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Abstract

With growing storage capacities, the amount of
required metadata for tracking all blocks in a system
becomes a daunting task. On mobile systems, the prob-
lem is compounded by a need to make the best use of
available resources. Our previous work demonstrated
a system software effort in the area of predictive data
grouping for reducing power and latency on storage
systems. Such efforts can reduce both power consump-
tion and strain on underlying system hardware, while
improving performance. Our work utilizes structures
similar to prior efforts in prefetching and predictive
caching, keeping a fixed number of immediate succes-
sors per block. While providing powerful predictive ca-
pabilities and being more space efficient in the required
metadata than previous strategies, there remains a
growing concern of how much data is actually required.
We present a novel method of storing equivalent infor-
mation, SESH, a Space Efficient Storage of Heredity,
that is resistant to state-space explosion of predictive
metadata, utilizing block-level predictability to reduce
the overall metadata storage by up to 99% without loss
of information. As a result, we are able to provide a
predictive tool that is adaptive, accurate, and robust in
the face of workload noise, for a tiny fraction of the
metadata cost previously anticipated; in some cases,
reducing the required size from 12 GB to less than
150 MB.

Keywords-data grouping; disk storage systems; meta-
data; power; power management; replication;

I. Introduction

Hard disk and storage system performance concerns,
both in terms of latency access and power consump-
tion, continue to gain importance for modern computer
systems. Both hardware and software efforts continue

to try to reduce latencies and response times while
demanding greener, more efficient use of resources.
Many system software projects involve tracking and
profiling workloads in order to predict and identify
access patterns, both at the file and at the block level.
Such techniques include data placement, both static as
well as dynamic, caching and prefetching, as well as
data replication and shuffling. But with growing disk
and storage capacities, the volume required by metadata
for tracking all blocks in a system becomes a daunting
task in its own right. Further, while hardware advance-
ments provide significantly larger storage systems, the
ratio of used storage has been shown to remain stable,
even with these larger disks [1].

In previous work, we have demonstrated a system
software effort in the area of predictive data grouping
for reducing power and latency on hard disks [2]. The
structures used, very similar to prior efforts in prefetch-
ing and prefetch caching, track access successor in-
formation at the block level, keeping a fixed number
of immediate successors per block. While providing
powerful predictive expansion capabilities and being
more space efficient in the amount of required metadata
than many previous strategies, there remains a growing
concern of how much data is actually required. In this
paper, we present a novel method of storing equivalent
information, SESH, a Space Efficient Storage of Hered-
ity. This method utilizes the high amount of block-level
predictability observed in a number of workload trace
sets to reduce the overall metadata storage by up to 99%
without any loss of information. As a result, we are able
to provide a predictive tool that is adaptive, accurate,
and robust in the face of workload noise, for a tiny
fraction of the metadata cost previously anticipated; in
some cases, reducing the required size from 12 GB to
less than 150 MB.
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II. Motivation

Optimizing storage system performance in the face
of varying workloads requires the accurate tracking and
exploitation of patterns in data access behavior. Such
information is useful for a broad range of applications,
including caching, placement, workload shaping, data
collocation and migration. Unfortunately, tracking ac-
cess behavior and predicting future access behavior can
result in large metadata demands. This is true when
dealing with data at the granularity of files and objects,
but quickly becomes unmanageable when attempting
to monitor block-level access behavior in large storage
systems. An explosion in metadata volume is doubly
problematic when we consider that retrieving and up-
dating such metadata can suddenly become an addi-
tional burden upon the storage subsystem. On the other
hand, arbitrarily limiting the volume of metadata being
maintained will only allow for optimizations to data
within a current hotspot, the currently active working
set, which is arguably less in need of pattern discovery
and placement optimization (due to the effectiveness
of even basic caching schemes on such subsets). This
inevitably precludes the opportunity to discover longer-
term patterns across less intensely active regions.

