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Abstract

Power conservation in systems is critical for mobile, sen-
sor network, and other power-constrained environments.
While disk spin-down policies can contribute greatly to re-
ducing the power consumption of the storage subsystem, the
reshaping of the access workload can actively increase such
energy savings. Traditionally reshaping of the access work-
load is a result of caches passively modifying the workload
with the aim of increasing hit ratios and reducing access
latency. In contrast, we present the a shifting predictive
policy that actively reshapes the workload with the primary
goal of conserving disk energy consumption. By reshap-
ing the disk workload to explicitly lengthen idle periods, the
disk can remain spun-down longer, saving more energy. We
show that our approach can save up to 75% of disk energy
compared to the common fixed-timeout spin-down policies.
Our shifting algorithm dynamically shifts to the most en-
ergy efficient cache prefetching policy based on the current
workload. This best shifting prefetching policy is shown to
use 15% to 35% less energy than traditional disk spin-down
strategies and 5% to 10% less energy than the use of a fixed
(non-shifting) prefetching policy.

Keywords: Power-Aware Computing, Energy Conser-
vation, Access Prediction, Disk Management.

1 Introduction

The use of mobile computers has become increasingly
pervasive. With the popularity of wireless networks, the
number of locations with network access has greatly in-
creased. Allowing mobile users to stay connected via
such networks increases communication and productivity.
Such mobile applications, and also sensor networks, depend
heavily on the ability to operate on battery power. While
laptop batteries have greatly improved, they still only allow
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for a short time period of disconnected operation before re-
quiring a power source (i.e. a wall outlet). Depending on
system usage patterns, system components, and peripher-
als, a laptop user can get anywhere from less than an hour
up to 5 hours of system operation per battery charge. Even
with five hours of usable power, it is still advantageous to
use energy conservation strategies. Along with lengthen-
ing the duration of time one can use a laptop disconnected
from a continuous source of power, with less power being
used batteries could be lighter, and the total energy cost to
operate the computer would be lower.
Many innovations have been proposed to conserve sys-

tem power for laptops, such as slowing down processor and
bus speeds under light system use, dimming the display and
adding low power states, along with more integrated solu-
tions that are designed for mobile and low-power environ-
ments. While processors are still the main consumer of sys-
tem power, it has been shown that the hard disk can use
up to 30% of the total system energy [13], making the disk
subsystem a prime candidate for energy conservation.

2 Disk Energy Conservation

Disk systems use a significant amount of energy. Un-
like most electronics in a computer, the disk has mechani-
cal components. The spinning disk platters and the actuator
arm require a considerable amount of energy to operate. To
use the disk, the disk’s platters need to be spun at the proper
rate (4200–5400 RPMs for typical laptop drives [10]) by a
spindle motor. The constant spinning of the disk to keep
it ready for incoming I/O requests is a significant waste of
energy if there are no current requests. Conserving energy
at the disk level can be done by effectively turning the disk
(or parts of it, such as the spindle motore or electronics) off.
Most disk drives typically have one or mores spin-down,
or standby states. In such a state the disk platters are spun
down and most other non-essential electronics are turned
off. Such a spin-down state can only be used if the disk
is not needed and no requests are pending. We will con-
sider two distinct states of disk operation, the on or spinning
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Figure 1. This graph shows the amount of power used by
a used by a 12 volt IDE disk during a spin-up (starting at
time 1) and during normal operation (starting after time 5.).
Source: Seagate datasheet.

state for normal disk I/O operations, and the spin-down or
standby state for when the disk is turned off and idle.

If a disk I/O request is sent to the disk while in this spun
down state, the disk must “wake up” by bringing the platters
up to the proper speed, and servicing the incoming request.
The transition to an active state introduces new overheads.
Spinning up the disk requires about 1.5 to 3 times more en-
ergy than the energy used to keep the disk spinning for the
same amount of time, as shown in Figure 1 [30]. Getting
the platters up to speed also takes time, which translates to
access latency for the user (3 to 9 full seconds, depending
on the drive [10, 30]). Thirdly, disks are rated for a specific
number of cycles, where one spin up and one spin down
equal one cycle. While most laptop disks have a failure
rating on the order of half a million cycles, IDE desktop
drives are only rated for around 50,000 cycles [30]. Exces-
sive spin-down of the disks can cause premature disk fail-
ure. Given these observations, the selection of an effective
spin-down strategy is crucial to the efficient, reliable, and
energy-conserving operation of the disk subsystem.

