
Mobile Networks and Applications 5 (2000) 285–297 285

Adaptive disk spin-down for mobile computers ∗

David P. Helmbold, Darrell D.E. Long, Tracey L. Sconyers and Bruce Sherrod
Department of Computer Science, Jack Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA

We address the problem of deciding when to spin down the disk of a mobile computer in order to extend battery life. One of the
most critical resources in mobile computing environments is battery life, and good energy conservation methods increase the utility of
mobile systems. We use a simple and efficient algorithm based on machine learning techniques that has excellent performance. Using
trace data, the algorithm outperforms several methods that are theoretically optimal under various worst-case assumptions, as well as
the best fixed time-out strategy. In particular, the algorithm reduces the power consumption of the disk to about half of the energy
consumed by a one minute fixed time-out policy. Furthermore, the algorithm uses as little as 88% of the energy consumed by the best
fixed time-out computed in retrospect.

1. Introduction

As one of the main limitations on mobile computing is
battery life; minimizing energy consumption is essential for
portable computing systems. Adaptive energy conservation
algorithms can extend battery life by “powering down” de-
vices when they are not needed. Several researchers have
even considered dynamically changing the speed of the
CPU in order to save power [7,22]. We show that a simple
algorithm for deciding when to power down the disk drive
is even more effective in reducing the energy consumed
by the disk than the best fixed time-out value computed in
retrospect.

Douglis et al. [4] showed that the disk sub-system on
portable computers consumes a major portion of the avail-
able energy; Greenawalt [8] states 30% or more. It is well-
known that spinning the disk down when it is not in use
can save energy [4,5,14,23]. As spinning the disk back up
consumes a significant amount of energy, spinning the disk
down immediately after each access is likely to use more
energy than is saved. An intelligent strategy for deciding
when to spin down the disk is needed to maximize the
energy savings.

Current mobile computer systems use a fixed time-out
policy. A timer is set when the disk becomes idle and if
the disk remains idle until the timer expires then the disk
is spun down. This time-out can be set by the user, and
typical values range from 30 s up to 15 min.

We use a simple algorithm called the share algorithm,
a machine learning technique developed by Herbster and
Warmuth [10], to determine when to spin the disk down.
Our implementation of this algorithm dynamically chooses
a time-out value as a function of recent disk activity. As
the algorithm adapts to disk access patterns, it is able to
exploit the bursty nature of disk activity.

∗ This research was supported by the Office of Naval Research under Grant
N00014-92-J-1807, the National Science Foundation under Grant CCR-
9704348, and by research funds from the University of California, Santa
Cruz.

We show that the share algorithm reduces the power con-
sumption of the disk to about one half of the energy con-
sumed by a one minute fixed time-out. In other words, the
simulations indicate that battery life is extended by more
than 17% when the share algorithm is used instead of a
one minute fixed time-out.1 A more dramatic compari-
son can be made by examining the energy wasted (i.e., the
energy consumed minus the minimum energy required to
service the disk accesses) by different spin-down policies.
The share algorithm wastes only about 26% of the energy
wasted by a one minute fixed time-out.

As noted earlier, large fixed time-outs are poor spin-
down strategies. One can compute (in retrospect) the best
fixed time-out value for a sequence of accesses and then
calculate how much energy is consumed when this best
fixed time-out is used. On the trace data we analyzed, the
share algorithm performs better than even this best fixed
time-out; on average it wastes only 77.5% of the energy
wasted by the best fixed time-out.

The share algorithm is efficient and simple to imple-
ment. It takes constant space and time per access. For the
results presented in this article, the total space required by
the algorithm is never more than about 2400 bytes. Our
implementation is about 100 lines of C code.

The rest of this article proceeds as follows. Section 2
contains a brief survey of related work. We formalize the
problem and define our performance metrics in section 3.
Section 4 describes the share algorithm. We present our
empirical results in section 5, and present a justification
for our approach to best fixed time-out calculations in sec-
tion 6. Finally, we present future work in section 7, and
conclusions in section 8.

1 We assume that the disk with a one minute time-out uses 30% of the
energy consumed by the entire system. Thus, if t is the time the system
can operate on a single battery charge with 1 min time-outs, and t′

is the time the system can operate using the share algorithm, we have
t = 0.7t′ + 0.15t′. So t′ > 1.176t and the battery life is extended by
more than 17%.

 Baltzer Science Publishers BV



286 D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers

2. Related research

One simple disk spin-down policy picks a fixed time-
out value and spins-down after the disk has remained idle
for that period. Most current mobile computers use this
method, with a fixed time-out as long as several minutes [4].
It has been shown that energy consumption can be im-
proved dramatically by picking a shorter fixed time-out,
such as a few seconds [4,5]. For any particular sequence
of idle times, a best fixed time-out is the fixed time-out that
causes the least amount of energy to be consumed over the
sequence of idle times. The best fixed time-out depends
on the particular sequence of idle times; this information
about the future is unavailable to the spin-down algorithm
a priori.

We can compare the energy used by algorithms to the
minimum amount of energy required to service a sequence
of disk accesses. This minimum amount of energy is used
by the optimal algorithm, which “peeks” into the future
before deciding what to do after each disk access. If the
disk will remain idle for only a short time, then the optimal
algorithm keeps the disk spinning. If the disk will be idle
for a long time, so that the energy used to spin it back up
is less than the energy needed to keep the disk spinning,
then the optimal algorithm immediately spins it down. The
optimal algorithm uses a long time-out when the idle time
will be short and a time-out of zero when the idle time will
be long.

Although both the optimal algorithm and the best fixed
time-out use information about the future, they use it in
different ways. The optimal algorithm adapts its strategy
to each individual idle time, and uses the minimum possible
energy to service the sequence of disk requests. The best
fixed time-out is non-adaptive, using the same strategy for
every idle time. In particular, the best fixed time-out waits
some amount of time before spinning down the disk, and
so uses more energy than the optimal algorithm. Although
both the best fixed time-out and the optimal algorithm are
impossible to implement in any real system, they provide
useful information for evaluating the performance of other
algorithms.

A critical value of the idle period is when the energy cost
of keeping the disk spinning equals the energy needed to
spin the disk down and then spin it back up. If the idle time
is exactly this critical value then the optimal algorithm can
either immediately spin-down the disk or keep it spinning;
both actions incur the same energy cost.

We measure the energy cost to spin-down and then spin-
up the disk in terms of the number of seconds that this
amount of energy would keep the disk spinning. We call
this number of seconds the spin-down cost for the disk
drive.

One natural algorithm uses a fixed time-out equal to the
spin-down cost of the disk drive. If the actual idle time is
shorter than the spin-down cost, then this algorithm keeps
the disk spinning and uses the same amount of energy as the
optimal algorithm on that idle period. If the length of the

idle time is longer than the time-out, then this algorithm
waits until the time-out expires and then spin down the
disk. This uses exactly twice the spin-down cost in total
energy (to keep it spinning before the spin-down, and then
to spin it back up again). This is also twice the energy
used by the optimal algorithm on that idle period, since the
optimal algorithm would have immediately spun down the
disk. Therefore this algorithm never consumes more than
twice the energy used by the optimal algorithm.

