
SANBoost: Automated SAN-Level Caching in Storage Area Networks

Ismail Ari†

ari@cs.ucsc.edu
Melanie Gottwals‡

melanie.gottwals@hp.com
Dick Henze‡

dick henze@hp.com

†Storage Systems Research Center
University of California, Santa Cruz

‡Storage Technologies Department
Hewlett-Packard Laboratories

Abstract

The storage traffic for different Logical Units (LUs) of
a disk array converge at the array’s cache. The cache is
allocated among the LUs approximately according to their
relative I/O rates. In the case of non-uniform I/O rates and
sensitivity to storage response times between differing ap-
plications in a Storage Area Network (SAN), undesirable
cache interference between LUs can result in unacceptable
storage performance for some LUs.

This paper describes SANBoost, a SAN-level caching ap-
proach that can be enabled selectively on a per-LU basis
to provide a performance isolation mechanism for response
time metrics related to storage quality of service (QoS).
SANBoost automates hot data detection and migration pro-
cesses in block-level storage. The design consists of a mi-
gration module implemented in a fabric-based SAN virtual-
ization appliance and a Solid-State Disk (SSD) that acts as
a cache resource within the same SAN.

Simulation results quantify the impact of a specific static
SANBoost caching policy on the SPC-1 benchmark work-
load and address the relative impact of adapting a threshold
in the placement algorithm.

1. Introduction

The storage capacity within Storage Area Networks
(SAN) is increasing to petabyte levels. Consolidation of
workloads over this large scale storage results in a wide
spectrum of usage patterns. Access frequency for a given
piece of data can range from very hot, i.e. accessed ex-
tremely frequently such as the meta-data, to very cold,
i.e. not accessed for long periods of time such as the archival
data.

Typically, the cache within the disk array’s storage con-
troller is the primary mechanism to absorb accesses to hot
data. As the storage traffic for different Logical Units (LUs)
of a disk array converge at the array cache, cache resources
are allocated among the LUs approximately according to
their relative I/O rates. In the case of non-uniform I/O rates

to different LUs and non-uniform sensitivity to storage re-
sponse times between different applications, cache interfer-
ence between LUs can result in unacceptable storage per-
formance for some LUs.

If hot data can be identified and statically separated from
the cold data, it can be assigned to storage technologies
with faster response time and higher throughput compared
to disk in order to improve the overall performance. This
can be implemented with DRAM and system-level solu-
tions for non-volatility and data protection. In the future,
non-volatile device technologies such as magnetic RAM
(MRAM) [16] or MEMS probe-based storage [12] are ex-
pected to provide this function. Today, identification of the
hot data and its configuration onto high performance storage
resources is done manually by system administrators with
the help of access profiling software suites. This manual
type of migration typically happens at the file abstraction-
level including hot files and database tables [4]. Unfortu-
nately, as the heterogeneity of applications, users, and op-
erating systems (OS) increase in a computing environment,
the manual identification of hot data and its migration in
real time becomes overwhelmingly complex due to the sep-
arate profiling tools required by different OSs and applica-
tions.

SANBoost is a SAN-level caching approach that auto-
mates hot data detection and migration processes in block-
level storage. The design consists of a migration module
implemented in a fabric-based SAN virtualization appliance
and a Solid-State Disk (SSD) that acts as a cache resource
within the same SAN. Currently the module continuously
profiles accesses to fixed-sized chunks for the selected, or
boosted, Logical Units (LUs). Chunks are envisioned to be
large cache lines in the range of 128 kilobytes (KB) to a
few megabytes (MB). The module then makes decisions re-
garding appropriate data for placement into the SSD using
a placement policy, manages the data migration operations
from disk arrays to the SSD, and controls replacements from
the SSD-based cache.

In this role, the SANBoost cache extends the demand
cache within the SAN’s backend disk arrays and becomes

a resource to implement the second list of dual-list cache
policies such as LRU-2 [17], 2Q [13], or ARC [15]. The
frequency-based content of the SANBoost cache makes it
similar to the second list of the mentioned algorithms. How-
ever, several differences are present in our design com-
pared to previously reported dual-list policy implementa-
tions. First, the second list (SANBoost) cache is only avail-
able to selected LUs. Second, both the number and charac-
teristics of the enabled LUs, and the capacity of solid-state
storage partitioned for this function can change dynamically
during system operation. Finally, the cache line size for
chunks in the SANBoost cache is substantially larger than
the line size implemented in disk array caches, resulting in
different cache behavior. Due to the variability of config-
urations resulting from these differences, adaptation of the
policies that control the SANBoost cache contents appears
a worthy topic of investigation.