In order to save energy we must spin down the disk, but
knowing when to do so is the real issue. Since we do not
know when disk I/O requests will arrive, we do not know
when the disk will be used in the future. If we aggressively
spin down for short idle periods and have disk requests ar-
riving shortly after, we will not only incur the added energy
cost for spinning the disk back up again, but will add signifi-
cant access latencies and physical wear to the drive. Ideally,
we need to spin down the disk only when the idle periods
are long enough to make it worthwhile, and we would go
further and express the need to actively create longer idle
periods whenever possible.

2.1 Disk Energy Consumption

While different disks offer different active, idle, or
standby states, for generality we will assume two basic
states: active and standby. Equation 1 shows how the en-
ergy consumption of the disk will be determined. As dif-
ferent disk drives use differing amounts of energy for each
state. We will assume that the disk uses one unit of active
(spinning) disk energy for every second the disk is active.
For the standby state we assume that the disk uses zero units
of energy per second while spun down. Due to differences
in actual hard disk specifications of the extra energy cost
caused by the spin-down processes, we define this as a pa-
rameter of our model. Douglis et al. [7] and Golding et
al. [11] have also used disk spin-down costs computed in
seconds. Since most hard disks take 3 to 7 seconds to spin
up to the proper speed and use 1.5 to 3 times the amount of
normal active energy in this spin up state, this value is typi-
cally between 5 and 15 seconds (units) of energy depending
on the hard disk model. This means that for a spin-down to
be worth the energy cost it takes to spin the disk back up,
the disk needs to remain spun down for at least 5 to 20 sec-
onds depending on the individual hard disk’s specifications
and energy usage. For our tests, we use a spin down cost of
10 units of energy, corresponding to a spin up that takes 5
seconds and uses twice the normal active energy, which we
find to be typical of current disk drives [10, 30].

ETotal = (Cup×Tup)+ (Cd×Td)+ (Cs×S) (1)

ETotal = Total Energy

Cup = Cost of Spinning (in seconds)

Cd = Cost of Not Spinning (in seconds)

Cs = Cost of a Spin Up (in seconds)

Tup = Time disk was spinning

Td = Time disk was not spinning

S= Number of Spin up cycles

2.2 Active Workload Reshaping

Disk request patterns are bursty by nature, with periods
of activity and idle periods of little to no activity. To further
increase the energy savings of a disk spin-down policy, we
need to lengthen idle periods, allowing the disk to remain
spun down for longer. This requires actively reshaping the
disk workload. This is done by moving the individual disk
requests to either earlier or future burst periods. By mov-
ing these disk accesses to points in time where the disk is
already active, we are effectively batching these requests to-
gether, thus creating busier burst periods and longer idle pe-
riods. To clarify how this movement is achieved, and when
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it is feasible, we must first understand the different types
of disk accesses. Disk write and disk reads must be treated
differently.

2.2.1 Read & Write Requests

For a write disk request, it is desirable to write the data to
disk as soon as possible. To ensure data reliability, we do
not want to cache the writes in the volatile write buffer for
excessively long periods of time. It is typical to wait for
a fixed period of time before writing back modified data,
to avoid unnecessary writing of data that might be updated
soon. If we wait for a variable amount of time, based on
the current state of the disk, then we can postpone these
requests to a future point in time, thus extending the current
idle period [33].
For example, if our disk is in the active state and a write

request arrives, then we should service it immediatly, in-
stead of holding it in a write buffer, where it would only
need to be written to the disk later (at which point the disk
could already be spun down). Conversely, if the disk is
in the standby state, spun down, then we do not want to
spin the disk up immediately, but would rather postpone the
write as much as our flexible write-back period will allow,
or until a spin-up is necessitated by a demand for data (a
read operation). By allowing flexible write buffer time-outs
based on the current disk state, we can batch write requests
together with not only other write requests, but also with
read requests.
For a read disk request, the user or system needs the

data immediately. This means that such requests cannot be
postponed to the future, and must be serviced immediately.
Read requests can normally only be moved backwards, to
previous points in time, which is achieved by predicting and
prefetching future file accesses.