An algorithm is called c-competitive or has a competitive
ratio of c if it never uses more then c times the energy used
by the optimal algorithm [11,19]. The preceding algorithm
is 2-competitive, and we refer to it as the 2-competitive
algorithm. It is easy to see that the 2-competitive algo-
rithm has the best competitive ratio of all constant time-out
algorithms.2

Because the 2-competitive algorithm uses a fixed time-
out, its performance never surpasses the best fixed time-
out. The 2-competitive algorithm uses one predetermined
time-out, guaranteeing that it is reasonably good for all
sequences of idle times, while the best fixed time-out is
computed for a particular sequence of idle times.

Randomized algorithms can be viewed as selecting time-
out values from some distribution, and can have smaller
(expected) competitive ratios. Although the competitive
ratio is still based on a worst-case idle time between ac-
cesses, the energy used is averaged over the algorithm’s
random choice of time-out.

Karlin et al. [12] give an expected (e/(e− 1))-compet-
itive randomized algorithm. If the spin-down cost is s,
their algorithm chooses a time-out at random from [0, s]
according to the density function

Pr(time-out = x) =
ex/s

e− 1

and is optimal in the following sense: every other distrib-
ution of time-outs has an idle time for which the distribu-
tion’s expected competitive ratio is larger than e/(e− 1).

Both the 2-competitive algorithm and the (e/(e− 1))-
competitive randomized algorithm perform competitively
even if the idle times are selected adversarially. Without
making some assumptions about the nature of the data, and
thus abandoning this worst case setting, it is difficult to
improve on these results.

One can get better bounds by assuming that the idle
times are drawn independently from some fixed (but un-
known) probability distribution instead of chosen adver-
sarially. With this assumption, the good time-out values
for the past idle times should also perform well in the fu-
ture. Krishnan et al. [13] introduced an algorithm that op-
erates in two phases. The first phase predicts arbitrarily
while building a set of candidate time-outs from the idle

2 Any algorithm that uses a larger time-out, say (1 + ∆)s, for a spin-down
cost s, is only (2 + ∆)-competitive when the idle times are large; an
algorithm that uses time-out smaller than s is less than 2-competitive
when the idle time is between its time-out and s.



D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers 287

Table 1
Energy and loss statistics during each trial.

Energy used by time-out =

 idle time if idle time 6 time-out

time-out + spin-down cost if idle time > time-out

Energy used by optimal =

 idle time if idle time 6 spin-down cost

spin-down cost if idle time > spin-down cost

Excess energy = Energy used by time-out− Energy used by optimal

Loss =
Excess energy

Spin-down cost

times. After obtaining enough candidate time-outs, the al-
gorithm then tracks the energy used by the candidates and
chooses the best candidate as its time-out. Their full al-
gorithm repeatedly restarts this basic algorithm with each
restart using more candidates and running for exponentially
increasing periods. When processing the tth idle period the
full algorithm tracks O(

√
t ) candidates, taking O(

√
t ) time.

They prove that the energy used by this full algorithm per
disk access approaches that of the best fixed time-out under
probabilistic assumptions.

The idle times in disk traces do not appear to be drawn
according to a simple fixed distribution. So, in contrast
to the above algorithms, we assume that the data is time
dependent, having both busy and idle periods. We use
a simple adaptive algorithm that exploits these different
periods by shifting its time-out after each trial. In trace-
driven simulations, our algorithm performs better than all
of the algorithms described above, and even conserves more
energy than the best fixed time-out.

Douglis et al. [3] studied some incrementally adaptive
disk spin-down policies. The policies they consider main-
tain a changing time-out value. When the disk access pat-
tern indicates that the current time-out value may be too
long or too short, the time-out is modified by an additive
or multiplicative factor. While we concentrate on the en-
ergy used by the spin-down algorithm, they pay particular
attention to those spin-downs likely to inconvenience the
user and analyze the trade-off between energy consumed
and these undesirable spin-downs. Golding et al. [5] eval-
uate similar incrementally adaptive policies.

3. Problem description

We interpret disk spin-down algorithms as computing,
after each disk access, a delay or time-out indicating how
long an idle disk is kept powered up before spinning it
down. We treat the problem as a sequence of trials, where
each trial represents the idle time between two consecutive
accesses to the disk. The disk is spun down if and only if
it remains idle for longer than the computed time-out.

We measure the performance of the algorithms in terms
of “seconds of energy” used, a measure introduced by
Douglis et al. [4]. One “second of energy” is the differ-
ence in energy consumed between a spinning disk and a

spun down disk over one second. One second of energy
corresponds to some number of joules, depending on the
model of disk drive used. Using seconds of energy al-
lows us to discuss disk drives in general while avoiding a
joules/second conversion factor.

We use the term “spin-down cost” to refer to the total
cost of choosing to spin down the disk. This cost equals
the energy required to spin the disk down (if any), plus
the energy needed to spin the disk back up. We measure
the spin-down cost in seconds of energy so that a spin-
down cost of s means that spinning the disk down and
starting it up again consumes as much energy as keeping
the disk spinning for s seconds. If we assume that a mobile
computer user’s disk usage is independent of the type of
disk, then the spin-down cost s is the only statistic about
the physical disk that we need for our simulations. Douglis
et al. [4] compute this value for two disks, giving spin-
down costs of 5 and 14.9 s. Golding et al. [5] give disk
statistics that correspond to a spin-down cost of 9 or 10 s.

We define the metrics in table 1 for measuring and com-
paring the performance of algorithms. The energy use of
an algorithm on a given trial depends on whether or not the
algorithm spins down the disk. The excess energy used by
the algorithm is the amount of additional energy used by
the algorithm over the optimal algorithm. We find it con-
venient to scale the excess energy, and denote this scaled
quantity for a time-out x as Loss(x).

4. Algorithm description

The share algorithm is a member of the multiplicative-
weight algorithmic family. This family has excellent perfor-
mance for a wide variety of on-line problems [2,15,16,20].
Algorithms in this family receive as input a set of “ex-
perts”, other algorithms which make predictions. On each
trial, each expert makes a prediction. The goal of the algo-
rithm is to combine the predictions of the experts in a way
that minimizes the total error, or loss, over the sequence.
Algorithms typically keep one weight per expert, represent-
ing the quality of that expert’s predictions, and predict with
a weighted average of the experts’ predictions.

After each trial the weights of the experts are updated:
the weights of misleading experts are reduced (multiplied



288 D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers

by some small factor), while the weights of good experts
are usually not changed. The more misleading the expert
the more drastically the expert’s weight is reduced. This
method causes the predictions of the algorithm to quickly
converge to the those of the best expert.

Herbster and Warmuth developed a “sharing update” [10]
that takes some of the weight of each misleading expert and
“shares” it among the other experts. Thus, an expert whose
weight was severely slashed, but is now predicting well,
quickly regains its influence on the algorithm’s predictions.
This adaptability allows the algorithm to exploit the bursty
nature of disk accesses and perform better than the best
fixed time-out.