To improve the accuracy of placement and collo-
cation decisions, and improve the overall performance
of predictive analysis of data access patterns, we wish
to maintain as much metadata as possible, but only
if it is useful. Our previous work on predictive data
grouping [2] demonstrates one such strategy that stores
a number of direct block successors for each data
access. Our strategy shows promise in the area of
data grouping, and is similar to previously explored
strategies in prefetching and prefetch-caching strategies
adopted by Kroeger et al at the file level [3], [4]. We
present a study of how it is feasible to reduce the meta-
data requirements of our strategy in the face of block-
level I/O workloads. The structures used in our work
are reminiscent of the limited-length queue of access
successors in the Recent Popularity strategy adopted
in [5]. Such single-successor strategies are often chosen
for their efficiency benefits over multicontext modeling,
yet still require huge amounts of storage. Minimally, we
would need to track the root block’s id, which could
simply be a translated location within an array, and
the queue of accesses, each of which is a block id.
Thus, the total storage space would be the number of
successors stored, s, times the total number of blocks,
t. For modern systems, this metadata volume is too
large. For a 4 TB disk array, assuming a block size

of 4 KB, this would mean storing information for
1 billion blocks. Assuming a 64-bit address, this system
would require 8 GB of space just for storing a single
successor. We address the issue of metadata volume
requirements in SESH by observing that most blocks
share two properties...

1) They only have a single successor.
2) The only successor they have is the next sequen-

tial block.
Using this information, we are able to drastically reduce
the total size needed for our predictive information
while incurring little overhead. Further, our strategy
scales better in the number of successors tracked.

The remainder of this paper is organized as follows.
Section III discusses prior art related to SESH. Sec-
tion IV briefly describes the structures used and details
our experiments. Results are presented in Section V and
we conclude with Section VI.

III. Background and Related Work

A study on graph-based access predictors was first
presented by Griffioen and Appleton[6]. The use of
the last successor model for file prediction, and more
elaborate techniques based on pattern matching, were
first presented by Lei and Duchamp[7]. Similar work
has been done researching a last successor predictor,
finite multi-order context modeling (FMOC) models
from branch prediction methods, and a partitioned con-
text model (PCM)[3]. While a “last successor” strategy
predicted with surprising accuracy, there tends to be
enough noise in an access stream to confuse it. A more
stable predictor, Noah, was presented that removes this
noise by predicting only if a stability condition is satis-
fied. General and specific accuracy were used to com-
pare Noah with last successor and first successor[5]. It
is noted that Noah suffers from non-decreasing general
accuracy for high stability parameters. A new predictor,
Recent Popularity, is shown to solve this problem. It is
also noted that Recent Popularity adapts quicker with
changing workloads than Noah. To benefit from this
robustness and adaptability, our techniques use variants
on Recent Popularity for gathering data for prediction.

Kroeger and Long compared the predictive perfor-
mance of the last successor model, Griffioen and Apple-
ton’s graph-based strategy, and new techniques based
on context modeling and data compression[8]. The
earliest proposed use of data compression strategies
to predict disk accesses was presented by Vitter and
Krishnan[9], [4]. Shriver et al.[10] has provided ana-
lytical reasoning for the benefits of read-ahead buffer-
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ing and prefetching. Other recent work on ASP[11]
presents a study of a strip prefetching scheme for
striped disk arrays. Any prefetching strategy must have
a reasonable lead-time in order to retrieve data before it
is actually requested. Additionally, any benefit from this
prefetching, like spin-down techniques, lie directly on
the data path. Our strategy enables the decoupling of the
strategy from the data path, allowing us to shut down
any regrouping while still benefitting from previous
efforts to properly cluster data.

Recent work has shown advances toward utiliz-
ing device-level knowledge of physical data layout.
DULO[12] presents a buffer cache management scheme
that exploits both temporal and spatial locality, while
DiskSeen[13] presents work utilizing similar table
structures for use of predictive prefetching. DiskSeen
fetches at the device level, and is designed to be
synergistic with file-level prefetching strategies. More
recent work on TaP[14] describes using a separate data
structure to store previous addresses in order to identify
sequential data streams without having to use precious
cache space to do so. Our work seeks to increase
the likelihood of spatially close blocks, and would be
highly beneficial to such location- and stream-aware
strategies.