The cost of disks within Storage Area Networks (SAN) is
decreasing, but the cost of SAN management remains high.
Storage administration cost is estimated to be several times
the cost of the storage hardware [8]. System administra-
tors are spending significant amounts of time migrating data
between storage resources. Facets of information lifecycle
management (ILM) are beginning to address the automation
of data placement related to changing data access needs over
data lifetime. However, ILM does not address migration
for performance issues in I/O intensive commercial appli-
cations and highly dynamic environments. Hence manual
data migration to mitigate performance limitations contin-
ues to contribute to storage management costs, and should
be addressed with automation to address storage quality of
service (QoS) issues.

This paper presents simulation results to quantify the im-
pact of SANBoost caching using the Storage Performance
Council’s SPC-1 benchmark. Section 2 describes the SAN
virtualization and solid state storage resources used to im-
plement the SANBoost approach. Section 3 details the
structure of the design and introduces the policies that iden-
tify hot data and control its migration to and from the SAN-
Boost cache resource. Section 4 describes the SPC-1 work-
load. Section 5 presents analysis and simulation results of
SANBoost cache behavior using a static-threshold place-
ment policy, and then demonstrates the relative impact of
adapting the threshold in the placement algorithm. Sections
6 and 7 describe related work and summarize the conclu-
sions, respectively.

2. SAN Virtualization

Storage Area Networks (SANs) are composed of a pool
of disk arrays serving as backend storage and the fabric such
as Fibre Channel (FC) or Gigabit Ethernet (GigE) that con-
nects the storage to the hosts. Recently, usage of fabric-
based SAN virtualization appliances [2, 3] have gained pop-

LUN(1) LUN(2) ... LUN(N)

Disks and/or Disk Arrays

Automated Hot−Data
Migration Module

Virtualization Controller

Solid−State DiskLogical Units (LUs)

from multiple vendors

�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������

���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

HOST HOSTHOST

Windows Linux HP−UX

Figure 1. System topology using SAN virtual-
ization controller and solid-state disk for hot
data migration.

ularity, since they simplify the management of large SANs
comprised of heterogeneous storage and client operating
systems. These appliances [2] can also provide local and
remote mirroring and snapshotting of heterogeneous back-
end storage resources.

Figure 1 shows a SAN environment with virtualized
backend storage. By using the virtualization system, admin-
istrators first collect storage capacity from multiple, possi-
bly multi-vendor, disk arrays into a single pool, then parti-
tion the pooled storage into Logical Units (LUs), thus “vir-
tualizing” the physical details of the storage resources. Fi-
nally, they manage the mapping of LUs to the hosts. This
process continues as more hosts and more storage resources
are added.

For continuous data availability it is crucial to have mul-
tiple paths to the data. Virtualization appliances typically
provide a redundant server configuration to avoid single
point of failure [2]. Host Bus Adapters (HBAs) are de-
signed to detect failures and switch to alternate paths au-
tomatically. HBAs can also provide load balancing between
the data paths [2].

2.1. Solid-State Disk

A Solid-State Disk (SSD) [6, 4] a is DRAM-based stor-
age resource with a block interface similar to disk-based
storage (hence the name “disk”). SSDs speak SCSI [7] or
FCP protocols [1]. Random access times of SSDs are mea-
sured in tens of microseconds (µs) compared to milliseconds
(ms) for disk drives. Unlike hard disk technology where re-
sponse time varies with data locality, SSDs have no data

layout sensitivity and exhibit similar performance for ran-
dom and sequential access patterns. Bus and protocol over-
heads generally limit SSD response times to the order of a
hundred microseconds.

In our design, we add an SSD to the backend fibre chan-
nel SAN fabric and partition a desired portion of it as a Log-
ical Unit (LU), similar to configuration of disk-based LUs.
This LU on the SSD is our SANBoost cache resource. The
capacity of the SANBoost cache resource can be easily ex-
panded or additional SSDs can be added to the SAN using
the existing capability of the virtualization appliance.