For the disk spin-down problem, we usually interpret
each expert as a different fixed time-out, although we use
algorithms as experts in section 5.8. In our experiments we
used n = 25 experts whose predictions are exponentially
spaced fixed time-outs between zero and the disk’s spin-
down cost. Although it is easy to construct traces where
the best fixed time-out is larger than the spin-down cost, this
does not seem to happen in practice. Reducing the space
between experts tends to improve the algorithm’s perfor-
mance. On the other hand, the running time and memory
requirements of the algorithm increase as additional experts
are added.

We denote the predictions of the experts as x1 to xn
(which are fixed). The weights of the experts, denoted by
w1 to wn, are initially set to 1/n. We use Loss(xi) to denote
the loss of expert i on a given trial.

The share algorithm uses two additional parameters. The
learning rate, η > 1, controls how rapidly the weights
of misleading experts are reduced. The share parame-
ter, 0 < α < 1, governs how rapidly a poorly predicting
expert’s weight recovers when it begins predicting well.
These parameters must be chosen carefully to prove good
worst-case bounds on the learning algorithm. However,
the real-world performance of multiplicative weight algo-
rithms appears less sensitive to the choice of parameters;
see Blum [1] for another example. In our experiments, akin
to a “train and test” regimen, we used a small portion of
the data (the first day of one trace) to find good values for
η and α, and then use those settings on the rest of the data
(the remaining 62 days). We chose η = 4.0 and α = 0.08.
Small perturbations in these parameters have little effect
on our results. The performance of the algorithm on our
baseline disk changes by less than a factor of 0.0023 as α
varies in the range 0.05 to 0.1. Similarly, different values
of η between 3.5 to 4.5 cause the algorithm’s performance
to change by at most a factor of 0.0007.

We can now precisely state the variant of Herbster and
Warmuth’s [10] variable-share algorithm that we use. We
denote the time-outs used by the n experts as x1, . . . ,xn,
the time-out computed for each trial as time-out, the spin-
down cost as spin-down, and the idle time and optimal
energy for each trial as idle and optimal, respectively.

On each trial the algorithm:

1. Uses a time-out equal to the weighted average of the
experts’ time-outs

time-out =

∑n
i=0 wixi∑n
i=0 wi

.

2. Computes the loss of each expert xi

Energy(xi) =

{
idle if idle < xi,

time-out + spin-down otherwise,

Loss(xi) =
Energy(xi)− optimal

spin-down
.

3. Reduces the weights of poorly performing experts

w′i = wie−ηLoss(xi).

4. Shares some of the remaining weights

pool =
n∑
i=1

w′i
(
1− (1− α)Loss(xi)

)
,

w′′i = (1− α)Loss(xi)w′i +
1
n

pool.

The new w′′i weights are used in the next trial.
The algorithm runs in constant time and space where

the constants depend linearly on n, the number of ex-
perts. However, the algorithm as stated above will contin-
ually shrink the weights towards zero. Our implementation
avoids underflow problems by bounding the ratio between
weights and periodically rescaling them.

5. Experimental results

We present trace-driven simulation results showing that
the share algorithm outperforms the best strategies currently
available. We extend our previous work [9] by examining
the spacing between and the number of experts, varying
parameters that govern how quickly the algorithm learns,
and adding other types of experts, such as adaptive algo-
rithms. We present improvements on the share algorithm
that allow it to run with fewer experts and use less energy
than previously reported.

5.1. Methodology

We used traces of HP C2474s disks collected from April
18, 1992 through June 19, 1992 (63 days) as described
by Ruemmler and Wilkes [18]. These traces came from
three different Hewlett-Packard computer systems, all run-
ning release 8 of the HP-UX operating system, which uses
a version of the BSD fast file system [17]. The trace data
were obtained using a kernel-level trace facility built into
HP-UX that is extremely light-weight and adds no notice-
able processor load to the system. The data were logged to
dedicated disks to avoid perturbing the system being mea-
sured. Each trace record contained the following data about
a single physical I/O:



D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers 289

• timings, to microsecond resolution, of enqueue time
(when the disk driver first sees the request); start time
(when the request is sent to the disk) and completion
time (when the request returns from the disk);

• disk number, partition and device driver type;

• start address (in 1 kilobyte fragments);

• transfer size (in bytes);

• the drive’s request queue length upon arrival at the disk
driver, including the current request;

• flags for read/write, asynchronous/synchronous, block/
character mode;

• the type of block accessed (i-node, directory, indirect
block, data, super block, cylinder group bit map).

For the initial train-and-test regimen, one disk was se-
lected and its trace data for the first day was used to find
reasonable settings for the parameters. The values deter-
mined from this partial trace are 25 exponentially distrib-
uted experts, η = 4, and α = 0.08. These were used to test
the share algorithm against the other algorithms, including
the 2-competitive algorithm, the randomized (e/(e− 1))-
competitive algorithm, (an approximation to) the best fixed
time-out, and the optimal algorithm, all described in sec-
tion 2. As the best fixed time-out is very expensive to
compute, we compute only an approximation. The pos-
sible error in this approximation is analyzed in section 6.
The optimal algorithm’s performance provides an indica-
tion of how far we have come and how much room is left
for improvement.

After confirming that the share algorithm outperformed
the others using these parameter settings, we then varied
several properties of the share algorithm. These variations
included the distribution of the experts (uniform, harmonic,
and exponential), the number of experts 5 < n < 100,
the types of experts (fixed value and four incrementally
adaptive algorithms), the learning rate 1 < η < 30 (range
of 1–30), and the share rate 0.03 < α < 0.9. Each para-
meter was examined independently and the most promising
variations were tried in combination.

Although very few experts performed relatively poorly,
our tests indicate that 10 experts predict nearly as well as
100 experts. The distribution of the experts also has a large
impact on the share algorithm’s performance. For all para-
meter settings, exponentially spaced experts outperformed
uniformly spaced experts. We also found that when ex-
ponentially spaced experts were used, the share and learn-
ing rate could be varied within reasonable ranges without
significantly increasing the energy used by the algorithm.
Exponentially spaced experts allow fewer resources to be
used, since fewer experts are needed, and tolerate a wide
range of values for the learning and share rate, thus reduc-
ing the need to fine tune the algorithm to match the data.

5.2. Share versus fixed time-out

Figure 1 summarizes the main experimental results of
this article. For each value of the spin-down cost, we show
the daily energy use (averaged over the 62 day test pe-
riod) for all the algorithms described in this section: the
2-competitive algorithm, the (e/(e− 1))-competitive ran-
domized algorithm, the approximate best fixed time-out,
and the share algorithm using 25 exponentially spaced ex-
perts, with η = 4 and α = 0.08. We also include the energy
use of the optimal algorithm, one minute and 30-second
fixed time-outs for comparison and to give some idea of
scale and the limits on possible improvements. The fig-
ure shows that the share algorithm is better than the other
practical algorithms, and even outperforms the best fixed
time-out. Our implementation uses between 88% (at spin-
down cost 1) and 96% (at spin-down cost 20) of the energy
used by the best fixed time-out. When averaged over the
20 time-outs, our implementation uses only 94% of the en-
ergy consumed by the best fixed time-out.

