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Abstract—The advent of byte-addressable non-volatile memory
technologies such as phase change memory (PCM) has spurred a
flurry of research on topics including consistency and durability
of data structures across power failures and optimizing systems
for the low-latency nature of these technologies, while typically
aiming to increase lifetime and reduce power consumption by
reducing the number of writes to the non-volatile memory.
However, in technologies such as PCM, it is bit flips that consume
power and wear out cells, not writes. Thus, PCM controllers do
not rewrite cells unless the cell changes value. However, this
crucial optimization, reducing the number of bits flipped, has
not been sufficiently explored for the rest of the hardware and
software stack. We develop a framework for using the number
of bit flips as the measure of “goodness” for a range of hardware
and software techniques. We also introduce several simple and
straightforward modifications to existing data structures that can
reduce the number of bit flips over time, and profile use cases in
which the approach with the fewest writes does not also minimize
bit flips. Based on these findings, we discuss potential approaches
that can further minimize bit flips, better optimizing hardware
and software for non-volatile memory technologies such as PCM.

Index Terms—power consumption, non-volatile memory, data
structure design, bit flips

I. INTRODUCTION

As byte-addressable non-volatile memories (BNVMs) be-
come common [1, 2, 3], it is increasingly important that
systems be optimized both to leverage their strengths and
to avoid stressing their weaknesses. Historically, such opti-
mizations include reducing the number of writes performed,
either by designing data structures requiring fewer writes, or
by using hardware techniques to reduce writes. However, for
BNVMs such as phase-change memory (PCM), it is not only
the number of writes that is important—it is the number of
bits flipped by the writes.

BNVMs such as PCM suffer from two problems caused by
flipping bits: energy usage and cell wear-out. Flipping a bit
in a PCM consumes (relatively) significant power, so many
controllers optimize by only flipping bits when the new value
of the cell is different from the old value [4]. While this
approach saves some energy, it cannot eliminate flips requested
by software to modify data structures and write values in
memory. An equally important concern is that PCM cells
only support a limited number of write cycles. Unlike flash,
however, PCM cells are written individually, so it is possible
(and even likely) that some cells will be written more than

others during a given period because of imbalances in values
written by software. Reducing the number of bits flipped can
thus both save energy and extend the life of PCM memory,
yet existing approaches rarely attempt to optimize for reducing
the number of bits that must be flipped to accomplish a task.
Data structures designed for BNVM must take into account
bits flipped by their updates in order to properly evaluate how
they will affect BNVM.

We propose to attack this problem on multiple fronts,
using both hardware and software techniques to minimize the
number of bits flipped, even at the expense of sometimes
increasing the number of bytes written to BNVM, by studying
simple and widely applicable techniques that can reduce bit
flips more than if we had focused solely on write reduction.
On the software side, we evaluated a simple hash table design
with varied implementation details and found that minimizing
writes does not necessarily reduce bit flips and that we can
apply some simple modifications to data structures to save a
significant number of flips. We performed an analysis of XOR
linked lists and found that their design saved more bit flips than
would be expected by simply reducing the number of writes,
further indicating that data structures can be designed with
bit flip reduction in mind. We evaluate prior work on Write
Efficient Memory [5], and discuss its applicability to BNVM.
Finally, we outline some future work both in software and for
hardware to further investigate bit flip reduction.

II. BACKGROUND

Non-volatile memory technologies, including phase change
memory (PCM) [1], Ferroelectric RAM (FeRAM) [2], and
spin-torque transfer RAM (STT-RAM) [6], among others,
promise to fundamentally change the design of our devices,
operating systems, and applications. Although the technologies
are starting to make their way into consumer devices [3],
their full potential will be seen when they replace or exist
alongside DRAM as byte-addressable non-volatile memory
(BNVM). Such a memory hierarchy will allow the processor,
and therefore applications, to access persistent storage with
normal load and store instructions, bypassing the high-latency
I/O operations of the operating system.