Modern SSDs achieve fault tolerant operation by the use
of redundant controllers with multiple-ports and redundant
power supplies, similar to the disk arrays. DRAMs within
SSDs incorporate Error Correcting Code (ECC) and are pro-
tected with batteries and internal disk systems to ensure safe
data retention for extended power failures.

3. Hot Data Migration

The objective for our SANBoost caching solution is
to provide performance isolation for selected LUs in the
SAN in order to maintain QoS required for satisfactory
application-level behavior. These LUs can be identified us-
ing application-specified contracts, I/O intensity, or other
requirements. Several goals are desired from the policies
that control the SANBoost cache contents. These goals
are to maximize the access density of chunk contents in the
SSD and to drive exclusivity between the contents of the
array cache and the SANBoost cache. If successful, the
performance benefits of hot data migrations will be three-
fold. First, host I/O that is served from the SSD will have a
shorter response time compared to the data served from the
mechanical disks. Second, since the hot traffic is handled
by the SSD, the I/O rate to the disk array will be decreased,
thus reducing the queue length and wait time of the disk ar-
ray and resulting in better access performance for the data
on disk. Third, sequential I/O streams which are maintained
primarily by the disk array will experience decreased con-
tention with other traffic leading to more efficient sequential
runs. Note that, the second and the third benefits mentioned
will improve performance for all LUs on the same array.
This is especially important for those LUs on heavily uti-
lized arrays.

Our system topology for hot data migration is shown in
Figure 1. While this figure shows a single SSD, redun-
dancy mechanisms such as mirroring to two SSDs would
be used for data protection in real implementations. A soft-
ware module is added to the virtualization appliance’s OS to
make the data placement decisions and to control the migra-
tion. This module does bookkeeping of access frequencies
to chunks pertaining to boost-enabled LUs. Three major
policies govern the migration process and are further ad-
dressed in following subsections:

� A Placement Policy that decides on which specific
chunks to migrate to SSD. It continuously generates a
list of candidate chunks from enabled LUs before their
migrations.

� A Migration Plan that determines how the migration of
candidate chunks should be managed during the mi-
grations. It adjusts the rate of migrations via throttling
to avoid over-utilization of system resources. It also
selects the appropriate network paths to minimize in-
terference between migrations and user I/O and uses
locks to assure the consistency of the migrated data.

� A Replacement Policy that identifies the least prefer-
able chunks as candidates for eviction from the SSD
after their migration. It also checks whether the chunk
is dirty or clean to avoid unnecessary flushes back to
disk.

Before migration, all requests go to the disk LUs. For
boosted enabled LUs, usage statistics are maintained at a
chunk level. An optional module can accumulate access
statistics for all LUs in order to assist in the selection of
candidate LUs for subscription to the SANBoost feature.
During migration, threads of I/Os directed to the chunks
under migration and the migration threads moving these
chunks are serialized. The rest of the I/Os proceed to the
disk normally. To minimize the performance impact of the
blocked writes, journaling and resilvering of writes [14] can
be used. These are well-known techniques used for tak-
ing snapshots of LUs. Incoming I/Os to boost-enabled LUs
trigger a lookup procedure to determine if they fall within
a chunk that has already been migrated. I/Os that hit the
SANBoost cache contents are served from the SSD and I/Os
to regions not migrated are forwarded to the disk similar to
normal unboosted operation.

3.1. Placement Policy

With demand caching, user’s read requests that miss in
the cache are fetched from the disk and placed in fixed-
sized array cache lines at once. This is representative of
policies typically implemented in disk arrays. Writes are
also initially placed in the array cache for disk arrays with
write-back functionality. Therefore, if the migration thresh-
old is defined as “the number of times the user has to ac-
cess a chunk of data before it is placed into the cache”,
then demand caching would be the special case of a more
generic placement policy with placement threshold equal to
one. For a relatively large size unit of management such as
our chunks (e.g. 128KB to 1MB), a demand-based chunk
placement would be too aggressive, since we do not ex-
pect numerous accesses to every touched chunk. Therefore,
the SANBoost placement policy delays the migration of a
chunk by enforcing a higher threshold. However, the mi-
gration decision cannot be delayed indeterminately as we

will see in Section 5. In summary, chunk migration com-
bines frequency-based caching with speculation of spatial
locality based on prefetching proximate address regions.