Figure 2 plots the excess energy used by each algorithm
beyond that used by the optimal algorithm. This indicates
how much more energy was used by the algorithm than the
theoretical minimum energy required. Compared to the per-

Figure 1. Average energy use per day as a function of the spin-down cost.

Figure 2. Average excess energy per day as a function of the spin-down
cost.



290 D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers

formance of a one minute fixed time-out, we see a dramatic
improvement. Over the twenty spin-down costs, the share
algorithm averages an excess energy of merely 26.1% the
excess energy of the one minute time-out. In terms of total
energy, the share algorithm uses 54.7% of the total energy
used by the one minute fixed time-out (averaged over the
different spin-down costs). Stated another way, if the bat-
tery is expected to last 4 h with a one min time-out (where
1/3 of the energy is used by the disk) then almost 45 min
of extra life can be expected when the share algorithm is
used.

Notice that the (e/(e− 1))-competitive randomized al-
gorithm performs slightly worse than the 2-competitive al-
gorithm. This is easily explained when we consider the
distribution of idle times in our traces. Most idle times are
short – much shorter than the spin-down cost – and the
2-competitive algorithm performs optimally on the short
idle times. Only when the disk stays idle for longer than
the spin-down cost does the 2-competitive do the wrong
thing. The (e/(e− 1))-competitive randomized algorithm
performs (e/(e− 1))-competitively for all idle times, in-
cluding those shorter than the spin-down cost.

Another class of algorithms adapts to the input patterns,
deducing from the past which values are likely to occur
in the future. This approach was taken by Krishnan et al.
[13] (see section 2). Their algorithm keeps information
that allows it to approximate the best fixed time-out for the
entire sequence, and thus its performance is about that of
the best fixed time-out. We use an algorithm that takes
this approach a step further. Rather than looking for a
time-out that has done well on the entire past, the share
algorithm attempts to find a time-out that has done well
on the recent past. As figure 2 shows, the share algorithm
consistently outperforms the best fixed time-out, consuming
an average of 77% of the excess energy consumed by the
best fixed time-out. The share algorithm outperforms the
best fixed time-out by exploiting time dependencies in the
input values.

5.3. Share versus other adaptive algorithms

Douglis et al. [3] considered a family of incrementally
adaptive spin-down schemes. These schemes change the
time-out after each idle time by either an additive or multi-
plicative factor. When an idle time is “long” the time-out is
decreased to spin down the disk more aggressively. When
an idle time is “short” the time-out is increased to reduce
the chance of an inappropriate spin-down.

The traces are composed mostly of short idle times, so
there is the danger that an adaptive algorithm’s time-out
value will quickly become too large to be effective (see
table 3). To prevent this problem we upper bound the time-
out at 10 s, the same value as the largest expert used by
the share algorithm. The incrementally adaptive algorithms
perform poorly without this bound.

We consider three ways of increasing the time-out: dou-
bling (×2.0), adding 1 s (+1.0), and adding 0.1 s (+0.1).

Table 2
Spin-downs and energy costs in seconds of the adaptive algorithms, aver-

aged over the two-month traces. The spin-down cost is 10 s.

Trace 1 Trace 2 Trace 3

Algorithm SDs cost SDs cost SDs cost

Daily best fixed 2036 32566 741 12163 409 4887
Share algorithm 1894 30436 707 11676 371 4784

10 s time-out 1358 36890 494 13833 294 6613

Adaptive
increase decrease

+0.1 −0.1 1378 37412 496 13792 295 6376
+0.1 −1.0 1472 34925 649 12964 312 5630
+0.1 ÷2.0 1775 31424 788 12551 357 4923
+1.0 −0.1 1378 37418 494 13813 294 6577
+1.0 −1.0 1379 37261 505 13478 294 6445
+1.0 ÷2.0 1441 35590 564 12666 303 5742
×2.0 −0.1 1361 36859 499 13783 295 6594
×2.0 −1.0 1392 36548 549 13431 299 6502
×2.0 ÷2.0 1542 35529 686 13239 320 6158

Table 3
Frequencies of idle time ranges in a typical day of
the trace. There are 142,694 idle times in this day.

Idle time (s) Frequency count

0 37,252
0–1 102,146
1–10 1,747

10–30 917
31–100 498
100–600 131
>600 3

Similarly, we decrease the time-out three ways: halving
(÷2.0), decreasing by 1 s (−1.0), and decreasing by 0.1 s
(−0.1). This gives us nine variations in the incremen-
tally adaptive family. Similar variations were also used
in Douglis et al. [3] and Golding et al. [6]. The time-out
should never become negative, so we constrained the time-
out to be at least one decrement amount above zero.

We compared each of these nine algorithms with the
share algorithm and the daily best time-outs on three dif-
ferent traces. The results are presented in table 2.

The better incrementally adaptive algorithms decrease
the time-out rapidly but increase it only slowly. Decreasing
the time-out rapidly allows greater savings if the next idle
time is long. The disadvantage of a rapid decrease is that
an inappropriate spin-down may occur if the next idle time
had an intermediate duration. However, the preponderance
of small idle times (see table 3) makes this unlikely. A slow
increase in the threshold allows the algorithm to perform
well when two nearby long idle times are separated by one
or two short idle times.

Table 2 shows that some of the incrementally adaptive
algorithms are primarily exploiting the 10 s bound on their
time-outs. Since any spin-down done by the 10 s time-out is
also done by all of the other algorithms, we can infer that
some of the add/subtract algorithms do exactly the same
spin-downs as the 10 s time-out, although sometimes they



D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers 291

Figure 3. Energy cost of fixed time-outs, Monday, April 20 using a spin-
down cost of 10.

Figure 4. Time-outs suggested by the algorithm, on each successive trial
during a 24 h trace, with a spin-down cost of 10.

may do these spin-downs with a slightly smaller time-out.
An interesting property of table 2 is that the daily best

fixed time-out uses slightly less energy than the share al-
gorithm on trace 2. This is due in part to the fact that the
best fixed time-out is recalculated for each day’s data. On
trace 2, it varies from about 1 s to about 6 s depending
on the day. If the same time-out was used every day then
energy consumed would certainly be larger than that used
by the share algorithm.

5.4. Predictions of the share algorithm

Figure 4 shows the predictions of the algorithm during a
portion of a typical day (Monday, April 20), using a spin-
down cost of 10 and 100 uniformly spaced experts.3 The
figure also shows the best fixed time-out for each 5 min in-
terval. Note that it is unreasonable to expect any practical
algorithm to perform as well as the best fixed time-outs on
small intervals. This figure illustrates some interesting as-
pects of the share algorithm. We can see that the time-outs

3 Since the improvements using exponentially spaced experts are in the
3–5% range, the comparison here should also apply to exponentially
spaced experts.

Figure 5. Average spin-downs for each algorithm as a function of spin-
down cost.

used by the share algorithm vary dramatically, by at least
an order of magnitude. While the disk is idle, the predic-
tions become smaller (smaller than the best fixed time-out),
and the algorithm spins the disk down more aggressively.
When the disk becomes busy, the algorithm quickly jumps
to a much longer time-out. These kinds of shifts occur
often throughout the trace, sometimes every few minutes.
The time-outs issued by the share algorithm tend to follow
the best fixed time-outs over five minute intervals, which
in turn reflects the bursty nature of disk accesses. Due to
our choice of experts, the share algorithm can only make
predictions less than or equal to the spin-down cost (10 in
this example). However, as figure 4 shows, sometimes the
best fixed time-out is not in this range. Yet, our perfor-
mance remains good overall. The explanation for this is
that when the best fixed time-out is large there is a large
region which is nearly flat, with all time-outs in the region
using similar amounts of energy.