Traditional research to improve performance of hard
disks by modifying I/O workloads include scheduling
strategies such as SSTF, SCAN[15], C-SCAN[16], and
LOOK [17]. More recently, approaches for decreas-
ing the growing impact of rotational delay have been
presented[18], [19], [20]. These efforts are considered
orthogonal to our current and previous work on predic-
tion and data regrouping.

Access patterns can be used to rearrange tracks on
the disk[21], a problem known to be NP-Hard[22], to
improve on the organ-piping method[23], detailed and
discussed in depth by Wong[24]. Such patterns can
also be used to identify which files to move to tertiary
storage[25]. Other forms of disk management include
storing data that does not cross track boundaries[26] as
well as how to extract that information and use it as
stripe unit boundaries[27], storing inodes by embedding
them in their directory, and grouping together small
files on disk to be read as one[28].

Early data placement studies attempted to use fre-
quency of access as an estimated likelihood in order
to optimally place high-demand data. The necessary
automation of optimum file arrangement, specifically
by placing popular files near the center of the disk
cylinder, has been addressed by Staelin and Garcia-
Molina [29], whose work dealt with models that pro-
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(b) OpExTree implementation

Fig. 1. Optimal Expansion Tree (OpExTree)

example.

vided optimal placement of files where accesses were
independent. However, data accesses often involve dy-
namic relationships, where access dependencies change
over time. Berkeley’s FFS[30], [31] includes attempts
to cluster related data and metadata into cylinder tracks
on a disk. However, these approaches typically re-
quire disjoint sets as groups. Our approach makes no
such constraints, allowing replication between groups
formed. Similar replication was performed by Akyürek
and Salem in 1995, where popular “hot” blocks were
copied to a common disk area[32]. However, this study
was based only on global popularity rather than inter-
file relationships. Examples of efforts in automated
grouping include C-FFS[28] (collocating FFS), which
bases grouping on a directory-membership heuristic,
and Hummingbird[33], which utilizes the underlying
structure of web files. In contrast, our model does not
require any knowledge of underlying data structure,
as our grouping mechanism can establish relationships
based on observed access behavior, as opposed to
inference from file location or content.

IV. Design and Experimental Setup

Our goal is to develop space-efficient structures for
tracking metadata, specifically for predictive informa-
tion. Ideally, these structures would incur little to no
overhead while maintaining undiminished usefulness.
Further, we seek to define, in a general case, what
the expected benefits of these structures would be.
Finally, we endeavor to verify our expectations by
testing working implementations against realistic work-
loads in order to determine how effective our data
pattern exploitation techniques would be at reducing
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(a) Dynamic Bitmap, key 1055
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(b) Dynamic Region, key 1055

Fig. 2. Dynamic Bitmap and Dynamic Re-

gion examples.
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Fig. 3. SESH figure.

metadata volumes in real systems. This final goal can
be met by testing our strategies on workload trace sets
gathered from real systems, rather than drawing from
a distribution or synthetic function.

This section describes our strategy by discussing the
structures we have developed as well as an estimated re-
duction formula. We then detail the different trace sets
used to evaluate our current implementations. Finally,
we explain our metadata volume calculations.

A. Data Structures

Several new data structures were designed for this
project. The Optimal Expansion Tree, or OpExTree,
is the base structure used in our previous efforts for
tracking metadata for predictive data grouping. The
Dynamic Bitmap is a functional equivalent to a normal

bitmap, but with the advantage of being dynamically
allocated and able to spontaneously grow or shrink.
The Dynamic Region is used to map a fixed number
of bits to some id. Finally, the SESH structure is the
combination of the above structures used to decrease
the size of the necessary metadata required. Following
is a brief discussion of each structure.