To avoid migrating data associated with sequential data
transfers, a sequential detection algorithm similar to that
employed in disk array caches is also used in SANBoost
module. A number of discrete transfers that aggregate to a
sequential disk access within or across chunks are counted
only as a single access in the chunk access statistics. This
allows large sequential runs to be handled efficiently by the
disk array. Combining this strategy with the frequency-
based placement we attempt to provide exclusivity [18] be-
tween the array cache and the SANBoost cache.

Static migration policies count the number of accesses
to a chunk and migrate a chunk when the count reaches a
predetermined and fixed threshold. An adaptive policy is
one that can change its threshold value based on an adap-
tation rule to obtain higher performance compared to static
policies. We compare several static and adaptive migration
policies in Section 5.

3.2. Migration Plan

Before migrations, the user I/O traffic is entirely served
from the disks. During migrations, the migration traffic has
to compete with the user I/O traffic for the disk, fabric, ap-
pliance interface bus and CPU resources. Since the chunk
sizes (e.g. 128KB to 1MB) are fairly large compared to the
user I/O traffic (e.g. 4KB to 16KB), long delays could be in-
curred by the user I/O traffic queued behind migration trans-
fers. The migration plan is in charge of coordinating sys-
tem resources to minimize these delays and avoiding over-
utilization of bus and CPU resources of the appliance server
node. Various local and distributed locking mechanisms are
used to provide consistency of the accessed data. We restrict
our discussion on migration plan to the following concepts
in use or under consideration and leave the details to other
previous work [14].

Migrations can use alternate data paths to backend stor-
age and the SSD, when physically possible. Under condi-
tions of heavy bus and CPU utilization, optimizations used
by the migration plan include limiting the number of threads
used for the migration service and transferring the migration
responsibility for a given chunk to a peer node. Note that,
the threshold-based migration policy described above and
the adaptation capability on the threshold value inherently
control the migration rate. Aqueduct [14] uses feedback
loop from control-theory to control the rate of migrations.
TCP’s slow start and congestion avoidance mechanisms are
also good candidates for providing adaptive rate control.

3.3. Replacement Policy

Replacement policies provide a priority ordering of mi-
grated chunks and evict the least preferable chunks from

SSD to create space for incoming chunks. Least Recently
Used (LRU), and Adaptive Replacement Cache (ARC) [15]
are simulated and compared in Section 5. ARC dynamically
biases its policy between recency and frequency depending
on the workload conditions. With respect to replacement is-
sues we ask and answer the following question: How does
SANBoost chunk cache compare in hit performance to a de-
mand cache using different replacement algorithms?

Adaptive Caching using Multiple Experts (ACME) [10]
is another adaptive framework that can switch among a set
of replacement policies to track the best current algorithm.
It uses machine learning to evaluate a pool of virtual cache
“experts” (replacement policies). Our future work includes
testing this algorithm.

3.4. Bookkeeping of Migrated Chunks

When a chunk from a backend storage LU is migrated
into the SSD, an entry for this chunk is added into a
chunkmap. The chunkmap is a map of

�
key � value � pairs,

where the key is efficiently obtained from a combination of
the LU and chunk information. An in memory copy of the
chunkmap is kept for high-speed access. The chunkmap is
also stabilized on a small, non-volatile storage partition for
disaster recovery purposes.

Statistics about chunk usage (reads, writes, misses, etc.)
are recorded in a separate data structure called the chunk in-
formation table. It is not necessary to stabilize this table to
non-volatile storage as the information retained is not cru-
cial for disaster recovery purposes.

4. SPC-1 Workload

The Storage Performance Council (SPC) publishes
industry standard storage performance benchmarks [5].
“SPC-1 is comprised of a set of I/O operations designed to
demonstrate the performance of a storage subsystem while
performing the typical functions of a business critical appli-
cation [5].” We collected the I/O trace of the SPC-1 bench-
mark on a real disk array storage configuration. Table 1
summarizes the relative I/O distribution among LUs. LU-5,
which is representative of an OLTP “data store”, has four
I/O streams associated with it: one random walk, one se-
quential scan, and two localized I/O streams. LU-7, repre-
sentative of an OLTP “user store”, has three I/O streams:
one random, one sequential and one localized stream. LU-
9, representative on an OLTP “Log”, and has one sequential
I/O stream. Other details can be found in the SPC-1 speci-
fications [5]. Only LU-5 is boosted because it receives the
largest portion of the overall traffic (59.6%) and contains all
the different types of streams. Further analysis and simula-
tion results presented below are conducted on this portion
of the trace.