5.5. Spin-downs

One way to measure intrusiveness is by the number of
spin-downs. Figure 5 shows the average number of spin-
downs used per day as a function of the spin-down cost
for the share algorithm, the best fixed time-out, the optimal
algorithm, and the one minute fixed time-out. We can see
from this figure that the share algorithm recommends spin-
ning the disk down less often than the (daily) best fixed
time-outs. Our simulations show that the share algorithm
tends to predict when the disk will be idle more accurately
than the best fixed time-out, allowing it to spin the disk
down more quickly when both algorithms spin down the
disk. In addition, the share algorithm more accurately pre-
dicts when the disk will be needed, enabling it to avoid
disk spin-downs ordered by the best fixed time-out. Be-
cause the share algorithm spins the disk down less often, it
is also likely to minimize inconvenience to the user.



292 D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers

5.6. Spacing of experts

The performance of the share algorithm changes when
different spacings of the experts are used. We looked at
three distributions of constant value experts: uniform, har-
monic, and exponential. Both the harmonic and exponential
spacings have more experts with small time-out values. As
shown in figure 6, this bias decreases the average average
energy used. Exponentially spaced experts with a base of
2.0 perform as well as or better than harmonically spaced
experts, which performed better than uniformly spaced ex-
perts for all spin-down costs.

The relative energy consumed between the types of ex-
pert spacings dependends on the values chosen for the
learning and share rate. When η = 4 and α = 0.08, all
three spacings performed approximately the same. In gen-
eral, higher share rates were better when using exponential
spacing while uniform spacing preferred lower share rates.
However, the average energy used by exponential spacing
was almost always lower than that used by uniform spacing.

The base used for the exponential spacing interacts with
the other parameters in complicated ways. Figure 7 shows
the energy used as a function of the base for two different

Figure 6. Share algorithm with varying expert spacings (50 experts, η = 1,
α = 0.8).

Figure 7. Share algorithm with exponential spacing and a spin-down cost
of 10.

settings of the other parameters. When a small base is
used, the resulting distribution is closer to uniform, and
the algorithm is more sensitive to the choices of the other
parameters. When large bases are used, the algorithm is
more stable and tends to perform better with larger values
for the other parameters.

We ran several experiments where the learning rate was
fixed at η = 4 (a good value for all spacings) while the
share rate was varied. The exponentially spaced experts
performed best with higher share rate, and that both spac-
ings were somewhat insensitive the the actual share rate
chosen. Interestingly, base 1.5 and 2.0 both performed
steadily better as the share rate was increased. For uniform
spacing, the optimal value was somewhere around 0.08.
Thus, uniform spacing and exponential spacing performed
best with share rate values at the opposite ends of the spec-
trum.

Finally, we fixed the share rate at α = 0.08 and varied
the learning rate. For all spin-down costs and spacings, a
learning rate η between about 3.5 and 4.5 produced the best
results. In almost all cases, the exponentially spaced experts
used slightly less energy than the uniformly spaced experts
for moderate η < 5. Although the performance of both
spacings degraded with larger η, when η > 9, the uniformly
spaced experts were more robust against extremely large η
values.

In summary, exponentially spaced experts using either
base 1.5 or 2.0 perform nearly the same when 1 < η < 9,
and though uniformly spaced experts perform a little worse
in this wide range, they do perform reasonably well. For the
share rate, exponentially spaced experts performed the best
with the largest share rate, while uniformly spaced experts
performed best with a much lower share rate of about 0.08.
The algorithms performed most efficiently with an exponen-
tial spacing using either base 1.5 or base 2.0, and with η
between 3 and 5, and α at 0.9. Picking exponential spacing
over uniform spacing seemed to have a greater impact on
the energy used than selecting the particular learning and
share rate from a reasonable range. Although the η and
α parameters must be carefully chosen for the worst-case
bound proofs, for practical purposes the choice of these
parameters tended to have only a small impact on the al-
gorithm’s performance. This observation is in agreement
with other empirical work on multiplicative weight algo-
rithms [1].

5.7. Number of experts

We examine how the share algorithm performs when
the number of experts varies, as the running time of the
algorithm is proportional to the number of experts used.
Figure 8 shows that for uniform spacing there is a noticeable
jump in energy usage between 5 and 10 experts with an
average energy increase of 1.5%. However, the difference
between 10 and 100 experts is small, only about 0.4%.

We observe similar behavior when using exponentially
spaced experts with a base of 1.5. However, if the base is



D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers 293

Figure 8. Share algorithm with uniform spacing and varying number of
experts.

larger (2.0) then the difference between 5 and 10 experts
drops to only 0.1%. These results lead us to believe the
share algorithm can be reliably configured to use as few
as 10 experts, allowing the algorithm to run faster and use
fewer resources.

5.8. Adding other adaptive algorithms

We also attempt to improve performance by using adap-
tive experts in addition to the fixed constant experts. We
consider a set of incrementally adaptive algorithms first
used by Douglis et al. [3] (see section 2). We use four
variations of this algorithm: for “long” idle times, we ei-
ther decrease the time-out by subtracting 1 s or by halving
it, and for “short” idle times, we either increase the time-
out by adding 1 s or doubling it. We add each of the
four adaptive algorithms singly and in combination to the
pool of constant value experts in the share algorithm with
both uniform and exponential spacing. When added singly,
none of the four algorithms makes a noticeable difference
in the average daily energy usage. The “decrease by half,
increase by adding one” algorithm has the most noticeable
effect, but even it decreased the average daily energy used
over all spin-down costs by only 0.2%. Similarly, when
we look at the effect of including all four adaptive algo-
rithms for uniformly spaced constant experts, the average
improvement in energy is only 0.5%, with most of this
improvement in the lower spin-down costs.4

A similar pattern appears when using exponential base
1.5 spacing for the pool of constant value experts, though
the improvement in energy usage is slightly higher, aver-
aging 1.6% over all spin-down costs.5

4 For spin-down costs between 1 and 7, the average improvement is 1.6%,
but for spin-down costs between 8 and 14, the most likely costs for real
disk usage, this improvement is only 0.2%. For spin-down costs from 15
to 20, the energy usage increases by 0.3% when the adaptive algorithms
are added.

5 For spin-down costs between 1 and 7, the average improvement is a not-
icable 4.3%, but for spin-down costs between 8 and 14, the improvement
shrinks to 0.5%. For spin-down costs from 15 to 20, the energy usage
increases by 0.2% when the adaptive algorithms are added.

From this we conclude that adding adaptive algorithms
makes little difference in the performance of the algorithms
for most spindown costs, and in certain situations, may
even increase the amount of energy consumed. Since the
adaptive algorithms add complexity, there is no significant
benefit in including them in the pool of experts, unless the
spindown cost is very small.