The design of data structures and systems for a particular
technology must exploit the advantages of the underlying
hardware while minimizing its disadvantages. For example,
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data structures for disks are block oriented and avoid seeks
while data structures for flash memory avoid random writes.
Previous designs and evaluations of data structures and pro-
gramming models for NVM [7, 8, 9, 10, 11, 12] typically
exploit its direct-access nature while mitigating the slightly
slower-than-DRAM nature of most BNVM technologies. At
least in the case of PCM, treating BNVM like DRAM or
block storage ignores two critical characteristics: asymmetric
read/write power use, and avoiding redundant updates at the
bit level [4, 13].

As an example, writes to PCM involve changing the phase
of a material in each cell, which takes significantly more
energy than reading the resistance of the resulting phase of
the material. However, the PCM controller can avoid writing
to a cell during a write if it already contains the desired value,
meaning that the power use of a write is proportional not
to the size of the write but to how many bits must flip in
order to store the new value in the memory cells. Thus, we
should be minimizing bits flipped by our data structures and
algorithms instead of focusing on minimizing writes, as is
more commonly done, because it not only reduces the energy
consumption, but it also reduces the wear on the PCM cells.

Although many of the writes to BNVM come from writing
data itself, a significant portion of writes come from updates
to the metadata of a data structure used to manage said data.
These updates are often in the form of pointers to nodes, bits
indicating occupancy, or pointers to data. In an asymmetric
access time memory such as PCM, it may be advantageous to
avoid moving large pieces of data and instead move and update
pointers to data, further increasing the importance of correctly
designing the structure. Regardless, when writing data with
an organizational data structure, the data itself must always
be written regardless of the organizational structure chosen,
meaning that if we are to reduce bit flips, we can look at both
data and its organization in order to minimize bit flips.

While bit flips in BNVM have been studied previously,
much of this work has focused on hardware encoding resulting
in limited efficacy [14, 15, 16]. While hardware techniques
are worth exploring, software techniques to reduce bit flips
could be more effective because they can be designed with
this goal in mind. Chen et al. [17] evaluate data structures
on BNVM and argue that reducing bit flips is workload
dependent and difficult to reason about, therefore we should
aim to reduce writes as a close analogue for reducing bit
flips. Although reducing writes is important and should be
optimized for, Section III presents a counterexample to the
claim that optimizing for writes is a close enough analogue
while Section IV demonstrates an example where bit flips
can be reduced beyond the savings from reducing writes.
Furthermore, while the savings are workload-dependent, we
believe there are techniques that can be employed that will
often be effective in reducing bit flips.

A. Power Utilization of PCM and DRAM

Figure 1 shows the power consumption of PCM and DRAM
as a function of the number of bits being flipped per second,

using values from prior studies of memory systems [1, 17, 18,
19, 20]. While individual writes in DRAM require little power,
the entire DRAM must be periodically refreshed (read and
rewritten), resulting in a high idle power requirement but little
added power from an increased write rate. PCM, on the other
hand, requires much more energy to write a bit by flipping
its value (around 50 pJ/b [21]), as compared to the relatively
low additional overhead needed to write a DRAM page (1.17
pJ/b [1]), though the values vary in the papers. However, PCM
does not require bits to be refreshed, so power consumption
is proportional to the rate of bit flips, not to memory size, as
for DRAM.

While the results in Figure 1 are only a rough estimate
of the power usage behavior of these technologies, they
clearly indicate that data structures designed for PCM need
to consider techniques to minimize bit flips. DRAM power
consumption is insensitive to the number of bits flipped (and
even largely to write rate), since idle power dominates. PCM
power consumption, on the other hand, is highly sensitive to
the rate of bit flips—reducing bit flips directly reduces energy
consumed. It is even possible for devices to reach the cross-
over point on the graph at which PCM becomes less power
efficient than DRAM due to its high-energy cost to flip a cell.
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Fig. 1: Power use as a function of flips per second.

These initial results are relevant to Internet of Things
(IoT) devices, since IoT devices may become a significant
user of BNVM technologies [22, 23] for reasons including
power and fast recoverability from power cycles. However,
for asymmetric read/write power memory technologies, IoT
devices may have to be careful to limit their bit flips per
second in order to conserve power. Devices which collect large
amounts of data and therefore write frequently to memory may
find power usage increasing with BNVM depending on their
access patterns. Thus, IoT devices stand to benefit significantly
from bit-flip-aware systems and data structures.