Table 1. SPC-1 benchmark properties.
Parameter LU-5 LU-7 LU-9 All
Capacity 54 GB 54 GB 12 GB 120 GB

I/O Traffic (%) 59.6% 12.3% 28.1% 100%
Number of Streams 4 3 1 8

5. Analysis and Results

We first examine the relationship between the data ac-
cess behavior in the SPC-1 workload and the benefits ob-
tained from using the SANBoost cache with a placement
policy using static thresholds. Then, we illustrate a method
to adapt this placement or migration threshold for improved
benefits.

5.1. Static Migration Threshold

A placement policy with a static migration threshold
counts number of accesses to a chunk and migrates a chunk
when the count passes a predetermined, fixed threshold.
Figure 2 shows the access histogram of the SPC-1 workload
on the LU-5 and illustrates how the choice of the migra-
tion threshold influences the benefit obtained from migrated
chunks. The access histogram in Figure 2(a) is obtained
by mapping the user block requests to the closest (256KB)
chunk boundaries and then bucketing and plotting the ac-
cess counts. The count of chunks that were accessed 3 times
or less have been concatenated for clarity of the plot, as they
went up to tens of thousands in counts. Next, we identify the
results of choosing low, medium or high threshold values,
respectively.

Figure 2(b) shows the benefit of migrations expressed as
hits achieved per migrated chunk (hits/migratedChunk) as
a function of threshold. We see that choosing a threshold
smaller than 3 causes the migration of many chunks into
SSD that would be subsequently accessed only a few more
times; these are the chunks at the far left side of Figure 2(a).
The result is a lower benefit (in hits/migratedChunks) as
seen at the far left side of Figure 2(b). Therefore, a low
threshold would have an adverse impact on cache perfor-
mance due to the resultant high migration volume and low
access statistics of migrated chunks.

In Figure 2(a), the hill seen around medium access
counts (5-40) leads to an interesting result as it corresponds
to the local maxima (the first maxima 4) in Figure 2(b).
An intermediate threshold of 3-4 avoids migrating the “low
value” chunks with few accesses (3 or less in this case),
but is able to allow early capture of chunks that will sub-
sequently receive many accesses. This behavior enhances
the overall value obtained by speculation.

The higher thresholds wait for longer periods of time and
migrate fewer, but possibly more valuable chunks. How-
ever, as they wait a longer interval to accumulate accesses
up to the migration threshold, they also miss many chances

for getting hits in SSD. The benefit (hits/migratedChunks)
is therefore lowered again. While this analysis guides our
choice of static threshold, the most important result we de-
rive is the potential for adaptation of the threshold to im-
prove hit performance. This approach is particularly impor-
tant for variable workloads and configurations.

Figure 3 shows the effects of migration on overall disk
I/O performance. We enable hot chunk migration on LU-5
partition. The disk I/O is reduced as a portion of the work-
load is served by the SSD. In this simulation, the SSD size
was 6 GB, chunk size was 256 KB and the static threshold
was 30, which is the global maxima in Figure 2(b). In Fig-
ure 3, the migration traffic is plotted in the negative direction
to indicate that this operation is a cost.

Figure 3(a) shows the I/Os per second (IOPS) handled
by the disks. The disk IOPS is reduced from 700s to 200s
after about 20 minutes (1200 seconds) of operation. So at
this time approximately 70% of the LU-5 traffic (500/700) is
being handled by the SSD. The movement of the hot traffic
from disk to SSD is achieved with a minimal increase in
total IOPS due to migrations. The IOPS to disk reduced
even more, reaching up to 80% by the end of the one hour
trace.

Figure 3(b) shows the same results by weighing each I/O
by its size. As the migration I/O size, 256 KB, is much
larger than the average user I/O size, 4-8 KB, significant in-
creases in transfer bandwidths were witnessed temporarily
for about 20 minutes. However, note that the total trans-
fer bandwidth was already lower than the bandwidth previ-
ously used by the workload with no boosting after 30 min-
utes (1800 seconds). Also, since larger I/Os achieve higher
disk throughput, the array queuing time won’t increase pro-
portionally. The lesson we learn from this increase is that
the migration plan has to consider all these aspects of mi-
gration and enforce specific controls when necessary.