6. Theoretical justification

The best fixed time-out could be any of the idle times
in the trace, so straightforward techniques for computing
the best fixed time-out require order n2 calculations, where
n is the number of idle times in the trace. A day’s trace
data often contains millions of idle times, ruling out this
approach. Instead, we use an approximation to the cost of
the best fixed time-out in the previous section. Our ap-
proximation method calculates the energy use of 10,000
time-outs evenly spaced between 0 and 100 s on each day
of the trace. Because the energy cost is a discontinuous
and nonmonotonic function of the time-out, it is not im-
mediately clear that this method closely approximates the
energy used by the best fixed time-out. In this section we
bound the error in our approximation.

There are two possible reasons why the approximation
may severely overestimate the energy used by the best fixed
cutoff. First, the best fixed cutoff may be larger than 100
seconds. We upper bound the value of the best fixed time-
out in section 6.1 to ensure that our approximation method
uses large enough time-outs. Second, the best fixed time-
out is likely to fall between two of the time-outs analyzed.
We bound the error due to this effect in section 6.2.

6.1. Maximum possible best fixed time-out

In our experiments, the share algorithm uses experts
whose time-out values are no larger than the spin-down
cost. This natural choice6 is appropriate for the trace data
available, but may not be adequate in general. Here we de-
termine analytically a tight upper bound on the best fixed
time-out in terms of the length (in multiples of the spin-
down cost) spanned by the sequence of disk requests. In
particular, if the sequence of idle times is t spin-down costs
long then there is a best fixed time-out at most Ht, the tth
harmonic number. We show that this upper bound can be
achieved, and that every sequence of disk accesses has a
best fixed time-out no greater than this upper bound. We
present the analysis for a spin-down cost of one second.
This analysis can be generalized by re-scaling the time unit.

We use particular sequences of idle times in our analy-
sis. We call these idle times the harmonic idle times to em-
phasize their connection with the harmonic numbers, Hn

(Hn =
∑n
i=1 1/i ≈ lnn, and H0 = 0). In particular, the

6 It is easy to see that when a single idle time is considered, the best
time-out value is either 0 (if the idle time is greater than the spin-down
cost) or the spin-down cost (if the idle time is smaller).



294 D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers

harmonic idle times of order t are the set of t idle times
{h0,t,h1,t, . . . ,ht−1,t}, where each hi,t = Ht − Hi. Note
that h0,t is the largest idle time in the set and ht−1,t is the
smallest.

We show in the appendix (theorem 1) that the time-out
Ht is a best fixed time-out for the harmonic idle times
of order t. By perturbing the harmonic idle times we get a
sequence of idle times of length t−ε (for any ε > 0) whose
smallest best fixed time-out is Ht−ε. Furthermore, we use
these harmonic idle times to show that every sequence of
idle times of length t has a best fixed time-out less than Ht

(theorem 2). This implies that the best fixed time-out for a
24 h trace is less than 100 s when the spin down cost is 10
or less.

6.2. Bounding the overestimation of the best fixed
time-out’s cost

As noted earlier, computing the exact cost of the best
fixed time-out is prohibitively expensive, so we overesti-
mate of this cost. In this section we show that the esti-
mated cost is not more than 0.05% above the actual cost
of the best fixed time-out for spin-down costs above 6, and
always within 0.25% of the best fixed time-out’s cost.

Assume that we have computed the cost of two time-
outs, t0 and tg = t0 + g (we use g = 1/100 of a second).
Let tε = t0 + ε for some 0 6 ε < g be the best time-out
between t0 and tg. We use information from the trace to
bound the cost of tε in terms of the cost of t0. We prove
our bound only for case where t0 = 0. The generalization
to t0 > 0 is straightforward once one realizes that time-outs
tε, t0, and tg all keep the disk spinning until the idle time
exceeds t0.

We define some additional notation before proceeding:

• n1 is the number of idle times falling between t0 and tε.

• n2 is the number of idle times falling between tε and tg.

• n is the number of idle times falling between t0 and tg,
n = n1 + n2.

• l1 is the sum of the lengths of the n1 idle times falling
between t0 and tε.

• l2 is the combined length of the n2 idle times falling
between tε and tg .

• l is the combined length of the n idle times falling be-
tween t0 and tg, l = l1 + l2.

• m is the total number of idle times that are larger
than tg .

• s is the spin down cost, we assume that s > g.

The situation we consider is shown in figure 9.
We want a bound on the cost of tε that depends only on

information easily computed from the trace. In particular,
our bound depends only on n, m, l, and the cost of t0. We
assume nothing about the distribution of lengths of the n
idle times, other than that their total length is l.

The cost of time-outs t0 and tε can be related as fol-
lows. On the n1 idle periods between t0 and tε, time-out tε

Figure 9. Notation for section 6.2.

keeps the disk spinning. This saves n1 spin-downs at the
cost of l1 extra spin time compared with time-out t0. On
each of the n2 + m longer idle times, time-out tε waits
an extra ε seconds before spinning down the disk. This
costs ε(n2 +m) more seconds of energy compared with t0.
Thus,

cost(tε) = cost(t0)− n1s+ l1 + ε(n2 +m)

= cost(t0)− (n− n2)s+ l − l2 + ε(n2 +m).

Recall that l2 is the total length of the n2 idle periods
with lengths between ε and g, so l2 6 gn2. Continuing
with this substitution we have

cost(tε)> cost(t0)− (n− n2)s+ l − gn2 + ε(n2 +m)

> cost(t0) + l + εm− ns+ n2(s− g + ε). (1)

We assumed that s > g, so the factor multiplying n2 is
positive. We consider two cases based on the value of ε.

First, if ε > l/n then we can underestimate n2 by 0 to
obtain

cost(tε)> cost(t0) + l + εm− ns

> cost(t0) + l +
lm

n
− ns. (2)

For the second case, 0 6 ε 6 l/n. As l2 6 gn2,

n2 >
l2
g
> l − l1

g
> l − εn

g
.

In the last line we used the fact that l1 is the combined
length of the n1 idle times, each of which is less than ε
long, so l1 6 εn1 6 εn. Substituting this in inequality (1)
yields

cost(tε)> cost(t0) + l + εm− ns+
l − εn
g

(s− g + ε)

> cost(t0)− ns+
ls

g
+ ε

(
m+ n− ns− l

g

)
− ε2n

g
.

This last bound is quadratic in ε with a negative second
derivative, so it is minimized at one of the endpoints, ε = 0
or ε = l/n. Thus, after cancelation,

cost(tε)

> min

[
cost(t0)− ns+

ls

g
, cost(t0)− ns+

lm

n
+ l

]
.

(3)



D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers 295

The bound of inequality (2) (the first case) is exactly
equal to the second term of the minimum, so the cost of
any tε from either case is underestimated by inequality (3).

For the disk traces used in most of our results, inequal-
ity (3) verifies that we never overestimate the cost of the
best fixed time-out by more than 0.25%. Inequality (3)
tends to be weakest for smaller spin-down costs. When
the spin-down cost is at least 6, then our estimates of the
best fixed time-out’s costs are no more than 0.05% (one-
twentieth of one percent) greater than its actual value on
any particular day.