B. Wear-out

Another significant advantage to avoiding bit flips is re-
ducing memory cell wear-out. However, minimizing bit flips
increases the risk that writes are biased (some of the bits
updated more frequently than others). Take the case of writing
and updating pointers—the upper bits likely remain the same,
and the lower bits, with the exception of the lowest few bits,
are likely to change. Thus, the middle bits in a 64 bit word



are more likely to wear out than the high or low order bits,
unless something is done to spread the wear more evenly.

Unfortunately, a full remapping layer similar to a flash
translation layer is infeasible for BNVM because the gran-
ularity of mapping is smaller and the added latency over-
head would be large compared to the much shorter access
time in BNVM. However, hardware techniques such as row
shifting [24], content-aware bit shuffling [25], and start-gap
wear leveling [26] have the potential to mitigate biased write
patterns with low overhead, allowing BNVM to leverage bit
flip reduction to reduce wear even if the result is that some bits
are flipped more frequently than others. These techniques can
work in tandem with the techniques presented in this paper.

III. CASE STUDY: AVOIDING BIT FLIPS IN HASH TABLES

Byte-addressable NVM brings up the possibility of
memory-based hash tables as an indexing data structure in
persistent storage [27]. The design space for in-memory per-
sistent hash tables is large, with design questions including
table length, collision resolution strategy, and key and value
storage. To explore how these decisions might influence the
number of bit flips during updates, we implemented several
variants of a hash table and ran a randomly-driven workload
on them, keeping track of the number of bits flipped along
with the total number of bytes written by each operation. The
counts collected include both metadata and data writes.

The hash table is an array of length l, where each element
is a bucket containing s slots. When inserting a key/value pair,
both 64 bit numbers, the key is hashed to a bucket, after which
the insert function finds an empty slot and writes the key and
the value into the slot. If a bucket fills up, l is doubled and
the table is rehashed. Lookup is a matter of searching through
a bucket’s slots until the key is matched, and delete marks the
slot corresponding to a found key as empty.

We test and compare three different design aspects of the
hash table:

1) Choosing slots: When inserting, the simplest algorithm
is a find-first method, where the first empty slot is
used. An alternate, straight-forward optimization is to
calculate the Hamming distance between each slot and
the key/value pair being inserted and insert into the slot
with the lowest distance, thereby minimizing the bit flips
of the insert.

2) Prime l versus power of 2: A common design choice
made when implementing a hash table is to make l a
prime number, and instead of perfectly doubling when
rehashing, assign l to a prime near to 2l. However,
one could also choose l = 2x, and increment x when
rehashing. While this makes rehashing and hashing
somewhat cheaper, as an expensive division is not re-
quired, the resulting table is less randomly distributed.
When optimizing for bit flips, such a design choice could
be worthwhile, since particular key/value pairs may be
more likely to hash to similar locations after rehashing.

3) Used bitmap versus zeroed key: To save space, the
hash table could treat a zero key value as meaning the

slot is empty. Alternatively, we can store a bitmap for the
table of length sl bits, indicating which slots are empty.
While this trades some cache locality for lookups, inserts
can check many slots at once. The main benefit for bit
flips comes from the fact that we no longer need to zero
keys when rehashing or deleting so that future inserts
may be able to flip fewer bits when inserting.

We simulated a large number of random inserts and
deletes using biased random keys with pointers returned from
malloc for values. The results are shown in Figure 2, where
Figure 2a shows the total writes made to persistent memory
in bytes, normalized to the power of two length, zeroed key,
find-first variant of the hash table. Figure 2b shows the total
bits flipped during the workload, normalized the same way.

The most striking difference in total bit flips is achieved
by using a used bitmap instead of a zero key to signify slot
occupancy. This is intuitive, since instead of writing eight
bytes of zeros and flipping a large number of bits, we flip
only one bit to clear the occupancy bit for the slot. However,
an additional advantage comes when we insert a new key/value
pair into a previously used slot because doing so overwrites
eight bytes of non-zero bits, potentially avoiding some flips.
Of course, this is only relevant when keys are biased; however,
data often has a biased distribution, so we believe it to be an
appropriate and relevant analysis.