1) Optimal Expansion Tree: Our standard metadata
storage structure consists of a root id, or the element’s
block number, and an array of immediate successors,
or children. The structure is based on the Recent Popu-
larity strategy from earlier work on predictive caching
and prefetching [5], and was chosen for its robustness
to signal noise and speed of adaptation to changing
workloads.

Children are in the form of block numbers that
occurred directly after the root id. While our structure
allows this array to be unbounded, we limit the number
of children for this project. Additionally, we track how
often each child occurred.

Upon seeing a new event’s successor, we add it to
the tree by

1) Updating the appropriate count, or
2) Adding a new child to the successor array and

setting the appropriate count to 1.

In the case of a bounded structure, once we reach the
maximum number of children to track, we update the
structure by choosing the lowest occurring successor
and removing it from the structure. The new successor
is then placed into the array and its count is set to 1.
See Figures 1(a) and 1(b) for an example.

An alternate structure design replaces the successor
array with a queue of children, in order of occurrence.
Upon reaching the maximum capacity, a dequeue is
performed before adding the new event. In this case,
the counts are calculated by iterating through the queue
on-the-fly. While this method will typically adjust to
workload shifts easier, in practice we find the event
counting to be a severe bottleneck.

A third alternate structure contains a queue as well
as an array and counts. The queue is used in the same
way as above, but dequeued items have their counts
deducted, and are removed once their count reaches
zero. In practice, we have found that our standard use
of only an array very closely approximates this method,
and the queue was removed from the standard version.

2) Dynamic Bitmap: The Dynamic Bitmap structure
consists of a count of total number of entries and a
hash table of nodes. Each node consists of a simple
integer array that represents a region of the functional
bitmap. Each Set, Unset, or Check of any particular
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location is hashed and the appropriate node, if existent,
is fetched. On a Set, the appropriate integer within the
node’s array is adjusted to update the map. If the node
does not exist, it is created. Similarly, on an Unset, the
appropriate integer is adjusted. If the Unset results in
an empty node, equivalent to an array of all zeroes, the
node is destroyed. On a Check, if the node does not
exist, zero is returned. Otherwise, the appropriate bit
within the existent array is returned.

As an example, assume we have a node consisting
of 512 8-byte long long integers, and we are attempting
a Check operation. The total number of entries in each
node is equal to the number of bits; in this case,
32768, and each entry in the array, as an 8-byte integer,
contains 64 bits. Given below are calculations of the
node id, the array position within the node, and the
bit location within the 8-byte integer. Note that all are
integer division operations.

id = key/total node size

ary loc = key/single location size

bit loc = key%single location size

In our example, id = 1055/32768 = 0, ary loc =
1055/64 = 16, and bit loc = 1055%64 = 31. In this
case, we calculate our id of 0, hash on that id to retrieve
the node, if it exists. Assuming existence, we calculate
the array location of 16, retrieve the 8-byte integer,
calculate the bit location of 31, and perform a bit shift
and bit mask to retrieve the value. Thus, the overhead
of a single Check operation is a three integer division
operations, a hash table retrieval, an array retrieval, a
bit shift, and a bit mask, all of which are very efficient.
See Figure 2(a) for clarification.

3) Dynamic Region: The Dynamic Region structure
is very similar to a bitmap. Instead of each bit being
used to represent some property of some event, a
number of bits are used. This is achieved by utilizing a
Dynamic Bitmap, and for each event id, we increment
some region on the map. For our purposes, we required
only that each region denote a count, or integer. All
analogous operations follow easily from the Dynamic
Bitmap structure. The only change needed is that we
must multiply the key by the number of bits stored for
each region. Using our example from earlier, assuming
3 bits per region, id = 1055∗3/32768 = 0, ary loc =
1055 ∗ 3/64 = 49, and bit loc = 1055 ∗ 3%64 = 29.
See Figure 2(b) for clarification and comparison to the
Dynamic Bitmap structure’s analogous operation.