7. Future work

Several variations on the share algorithm have the poten-
tial to dramatically improve its performance. In particular,
we are interested in better methods for selecting the al-
gorithms learning rate and share rate. It may be possible
to derive simple heuristics that provide reasonable values
for these parameters. A more ambitious goal is to have
the algorithm self-tune these parameters based on its past
performance. Although cross validation and structural risk
minimization techniques [21] can be used for some para-
meter optimization problems, the on-line and time-critical
nature of this problem makes it difficult to apply these tech-
niques.

One issue that deserves further study is how the ad-
ditional latency imposed by disk spin-down impacts the
user and their applications, but this is difficult to quan-
tify. A second important question is how algorithms like
the share algorithm perform on other power management
and systems utilization problems, such as transceiver power
management.

8. Conclusions

We have shown that a simple machine learning algorithm
is an effective solution to the disk spin-down problem. The
algorithm adapts to the pattern of recent disk activity, ex-
ploiting the bursty nature of user activity. This algorithm
performs better than all other known algorithms, using less
than half the energy consumed by a standard one minute
time-out. The algorithm even outperforms the best fixed
time-out that requires knowledge of the future.

Other algorithms for the disk spin-down problem either
make worst-case assumptions or attempt to approximate
the best fixed time-out over an entire sequence. Although
these algorithms have good worst case bounds, they do
not necessarily perform well in practice. Our simulations
show that our learning algorithm outperforms the worst-
case algorithms.

We believe that the disk spin-down problem is just one
example of a wide class of rent-to-buy problems for which
our learning algorithm is well suited. Other problems in
this class are of importance to mobile computing, such as:

power management of a wireless interface, admission con-
trol on shared channels, and a variety of other power man-
agement problems. Other problems where the algorithm
can be applied include: deciding when a thread that is try-
ing to acquire a lock should busy-wait or context switch
and computing virtual circuit holding times in IP-over-ATM
networks [13].

Our implementation of the share algorithm is efficient,
taking taking constant space and constant time per trial.
This constant is adjustable, and adjusts the accuracy of the
algorithm. For the results presented in this article, the total
space required by the algorithm is never more than about
2400 bytes, and our implementation in C requires about 100
lines of code. This algorithm could be implemented on a
disk controller, in the BIOS, or in the operating system.

Acknowledgements

We are deeply indebted to J. Wilkes, R. Golding, and
the Hewlett-Packard Company for making their file system
traces available to us. We are also grateful to M. Herbster
and M. Warmuth for several valuable conversations, and the
anonymous reviewers for their many helpful comments.

Appendix. Theoretical justification for harmonic idle
times

We first verify that the harmonic idle times of order t
have total length equal to t.

t−1∑
i=0

hi,t =
t−1∑
i=0

(Ht −Hi) (A.1)

= tHt −
t−1∑
i=0

Hi (A.2)

= tHt − tHt + t (A.3)

= t. (A.4)

To get line (A.4) requires the following identity,

k−1∑
i=0

Hi = kHk − k, (A.5)

which is easily proven by induction.
We use two simple facts about best fixed time-out times

in our analysis. First, adding an idle interval of length 0 to
a set of idle times never changes the set of the best fixed
time-outs. This is because the additional idle time adds the
same cost, namely 0, to all fixed time-outs. The second
fact is given in the following lemma.

Lemma 1. Every best fixed time-out is either 0, one of the
idle times, or greater than any of the idle times.

Proof. By contradiction. Suppose that a sequence of idles
times has a best fixed time-out c that is positive, less than



296 D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers

the largest idle time in the sequence, and not equal to any
of the idle times in the sequence. From the first fact we can
assume that there is a zero-length idle time in the sequence,
so the sequence contains at least one idle time less than c.
We now consider the time-out c′ equaling the largest idle
time in the sequence that is smaller than c. The costs of
time-outs c and c′ are the same on those idle times less
than c (recall that the disk drive is spun down only if the
idle time exceeds the time-out). Furthermore, the cost of c′

is strictly less than the cost of c on the larger idle times.
Therefore, c′ is a strictly better fixed time-out than c, and c
is not a best fixed time-out. �

We are now ready to show that the best fixed time-outs
for the harmonic idle periods of order t have cost equal
to t.

Theorem 1. When the sequence of idle times is the har-
monic idle periods of order t, every fixed time-out has cost
at least t.

Proof. From lemma 1 above, we need only show that
time-outs equal to idle times in the sequence have cost
at least t. Consider a time-out c equal some hi,t for an
arbitrary 0 6 i < t. The cost of this time-out c is

i−1∑
j=0

(1 + hi,t) +
t−1∑
j=i

hj,t

= i(1 + hi,t) +
t−1∑
j=0

hj,t −
i−1∑
j=0

hj,t

= i(1 +Ht −Hi) + t−
i−1∑
j=0

(Ht −Hj)

= i+ iHt − iHi + t− iHt +
i−1∑
j=0

Hj

= i− iHi + t+ iHi − i = t.

We used the fact that the sum of the idle times is t in the
third line, and equation (A.5) in the fourth line. �

By slightly perturbing the harmonic idle periods of or-
der t (i.e., decreasing the length of the longest one by
some ε) we obtain a sequence of idle times spanning t− ε
seconds where the best fixed time-outs are all at least
Ht − ε ≈ ln t. The following theorem shows that every
sequence of idle times spanning no more than t time units
has a best fixed time-out that is at most Ht.

Theorem 2. If S = {i0, i1, . . . , in−1} is a non-empty se-
quence of idle times where

∑n−1
j=0 ij 6 t, then S has a best

fixed time-out less than Ht.

Proof. We assume to the contrary that some non-empty
sequence of idle times S with total length at most t has

no best fixed time-out less than or equal to Ht. Without
loss of generality, we index the n idle times in S such that
i0 > i1 > · · · > in−1. Because additional length zero idle
times do not affect the best fixed time-outs, we assume that
S contains at least t idle times (so n > t).

Furthermore we assume that the smallest best fixed time-
out for S is equal to i0. This assumption is valid because
if some ij is the smallest best fixed time-out for S then
ij remains the smallest best fixed time-out for the new se-
quence of idle times created when all longer idle times (i0,
i1, . . . , ij−1) are reduced to ij as the costs of time-out ij
and all smaller time-outs are unchanged. The new sequence
preserves the original properties of S as well as satisfying
this last assumption.

Note that i0, the longest idle time in S, is greater than
Ht = h0,t. Let k be the largest index such that ik > hk,t.
Because

∑t−1
j=0 hj,t = t >

∑t−1
j=0 ij , there will be some

j < t, where ij 6 hj,t.
We now consider the cost of the fixed time-out hk,t on

sequence S. Note that for each idle time ij , if j < k then
the disk will be spun down after waiting hk,t time units,
and if j > k then the disk will remain spinning for the
duration of the idle time. Therefore,

costhk,t (S) = k(hk,t + 1) +
n−1∑
j=k

ij

= kHt − kHk + k +
n−1∑
j=k

ij

= kHt −
k−1∑
i=0

Hi +
n−1∑
j=k

ij

=
k−1∑
j=0

(Ht −Hj) +
n−1∑
j=k

ij

=
k−1∑
j=0

hj,t +
n−1∑
j=k

ij 6
n−1∑
j=0

ij (A.6)

and the cost of time-out hk,t is less than the total length of
the sequence S. But no time-out can have a cost less than
a best fixed time-out, and the cost of the best fixed time-out
i0 on S is simply the total length of S, because the disk is
always kept spinning. This contradicts inequality (A.6). �

References

[1] A. Blum, Empirical support for Winnow and weighted-majority-
based algorithms: Results on a calendar scheduling domain, in:
Proc. of the 12th Internat. Conf. on Machine Learning (Morgan
Kaufmann, San Mateo, CA, 1995) pp. 64–72.