We do not infer the reductions in user perceived latency
at this time, as we are currently doing these measurements
on real platforms. Doing latency analysis via simulations re-
quire detailed and complex disk and disk-array models [11].

5.2. Adaptation of the Migration Threshold

Figure 4 shows a simple adaptation rule for the migration
threshold. It tries to adjust the migration threshold such that
the change in benefit (∆benefit) is kept positive. The rule
decreases the threshold to migrate more chunks when mi-
grations result in greater benefits and increases the thresh-
old to be more selective when the migrations do not result
in a positive change in benefit. The current adaptation rule
is elementary and subject to further refinement.

Figure 5 shows the effects of the migration threshold
adaptation on SPC-1 LU-5 workload. The threshold which
was initialized to 4 stayed around this value for a while and
then increased to around 20. We explain this behavior as

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250

N
u

m
b

er
 o

f
C

h
u

n
ks

 A
cc

es
se

d

Chunk Access Count
(ChunkSize =256 KB)

Chunk Access Histogram (SPC-LU5)

(a) Histogram of chunk access counts for LU-5.

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140

B
en

ef
it

 (
h

it
s/

ch
u

n
k)

Migration Threshold
(Chunk Size= 256 KB)

Effect of Static Threshold on Benefit of Migrations (SPC-LU5)

(b) Benefit of migration expressed as hits achieved per migrated chunk
as a function of threshold.

Figure 2. Choice of threshold value will influence the benefit obtained from migrated chunks.

-200

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500 3000 3500 4000

D
is

k
IO

 C
o

u
n

t
(I

O
P

S
)

Time (second)
(SSD = 6 GB, Chunk Size= 256 KB, Thresh = 30)

Effect of Migrations on Disk IO Count (SPC-LU5)

Initial User Disk IO
Reduced User Disk IO

Migration Disk IO
Total Disk IO

(a) Number of IOs seen by the disks is reduced.

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000 3500

D
is

k
IO

 B
an

d
w

id
th

 (
K

B
p

s)

Time (second)
(SSD = 6 GB, Chunk Size= 256 KB, Thresh = 30)

Effect of Migrations on Disk IO Bandwidth (SPC-LU5)

Initial User Disk IO
Reduced User Disk IO

Migration Disk IO
Total Disk IO

(b) Disk IO bandwidth usage is reduced.

Figure 3. Effects of hot data migration on overall storage system performance.

follows. Many chunks were quickly accessed more than 4
times and were migrated. Furthermore, among the migrated
chunks many (the hill in Fig. 2(a) contains 1000s of chunks)
achieved tens of hits. The adaptive threshold value stayed
around 4 during this period. The benefit rate (∆benefit) de-
creased when significantly less chunks among the migrated
were being accessed more than 30 times (the down slope of
the hill in Fig. 2(a) and on). Thus, the adaptation rule chose
to increase the threshold (by Count =1) to be more selective.
By making these decisions, the adaptive policy performed
better than both of the good static threshold choices, 4 (lo-
cal maxima) and 30 (global maxima). In Figure 5(b), the
comparison of Adaptive to Static-30 policy at x-axis point
75 shows that adaptive policy could achieve up to 100%
improvement (25 vs. 12) over the Static-30 policy for the
workload in this study.

5.3. Static and Adaptive Replacement

Figure 6 shows a comparison of cache hit rates for SAN-
Boost and demand caches as a function of cache size.
The demand caches are modeled with Least Recently Used

Initialize: prevBene f it = 0
prevDelta = 0

bene f it = totalHits/migratedChunks
∆bene f it = bene f it - prevBene f it
if(∆bene f it � prevDelta)

threshold -= Constant
else

threshold += Constant
prevBene f it = bene f it
prevDelta = ∆bene f it

Figure 4. A simple rule for adaptation of the
migration threshold.