The overhead for the Dynamic Region is expected to
be almost identical to the Dynamic Bitmap. Assuming

that the region size is smaller than the number of bits
in an array location, there are only two cases where
significant differences occur. First, there can be an over-
lap of regions between two array locations, requiring
an additional array position calculation and retrieval
and additional bit location calculation. The other case
involves node overlap, requiring and additional hash
retrieval and array retrieval. Thus, in the worst case,
we require two node id calculations and hash retrievals,
two array location calculations and retrievals, and n bit
shifts and masks, where n is the number of bits in each
region. Note that all of these operations are expected
to be very efficient, and that the number n is expected
to be quite small, usually 3 to 5.

4) SESH, or Space-Efficient Storage of Heredity:
During our work on prediction and data regrouping, we
noted that many blocks have only a single successor.
Most commonly, this successor happens to be the next
block. The SESH data structure utilizes this observation
by removing such OpExTrees from some successor
table, typically a hash table, and utilizing a Dynamic
Region to represent the tree. Some region being non-
zero within the Dynamic Region structure represents a
tree having only a single successor, which happens to
be the block directly after the root block in question.
We call the successors stored within the region heir
apparents. These heir apparents occur the vast majority
of the time, and each reduces the amount of metadata
required from (minimally) several bytes to only a few
bits (on average). See Figure 3 for clarification. As
a realistic example, tracking eight successors (64-bit
addresses, or 8 bytes) on a 256 GB hard drive with
a block size of 512 bytes would require 32 GB of
metadata.

8∗8∗ (256 GB/512) = 32 GB
However, each heir apparent would only require, on
average, 3 bits. Given below is a estimated calculation
for the reduced size, in bits, r, based on the number
of blocks, b, the percentage of blocks that only contain
heir apparents, p, and the number of successors tracked
for each block, n.

r = b∗ (log(n)∗ p+(1− p)∗ (64+(64∗n)));
Note that this assumes 64-bit block numbers and
ignores internal fragmentation within our Dynamic
Bitmap structure. One note of interest presented by this
formula is that when p is very high, the resulting size
r becomes very scalable with respect to the number of
successors, n. Since most blocks fit into the Dynamic
Region, increasing n results in a log(n) increase in
the space necessary to store it. The larger structures
increase linear to n. Even though these structures are
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expected to represent only a small percentage of all
items tracked, they are expected to dominate the space
used fairly quickly. Figure 4 show a 3d plot of a
256 GB hard drive and the metadata required for
storing information for all blocks, both before and after
reduction, against the number of children tracked and
the percentage of blocks that contain heir apparents.

The computational overhead of our SESH object’s
operations is expected to be quite small. The worst-
case overhead is the sum of the worst-case overhead of
a failed Dynamic Region operation and a hash retrieval
of an OpExTree structure. However, most SESH oper-
ations will be a single Dynamic Region operation, as
most blocks are expected to be heir apparents.

B. Traces

For this project, we used four different workload
sets. The mozart set consists of a workstation trace
gathered using the DFSTrace system [34]. These traces
were converted into equivalent block-level traces with
block sizes of 512, 4096 (4K), and 8192 (8K) bytes.
There were four different original trace sizes; day
length, week length, month length, and year length.
This set has the appeal of allowing the analysis of our
strategies over different definitive time periods as well
as allowing us to convert easily to different block sizes.

The second set, hplajw, is a block-level workstation
trace [35]. This set has the advantage of natively begin
a block-level trace, and therefore does not require
conversion. However, there is only a single trace length,
and lacks any information of original file-system level
access information, and therefore cannot be converted
to traces of differing block sizes.

The third set, ranin, is a trace set we gathered
using the standard fs usage command found on Mac
OS X. The traces were gathered from November to
December, 2007 on a Mac PowerBook G4 running
Mac OS X 10.4. The workload represents a typical
graduate student workstation, and was used for internet
browsing, file editing, code compiling, and running and
testing experiments (predominantly C++ programs).
While there were a few trace interruptions due to
rebooting, including one major software update, the
inaccuracies introduced would be negligible. Addition-
ally, the software update had no impact on the fs usage
command itself, and any system-level workload shifts
due to this update would represent realistic workload
shifts experienced by users updating their operating
system. Cache activity was gathered, but for these
traces they were ignored; only device-level requests
were used. These requests were in the form of read

and write data and metadata as well as page ins and
outs.

