab-
sence of scratch memory or storage space. Such an algo-

274

rithm facilitates the distribution of software to network at-
tached devices over low bandwidth channels. Delta com-
pression lessens the time required to transmit files over a
network by compactly encoding the data to be transmitted.
In-place reconstruction allows devices that do not have ad-
ditional disk or memory storage resources to take advantage
of delta compression technology.

The graph-theoretic algorithm to modify a delta file to he
in-place reconstructible, rebuilt in the same storage the pre-
vious version occupies, rearranges the order of application
of the commands in a delta file to create the new delta ver-
sion. By rearranging the order of commands, data conflicts,
where the delta file attempts to read from a region that it has
already written, are avoided. Often, the algorithm finds an
ordering of commands with no conflicts. Sometimes, the al-
gorithm must convert data that the delta file encoded as a
copy to an add command, placing that data wholly in the
delta tile. By converting copy commands to add commands,
the algorithm trades a small degree of compression in order
to achieve in-place reconstructibility.

Experimental results indicate that converting a delta file
into an in-place reconstructible delta file has limited impact
on compression, less than 2.5%, and that experimentally the
algorithm to do so requires less time than the algorithm to
generate the delta file in the first place.

In-place reconstructible delta file compression provides
the benefits of delta compression for software distribution to
a special class of applications - devices with limited stor-
age and memory. In the current network computing envi-
ronment, with the proliferation of network attached devices,
this technology greatly decreases the time to distribute soft-
ware without increasing the development cost or complexity
of the receiving devices.

Acknowledgments

The authors wish to thank L. Stockmeyer for his contribution
to the analysis and presentation of this algorithm, including
the development of examples and the NP-hardness results
concerning policies for breaking cycles. We also wish to
thank R. Fagin and our anonymous reviewers who helped to
focus the content of our presentation.

References

[I] M. Ajtai, R. Bums, R. Fagin, D. Long, and L. Stockmeyer.
Compactly encoding arbitrary inputs with differential com-
pression. IBM Research: In Preparation, 1998.

[2] G. Banga, F. Douglis, and M. Rabinovich. Optimistic deltas
for WWW latency reduction. In Proceedings of the 1998
Usenix Technical Conference, 1998.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley Publishing Co., 1987.

141

PI

P31

171

PI

191

1101

[Ill

1121

[I31

1141

1151

R. C. Bums and D. D. E. Long. Efficient distributed backup
with delta compression. In Proceedings of the 1997 NO in
Parallel and Distributed Systems (IOPADS’97), I7 November
1997, San Jose, CA, USA, November 1997.

R. C. Bums and D. D. E. Long. A linear time, constant space
differencing algorithm. In Proceedings of the 1997 Interna-
tional Performance, Computing and Communications Confer-
ence (IPCCC’97), Feb. 5-7, TempelPhoenix, Arizona, USA,
February 1997.

S. P. De Jong. Combining of changes to a sorme file. IBM
Technical Disclosure Bulletin, 15(4):1186-l 188, September
1972.

R. M. Karp Reducibility among combinatorial problems. In
R. E. Miller and J. W. Thatcher, editors, Complexity of Com-
puter Computations, pages 8.5-104. Plenum Press, 1972.

D. E. Knuth Fundamental Algorithms, volume 1 of The Art
of Computer Programming. Addison-Wesley Publishing Co.,
1968.

W. Miller and E. W. Myers. A file comparison program. Soft-
ware - Practice and Experience, 15(11): 1025-1040, Novem-
ber 1985.

J. C. Mogul, F. Douglis, A. Feldman, and B. Krisbnamurtby.
Potential benefits of delta encoding and data compression for
HTTP. In Proceedings of ACM SIGCOMM ‘97, September
1997.

C. Reichenberger. Delta storage for arbitrary non-text files. In
Proceedings of the 3rd International Workshop on Software
Conjguration Management, Trondheim, Norway, 12-14 June
1991, pages 144-152. ACM, June 1991.

M. J. Rochkind. The source code control system. IEEE Trans-
actions on So&are Engineering, SE-1(4):364-370, Decem-
ber 1975.

D. G. Severance and G. M. Lohman. Differential files: Their
application to the maintenance of large databases. ACM
Transactions on Database Systems, 1(2):256-267, September
1976.

W. F. Tichy. The string-to-string correction problem with
block move. ACM Transactions on Computer Systems, 2(4),
November 1984.

W. F. Tichy. RCS - A system for version control. So&are -
Practice and Experience, 15(7):637-654, July 1985.

275