[2] N. Cesa-Bianchi, Y. Freund, D. Haussler, D.P. Helmbold,
R.E. Schapire and M.K. Warmuth, How to use expert advice, Techni-
cal Report UCSC-CRL-94-33, University of California, Santa Cruz
(1994).

[3] F. Douglis, P. Krishnan and B. Bershad, Adaptive disk spin-down
policies for mobile computers, in: Proc. of the 2nd Usenix Sympo-



D.P. Helmbold et al. / Adaptive disk spin-down for mobile computers 297

sium on Mobile and Location-Independent Computing, Ann Arbor,
MI (Usenix Association, April 1995).

[4] F. Douglis, P. Krishnan and B. Marsh, Thwarting the power-hungry
disk, in: Proc. of the Usenix Technical Conf., San Francisco, CA
(Usenix Association, 1994) pp. 292–306.

[5] R. Golding, P. Bosch, C. Staelin, T. Sullivan and J. Wilkes, Idleness
is not sloth, in: Proc. of the Usenix Technical Conf., New Orleans
(Usenix Association, January 1995) pp. 201–212.

[6] R. Golding, P. Bosch and J. Wilkes, Idleness is not sloth, Technical
Report HPL-96-140, Hewlett Packard Computer Systems Laboratory
(1996).

[7] K. Govil, E. Chan and H. Wasserman, Comparing algorithms for dy-
namic speed-setting of a low-power cpu, in: The 1st Annual Internat.
Conf. on Mobile Computing and Networking (MobiCom), Berkeley,
CA (ACM, 1995) pp. 13–25.

[8] P. Greenawalt, Modeling power management for hard disks, in:
Proc. of the Conf. on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (IEEE, January 1994) pp. 62–
66.

[9] D. Helmbold, D. Long and B. Sherrod, A dynamic disk spin-down
technique for mobile computing, in: Proc. of the 2nd Annual ACM
Internat. Conf. on Mobile Computing and Networking (ACM/IEEE,
November 1996).

[10] M. Herbster and M.K. Warmuth, Tracking the best expert, in: Proc.
of the 12th Internat. Conf. on Machine Learning, Tahoe City, CA
(Morgan Kaufmann, San Mateo, CA, 1995) pp. 286–294.

[11] A. Karlin, M. Manasse, L. Rudolph and D. Sleator, Competitive
snoopy caching, in: Proc. of the 27th Annual IEEE Symposium on the
Foundations of Computer Science, Toronto (ACM, October 1986)
pp. 224–254.

[12] A. Karlin, M.S. Manasse, L.A. McGeoch and S. Owicki, Competitive
randomized algorithms for non-uniform problems, in: Proc. of the
ACM-SIAM Symposium on Discrete Algorithms (1990) pp. 301–309.

[13] P. Krishnan, P. Long and J.S. Vitter, Adaptive disk spin-down via
optimal rent-to-buy in probabilistic environments, in: Proc. of the
12th Internat. Conf. on Machine Learning (ML95), Tahoe City, CA
(Morgan Kaufman, San Mateo, CA, July 1995) pp. 322–330.

[14] K. Li, R. Kumpf, P. Horton and T. Anderson, A quantitative analysis
of disk drive power management in portable computers, in: Proc.
of the Usenix Technical Conf., San Francisco (Usenix Association,
1994) pp. 279–291.

[15] N. Littlestone, Learning when irrelevant attributes abound: A new
linear-threshold algorithm, Machine Learning 2 (1988) 285–318.

[16] N. Littlestone and M.K. Warmuth, The weighted majority algorithm,
Information and Computation 108(2) (1994) 212–261.

[17] M.K. McKusick, W.N. Joy, S.J. Leffler and R.S. Fabry, A fast file
system for UNIX, ACM Transactions on Computer Systems 2 (Au-
gust 1984) 181–197.

[18] C. Ruemmler and J. Wilkes, UNIX disk access patterns, in: Proc.
of the Usenix Technical Conf., San Diego, CA (Usenix Association,
1993) pp. 405–420.

[19] D.D. Sleator and R.E. Tarjan, Amortized efficiency of list update
and paging rules, Communications of the ACM 28 (February 1985)
202–228.

[20] V. Vovk, Aggregating strategies, in: Proc. of the 3rd Annual Work-
shop on Computational Learning Theory, Rochester, NY (Morgan
Kaufmann, San Mateo, CA, 1990) pp. 371–383.

[21] V. Vapnik, Estimation of Dependencies Based on Empirical Data
(Springer, Berlin, 1982).

[22] M. Weiser, B. Welch, A. Demers and S. Shenker, Scheduling for
reduced CPU energy, in: Proc. of the 1st Symposium on Operating
Systems Design and Implementation (OSDI), Monterey, CA (Usenix
Association, November 1994) pp. 13–23.

[23] J. Wilkes, Predictive power conservation, Technical Report HPL-
CSP-92-5, Hewlett-Packard Laboratories (February 1992).

David Helmbold is a Professor in the Computer
Science Department of the University of Califor-
nia, Santa Cruz. He received the B.A. degree from
the University of California, Berkeley, in 1981
and the Ph.D. in computer science from Stanford
University in 1987. His main research interests
are in the area of algorithmic learning theory, and
he is currently working on boosting methods for
improving learning algorithms. Professor Helm-
bold was recently a member of the Computational

Learning Theory (COLT) steering committee, and currently serves on the
editorial board for Machine Learning.

Darrell D.E. Long is a Professor of Computer Sci-
ence at the University of California, Santa Cruz.
He also serves as Associate Dean in the Jack
Baskin School of Engineering. He received his
B.S. degree in computer science from San Diego
State University in 1984, and his M.S. and Ph.D.
degrees in computer science and engineering from
the University of California, San Diego, in 1986
and 1988, respectively. His research interests in-
clude distributed systems, particularly high speed

storage systems, fault tolerance, performance evaluation and mobile com-
puting. He is the Director of the Concurrent Systems Laboratory which is
part of the Jack Baskin School of Engineering. His research is supported
by the Office of Naval Research, the Naval Research Laboratory, the Na-
tional Science Foundation, the Usenix Association and by International
Business Machines Corporation (IBM).

Tracey L. Sconyers received the Masters in computer science from the
University of California, Santa Cruz, in 1998, and is now working at Alta
Vista.

Bruce Sherrod received the Masters in computer science from the Uni-
versity of California, Santa Cruz, in 1997, and is now working in industry.