The final set, playlist, is a trace set gathered using
the same fs usage command. This set was gathered
on two different Mac mini G4 workstations, each with
512 MB of memory and running Mac OS X 10.3.9. A
playlist of 148 songs, with a runtime of approximately
14.8 hours, was run on each machine. Traces were
gathered from August 31, 2008 to March 23, 2009,
resulting in play counts over 300. All disk activity
due to the mp3 software was isolated and recorded.
One trace gathered information on a sequential playlist,
while the other playlist was shuffled. These traces
represent one extreme of predictability, an estimated
upper bound on how predictable a realistic workload
can be.

Similar to the mozart traces, our ranin and playlist
workloads include information about how large an
access was requested, and therefore could easily be
converted to equivalent block-level workloads. Perhaps
the most interesting block size is 512 bytes, which is
the natively preferred block size of the hard drives, both
for the PowerBook and the Mac minis. However, we
included runs on 4K and 8K block sizes for consistency.

Since the fs usage command collects information on
all devices, these traces do require a bit of attention to
what raw device is being accessed. Some devices, such
as /dev/NOTFOUND, were pruned. All devices that
seem viable were included in the test run and mapped
to a single device. This mapping was done by giving
a 200 GB range to each device. Table I summarizes
the devices found in the ranin traces and how often
each occurred, as well as noting which of these were
ignored.

TABLE I. Devices found in ranin trace.
Device Occurrence Count Included?
/dev/disk0s3 3746392 Yes
/dev/NOTFOUND 571206 No
/dev/disk2s1 185933 Yes
/dev/disk2 73166 Yes
/dev/disk2s0 10621 Yes
/dev/disk1s1 954 Yes

All of these traces consist of data gathered from
actual systems, and as such contain real-world pre-
dictability due to user, program, and system behavior,
rather than being drawn from a distribution or synthetic
function.
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block size of 512 bytes.

C. Calculating Metadata Requirements

Each workload was split into ten sequential seg-
ments of approximately equal access counts. The trace
was then run through our simulator. Each run consisted
of the first segment, followed by running the first and
second segments together, and so on until the entire
trace was run. At the end of each segment run, the total
metadata space used was recorded. Verification results
on each individual segment were also run, but for sake
of brevity are not reported.

Each recorded metadata requirement consisted of the
calculation of total space used by our SESH structure.
This includes any and all extra metadata we used for
sake of statistics gathering, though these extra object
fields are negligible. In calculating these metadata re-
quirements, we count all nodes of all Dynamic Bitmaps
used in our Dynamic Regions, rather than estimating a
number of bits per heir apparent as in Figure 4. In
order to calculate the projected size of metadata using
a hash table of OpExTrees, we multiply the number of
heir apparents by the total size of the same number of
single-child OpExTrees and add the appropriate hash
table metadata needed to track the extra trees.

V. Results

Our results show that almost all traces of non-trivial
size show a drastic decrease in necessary metadata. For
most workloads, we can reduce this storage space to
only a small percentage of the original space, typically
between 1 and 3 percent for smaller block sizes.
Table II summarizes the sizes recorded at the very end
of the ranin workloads, while Table III summarizes
the reductions and savings. Figure 5(a) illustrates the
difference between the projected metadata requirements
and the reduced space on the ranin traces with 512 byte
blocks, while Figure 5(b) shows the reduced size in
terms of projected volume’s percentage. Figures 6(a)
and 6(b) show the respective results for the mozart
traces, again with 512 byte blocks. The hplajw trace
showed results similar to these 512 byte block traces,
with reductions falling between 91% and 97%. The
interesting difference is that the hplajw trace does better
early on, then quickly falls to 91% reduction before
flattening out. The playlist traces showed reductions
similar to the ranin workloads, exceeding 98% reduc-
tions for small (512 byte) blocks.