(LRU) and Adaptive Replacement Cache (ARC) replace-
ment policies and a cache line size of 4 KB. SANBoost
cache results are shown for two static migration thresholds,
10 and 30. ARC achieved up to 3.4% higher hit rates than
LRU, since it can dynamically change the cache sizes al-
located for the recency (first) and frequency (second) lists

 0

 5

 10

 15

 20

 25

 30

 35

 0 25 50 75 100 125 150 175 200 225 250

T
h

re
sh

o
ld

Request Count (x 10000)

Adaptive versus Static Thresholds

Adaptive
Static-30

Static-4

(a) Static and adaptive thresholds.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75

 0 25 50 75 100 125 150 175 200 225 250

B
en

ef
it

 (
H

it
s/

C
h

u
n

k)

Request Count (x 10000)

Comparison of Adaptive vsersus Static Thresholds

Adaptive
Static-30
Static-4

(b) Benefit of migrated chunks measured in hits per chunk (top line is
adaptive).

Figure 5. Adaptation of the migration threshold resulted in higher benefits than static thresholds.

to track the changes in workload behavior and to provide
scan resistance. The unique data touched by 4KB-demand
caching on SPC-1 LU-5 was smaller than 8GB. So, there
were no replacements for cache sizes � 8GB and the algo-
rithms perform the same.

The SANBoost cache used only a fraction (as small as
1 � 4th) of the cache sizes used by demand caches to achieve
the same hit rates. This can be seen by drawing a horizon-
tal line at 40% hit rate in Figure 6. The SANBoost cache
with threshold 10 provided up to 15% improvement (until
8GB) over the demand caches using the same cache sizes.
This is due to the speculative prefetching of proximate ad-
dress ranges into the SSD cache. Around 16 GBs the hit
rate difference between SANBoost with threshold 10 and
demand caches reached to 20%. However, note that the
added cache capacity had diminishing returns. With migra-
tion threshold equal to 30, SANBoost achieved higher hit
rates than demand caches for cache sizes � 2GB. For caches� 2GB and � 14GB it achieved lower hit rates. The reason
is that the migration threshold 30 is not aggressive enough
to quickly utilize the added cache space compared to the de-
mand caches. This result suggests “free SSD cache space”
as another important parameter that affects the selection of
the migration threshold. Therefore, this parameter should
also be integrated into the adaptation rule. We leave this as
future work.

6. Related Work

In demand caching the requested blocks are fetched and
placed into the cache the first time they are accessed. There-
fore, demand caching is a special case of our threshold-
based placement policy with threshold equal to one. In the
existing two-list cache replacement algorithms [17, 13, 15],
the requested blocks are initially demand fetched into the
first list and then they are migrated to the second list upon

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000

H
it

 R
at

e
(%

)

Cache Size (Megabytes)

LRU
ARC

SSD-30-LRU
SSD-10-LRU

Figure 6. Comparison of SANBoost cache
with static LRU and adaptive ARC demand
caches using same cache sizes.

a second hit. Therefore, in two-list algorithms the place-
ment threshold for both lists is equal to one. Our SAN-level
caching design emulates a two-list caching algorithm where
the first list consists of the demand-based disk array cache
and the second list consists of the SAN-attached SANBoost
cache with a migration threshold higher than one.

Some virtualization appliances provide data caching
by using the DRAM embedded within the virtualization
servers. In comparison, SANBoost uses a SAN-attached
data cache and manages the meta-data within the virtual-
ization servers. Our solution makes it easier to expand the
cache resource. Also, since our solution requires only the
synchronization of meta-data (not the data) when multiple
servers exist, we believe that our strategy is potentially more
scalable than in-memory data caches.

Due to the increased complexities, automation of stor-

age management has become extremely important. Hippo-
drome [8] automates the assignment of workload streams
to different Logical Units (LUs) and reevaluates the perfor-
mance results to reconfigure the storage resources in a SAN.
Ergastulum [9] automatically finds the appropriate RAID
levels for different streams.

The migration process has to be done without disrupt-
ing the front-end user I/O performance. Aqueduct [14] de-
scribes an online migration module that signs a delay con-
tract with the front-end users (or applications) and guaran-
tees a worse case delay performance using control theory.
The driving applications for this work are online backup,
failure recovery, or load balancing where the data being mi-
grated is relatively “colder” than what SANBoost aims to
handle. These type of bulk data migrations can also be dis-
tinguished by a start and an end, whereas the SANBoost
migration is a continuous process.

7. Summary and Conclusions

SAN administration is a complex, costly, continuous,
and online process. We described the design of an auto-
mated hot chunk migration module, called SANBoost, em-
bedded in a SAN virtualization appliance. SANBoost col-
lects statistics on accesses to fixed-sized chunks on the or-
der of 128 kilobytes to a few megabytes. It uses a migration
threshold to choose the most valuable chunks for placement
in SSD cache, a migration plan to move chunks from the
disk to the SSD in a controlled fashion, and a replacement
policy to find the least valuable chunks to discard from the
cache or flush to disk if dirty.