Another result shows the difference between hash table
length choices. The prime-length table had fewer total writes
regardless of the other strategies chosen, but in the case of the
used bitmap using a prime-length table increased the number
of bit flips over the power of two length table. Although
some [17] have argued that reducing writes is a good analogue
for reasoning about and reducing bit flips, and while that is
likely often the case, we find here that reducing writes does
not always reduce bit flips. Not only does this hash table
present a counter example, but it was the first data structure
we tested. We speculate that the cause for this has to do with
how the table length affects the calculation of the bucket when
hashing a key, and that a prime-length table is more likely to
redistribute keys to new locations after expanding the size and
thereby reducing the effect of the used bitmap.

We can further reduce bit flips by performing a limited
search across slots before inserting instead of picking the first
empty slot. The effect is small—less than 1% in most cases,
except for used-bitmap, power of two length case where it is
significantly higher. This discrepancy corroborates our earlier
observation that the power of two length table saves on bit
flips because keys are more likely to map to prior buckets
during a rehash. Although the savings are often small, when
examined on a large table over the course of many operations,
the reduction in bit flips builds up. The small price to pay is
some additional work done during insert, but this is a small,
tight loop on a limited number of slots and could be vectorized
for a minuscule performance penalty.

Note that some of these effects may be dampened (not
removed) by CPU caches and reordering. However, when
updating data structures on BNVM, the programmer or system
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Fig. 2: Analysis of bit flipping in hash tables.

must ensure that the data remain consistent across power
cycles [12], meaning that the writes must make it to main
memory eventually. For example, in the hash table each
operation would be explicitly persisted to ensure transactional
consistency. Methods for doing this range from using write-
though caches [28] to cache-line flushing, but regardless of
the method used, the updates will cause bits to flip in BNVM,
so the results above will be relevant for data structure design.

Key Insights:
1) Minimizing writes does not always minimize bit flips.

In the first data structure we examined, we found that bit
flips are not always proportional to writes. While reduc-
ing writes is correlated with reducing bit flips, additional
tests must be done to determine which techniques reduce
bit flips the most, write-reduction approaches do not
all reduce bit flips equally. This of critical importance
because we should be designing for bit flip reduction as
well as write reduction, particularly in systems where
wear-out and energy usage are of primary concern.

2) Although a hash-table has comparatively little metadata,
our techniques saved a significant number of bit flips.
Especially in the case of small data, studying these
techniques is worthwhile.

3) Using a separate bit to indicate that a value is zero may
be worthwhile over actually zeroing memory. In our hash
table tests we found that using a bit to indicate empty
rather than zeroing the key resulted in a huge reduction
in bit flips. This design choice is simple and widely
applicable to many data structures.

4) Data placement matters and can reduce bit flips further,
but such decisions are workload-dependent.

IV. CASE STUDY: XOR LINKED LISTS

XOR Linked Lists [29] provide forwards and backwards
traversal of a linked list while storing one fewer pointer than
a traditional doubly-linked list with next and previous pointers.

Instead of storing a pointer n to the next node and a pointer
p to the previous node, each node stores x = n ⊕ p. When
traversing the list in either direction, one can XOR the previous
node with the current node’s x to recover the next node.
XOR linked lists have similar performance characteristics to
standard doubly linked lists while using less memory, but have
an added penalty of requiring a reference to two adjacent nodes
in the list to begin traversing or updating.

However, they have an additional benefit to bit flip reduction
when used on NVM. Since each node stores only a single
pointer-sized value instead of two, they cut down on the
number of overall writes. Moreover, the value being stored
is the XOR of two pointers, each of which are likely to have
similar higher-order bits because allocators often return nearby
pointers for similarly sized objects. This means that the stored
value of x per node will have a significant number (half or
more) of zeros in the higher-order bits of the value.