Figure 7 shows the amount of space that SESH
requires for a selection of our traces, as a percentage of
the total storage volume. Note that the total amount of
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space across all traces and block sizes is less than half
a percent. Also notice that the actual space required
by SESH is higher than our estimate. However, this is
not unexpected, as our implementations of OpExTrees
keeps additional information than what is accounted for
in our estimate.

As expected, larger traces show higher consistency
in the necessary data required for storage. Smaller data
sets would not adequately capture the larger picture,
and would have new blocks introduced quite frequently,
while larger sets would add only the occasional new
block.

An interesting result to note is that total required
storage space, after reductions, is reasonably consistent
across block sizes, varying only by about 20%, while
the total number of blocks that need tracked increase
14-fold. For instance, the full ranin trace, at roughly
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various mozart traces with 512 byte blocks.

a month in length, requires about 150 to 189 MB, de-
pending on block size, while the total number of blocks
jumps from about 12 million (for 8 KB blocks) to 119
million (for 512 byte blocks). It is also interesting to
note that, for reduced sizes, it is the middle block size
of 4096 that requires the most space. As expected, the
smallest block size has a much higher reduction rate, as
it would exhibit a far greater amount of predictability,
while the largest block size has far fewer blocks to
track.

VI. Conclusions

In this paper, we have presented a simple yet novel
strategy for tracking first-successor metadata informa-
tion at the block level. We have provided an estimating
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Fig. 7. Percentage of total storage volume

that SESH requires, compared to the esti-

mate.

TABLE II. Comparison of total space of all

ranin traces. Block size, projected size, and

reduced size are given in number of bytes.
Block

Trace Size # Blocks Projected Reduced
day 512 33263953 3456650364 38585580
week 512 74221832 7712726204 80445044
two week 512 98709435 10257544012 113061012
full 512 119983696 12468052516 146756740
day 4096 4264887 436965644 42856668
week 4096 12033929 1232706268 96565836
two week 4096 16387433 1674557580 138910036
full 4096 22905900 2338128692 188674100
day 8192 2152146 217221140 42618692
week 8192 6271892 633318764 95528612
two week 8192 8586028 862968436 136909676
full 8192 12193122 1223027532 185049796

function for showing the expected savings, based on
the number of successors that are tracked and the
percentage of blocks that have the next sequential block
as their only successor, called heir apparents. Estimates
show savings of around 90 to 99% over total space
usage from prior strategies for heir apparent percent-
ages exceeding 90%. This space usage, according to our
formula, also scales reasonably well, growing linearly
in the number of successors tracked. These estimates
were then verified with simulations tracking this suc-
cessor information and calculating how much space
is used by our implemented structures, both before
and after our reduction strategy. Multiple workloads
with multiple block sizes were run, each showing large

TABLE III. Comparison of reduction by

percentage and savings of all ranin traces.

Block size and savings are given in num-

ber of bytes.
Trace Block Size Savings Reduction %
day 512 3418064784 0.9888372916
week 512 7632281160 0.9895698302
two week 512 10144483000 0.9889777697
full 512 12321295776 0.9882293775
day 4096 394108976 0.9019221108
week 4096 1136140432 0.9216635475
two week 4096 1535647544 0.9170467247
full 4096 2149454592 0.9193055110
day 8192 174602448 0.8038004404
week 8192 537790152 0.8491618796
two week 8192 726058760 0.8413503087
full 8192 1037977736 0.8486953146

reductions, verifying that heir apparent percentages are
quite commonly very high. We have shown that, with an
overhead of only a few hash table lookups, we are able
to reduce the required metadata size up to 99%, and
in all cases tested reducing required space to less than
200 MB, even for the largest workloads used. This first
order successor information has been shown in previous
work to be useful for prefetch prediction and caching
as well as disk layout management.
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