We described the details of these three policies and dis-
cussed the possibilities for adaptation to achieve higher per-
formance. We compared static and adaptive placement and
replacement policies by using the SPC-1 benchmark work-
load. With the placement policy using best static threshold
(30) we showed up to 80% reductions in the disk I/Os traffic.
This 80% consists of the hot traffic that was handled by the
faster SSD cache. Adaptation of the threshold allowed up
to 100% increase in hits/migratedChunk for the same work-
load. SANBoost cache resulted in 15-20% higher hit rates
compared to popular demand caches using the same cache
sizes.

Acknowledgements

Many thanks to John Bates, Scott Marovich, Rich Elder
in HP, and Ethan Miller in UC Santa Cruz for their com-
ments on the design of the SANBoost system and the earlier
drafts of this paper.

References
[1] Fibre Channel Protocol (FCP) http://www.t10.org.
[2] HP Continuous Access Storage Appliance (CASA),

http://www.hp.com/go/casa.

[3] IBM TotalStorage virtualization family,
http://www.storage.ibm.com/software/virtualization/.

[4] SolidData, SD3000 Solid-State Disk and White Papers,
http://www.soliddata.com.

[5] SPC benchmark-1 specification,
http://www.storageperformance.org/specification.html.

[6] Texas Memory Systems, RamSan Solid-State Disk,
http://www.texmemsys.com.

[7] American National Standard for Information sys-
tems(ANSI). Small Computer System Interface SCSI-
2. Standard X3.131-1994, Jan. 1994.

[8] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. Hippodrome: running circles around storage
administration. In Proceedings of the 2002 Conference on
File and Storage Technologies (FAST), Monterey, CA, Jan.
2002.

[9] E. Anderson, R. Swaminathan, A. Veitch, G. A. Alvarez, and
J. Wilkes. Selecting RAID levels for disk arrays. In Proceed-
ings of the 2002 Conference on File and Storage Technolo-
gies (FAST), Monterey, CA, Jan. 2002.

[10] I. Ari, A. Amer, R. Gramacy, E. L. Miller, S. A. Brandt,
and D. D. E. Long. ACME: adaptive caching using multiple
experts. In Proceedings in Informatics, volume 14, pages
143–158. Carleton Scientific, 2002.

[11] G. R. Ganger, B. L. Worthington, and Y. N. Patt. The
DiskSim simulation environment version 2.0 reference man-
ual. Technical report, Carnegie Mellon University / Univer-
sity of Michigan, Dec. 1999.

[12] J. L. Griffin, S. W. Schlosser, G. R. Ganger, and D. F. Na-
gle. Modeling and performance of MEMS-based storage de-
vices. In Proceedings of the 2000 SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, pages
56–65, June 2000.

[13] T. Johnson and D. Shasha. 2Q: A low overhead high perfor-
mance buffer management replacement algorithm. In Pro-
ceedings of the 20th Conference on Very Large Databases
(VLDB), pages 439–450, Santiago, Chile, 1994.

[14] C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: Online
data migration with performance guarantees. In Proceed-
ings of the 2002 Conference on File and Storage Technolo-
gies (FAST), Monterey, CA, Jan. 2002.

[15] N. Megiddo and D. S. Modha. ARC: A self-tuning, low
overhead replacement cache. In Proceedings of the 2003
Conference on File and Storage Technologies (FAST), pages
115–130, San Francisco, CA, Mar. 2003.

[16] E. L. Miller, S. A. Brandt, and D. D. E. Long. HeRMES:
High-performance reliable MRAM-enabled storage. In Pro-
ceedings of the 8th IEEE Workshop on Hot Topics in Op-
erating Systems (HotOS-VIII), pages 83–87, Schloss Elmau,
Germany, May 2001.

[17] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K
page replacement algorithm for database disk buffering. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 297–306, 1993.

[18] T. M. Wong and J. Wilkes. My cache or yours? making stor-
age more exclusive. In Proceedings of the 2002 USENIX An-
nual Technical Conference, pages 161–175, Monterey, CA,
June 2002. USENIX.