We compared XOR linked lists to doubly-linked lists by
implementing both and counting the bit flips, pointer writes,
and pointer reads during a workload of inserts and pops. The
XOR linked list decreased both bit flips (by 52.4%) and writes
(by 27.3%) over the doubly-linked list, and increased reads
(by 42.9%), meaning XOR linked lists trade writes for reads
during update operations. The data shows that while XOR
linked lists save both writes and bit flips, the reduction in bit
flips is nearly double the reduction in writes, reinforcing our
claim that bit flips can be reduced using mechanisms that go
beyond reducing the number of writes. The increase in reads
compared to the reduction in bit flips is well worth it from
the power usage standpoint (the reduction energy from bits
flipped exceeds the increase of energy from extra reads [21]),
and is advantageous for asymmetric access time memories.

V. OTHER TECHNIQUES, ALGORITHMS, AND EFFECTS

Allocators and Pointers: Pointers are a commonly written
piece of data in many data structures. When one pointer is



overwritten by another, the number of bits flipped depends
on both the size of the pointed-to object and the alloca-
tor chosen. We performed a small study on the bit flips
caused by overwriting a pointer using different allocators
while varying the allocation size. While we do not have the
space to reproduce the results here, the initial findings suggest
that different allocators have significantly different behavior,
motivating further investigation.

Sorting: Another investigation would be to examine sort-
ing in-place in BNVM. Reducing movement is an important
requirement among the many other reasons for choosing a
given sorting algorithm, however different algorithms may re-
sult in different data movement patterns with different amounts
of bit flips per move. While some have studied sorting on
PCM [30], they focus on evaluating writes, not bit flips.

WEM codes: The concept of coding to reduce bit flips
was first introduced by Ahlswede and Zhang [5] as the write-
efficient memory (WEM) model, which has clear applications
to BNVM. This paper examined Information Theoretic bounds
on the trade-offs between length of codewords and number of
bit flips. The bounds on binary codes are shown in Figure 3,
showing the bounds on flip savings by adding coding bits.
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As shown in the analysis of hash tables, the functionality
of a WEM code can be moved from hardware to software.
This differs from previous work, which built WEM codes in
hardware [14, 15, 16], in that it allows the use of pre-existing,
unutilized memory rather than building additional cells.

Hardware Layers: While minimizing bit flips in software
is promising, there are additional intermediate hardware layer
effects to consider. Techniques such as encryption result in un-
avoidable bit flips because they result in random-looking data,
meaning that half the bits are flipped on average by any given
write. However, these techniques are not universally applied,
meaning that targeted bit flip reduction is still possible.

Caching, flushing, and ordering constraints can also affect
bit flips. Although data may be cached, any data which wishes
to be persistent must find its way to BNVM. Thus, although
certain writes can be coalesced and buffered, many of them
will be flushed or not cached, so bit flip reduction techniques
apply. We plan to develop a framework that includes these
effects in order to study bit flip reduction further, but we expect
that many of the techniques discussed here will apply.

VI. CONCLUSION

Minimizing bit flips is an important and challenging design
goal for BNVM-aware data structures. Although minimizing
writes can be a good proxy for minimizing bit flips, it is not
always one; thus, we must be sure to incorporate bit flips as
an explicit measurement when evaluating a data structure’s
performance and fit for BNVM. Even in the case where both
writes and bit flips are reduced, simple design choices can
allow the bit flip reduction to vastly exceed the expected
reduction from simply reducing writes, indicating that we
can improve over blindly reducing writes by either choosing
which writes to minimize and when or by making those writes
cheaper. Write reduction techniques may not reduce bit flips
equally, so profiling bit flips directly is the only viable mech-
anism to determine the behavior of a data structure. Finally,
we found that a few straight-forward implementation tweaks
to a simple data structure resulted in significant savings, and
many data structures can be similarly optimized.

Although we do not expect every data structure to be
easily optimized for bit flips, and although we acknowledge
that optimizing for bit flips can be difficult without knowing
something about the workload, how it changes, and how data is
distributed, there is research that can be done towards common
and often applicable techniques, ranging from which data
structures and algorithms to choose, to how to best encode
data structures in memory to reduce bit flips, and to how these
techniques will apply or change with intermediate hardware
layers such as caching, write ordering, and wear leveling.
We plan to further this work by doing these experiments on
real hardware and full system simulators. These questions will
require more research to begin to answer, but we believe they
are necessary to answer as BNVM grows in popularity.
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