2.2.2 Predictive Prefetching

The only way to move disk accesses earlier in time is to pre-
dict future accesses, prefetch, and then cache the data for
future use. There are many different schemes for predict-
ing future file accesses. Most of them use past file access
behavior to predict future file accesses.
These prefetching policies are used to predict and

prefetch possible future disk accesses. The prefetched files
are then placed in the system cache, alongside normal de-
mand fetched files. The cache then uses LRU to decide
which files should be evicted. Thus prefetching incorrect
files can adversely effect the performance of the cache and
reduce the length of idle periods. That is why it is impera-
tive to use prefetching policies that are accurate and effec-
tive. We have implemented six different prefetching poli-
cies. Each uses an underlying LRU cache eviction algo-

rithm while predicting and prefetching files in accordance
with their individual models.
The Unmodified caching policy predicts and prefetches

nothing. It simply uses the Least Recently Used (LRU)
cache eviction policy to store files as they are accessed. For
some cases it can be shown that future disk accesses cannot
be predicted accurately by any means.
Last Successor assumes that two files accessed in suc-

cession will be accessed in the same order in the future. For
each file access the policy dynamically records the follow-
ing file access, and when the first file is accessed again, its
past successor is prefetched if not already in the cache. The
predicted last successor is a dynamic successor due to the
fact that a files last successor can change dynamically ev-
ery time that particular file is accessed. It has been shown
that last successor-based policies can be enhanced to in-
crease their accuracy and reduce their likelihood of mispre-
diction [35, 1, 2].
For each file in the First Successor model, we record

the first file accessed after a given file access. Unlike the
last successor model, this policy does not attempt to change
its prediction of a particular file’s successor once it has se-
lected the initial one. While prefetching the first successor
to a file may seem to be intuitively less accurate the last
successor, Amer and Long [1] showed that prefetching first
successors may be a better choice for certain workloads. In
such workloads continuously changing the successor would
lead to frequent deviation from a single good prediction.
Stability (Noah) is another successor-based predictor

created by Amer et al. [1, 2]. It adds stability to the last
successor model by avoiding the continuous switching of
the predicted successor. Stability employs a general stabil-
ity parameter, while Noah is the original form of this pre-
dictor which employs both static and dynamic predictions
and a selector to choose which one to pick. Depending on
which predictor the selector is pointing to, either the static
predictor (first successor) is prefetched, or the dynamic (last
successor) is prefetched. The selector uses past history to
determine which prediction to choose.
The Finite Multi-Order Context (FMOC) model is a

context modeling predictor, as described by Kroeger and
Long [19]. It employs the use of a trie data structure [17]
to keep track of file accesses and the context in which they
were observed. Each node of the trie has a specific likeli-
hood of being next in the sequence and the children of each
node are the possible successors to that given the previous
files. Each branch of the trie provides a context for current
and future file accesses. FMOC prefetches files which have
a likelihood of near-future access above a given threshold.
TheExtended Partition ContextModel, orEPCM, is a

variant of the FMOC model and an extension of the earlier
Partioned Context Model (PCM) [18, 20]. These models
differ from FMOC in that they partition the trie into sec-
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tions so that prediction metadata is more manageable, and
so that files are not excessively prefetched, as they can be
with FMOC.

2.3 Limits of Energy Savings

To allow our spin-down policy the longest idle periods,
we need to optimally prefetch and batch together disk re-
quests. To give us a minimum amount of energy required
by a given workload, and to measure the effectiveness of
our prefetching policies, we used a prefetching and spin-
down oracle. The oracle is aware of all future accesses,
and returns the best possible request batching and spin-
down scheme to derive the best energy usage for a given
trace. The optimal prefetching strategy can be broken into
a smaller optimal problem plus the last prefetch, shown in
Equation 2. The oracle uses dynamic programming to ob-
tain the best possible ordering of disk requests and the ideal
times at which to prefetch them. Simply prefetching the
next N files (even if you are perfectly accurate) is not al-
ways the best strategy.

OT =min
i

(Pi+OT−1) (2)

OT = Optimal Sequence at time T

Pi = Cost created by prefetching sequence i

Assume that we have the file access pattern which con-
tains files A, B, C and D and we are trying to create long
disk idle periods so we can spin the disk down. Now assume
the following file access sequence: ABABCDDDBBBB
(shown in Figure 2) and that we have a cache with a ca-
pacity of 2 files. If we assume that all files are predictable,
then by predicting the next files that fit in the cache will get
us an access pattern as shown in Figure 2(b), with three idle
periods of length three. As we can see from the sequence, if
we fetch D and prefetch B towards the end of the trace, then
we can reduce this to only two idle periods, one of length
three and the other of length six (Figure 2(c)). The dynamic
programming aspects allow the oracle to try every option
for prediction and prefetching and find the optimal solution
to batch together disk requests and maximize the idle period
length between burst periods rather than relying on simply
prefetching the next N files which as shown in Figure 2(b)
may not always be optimal.
The oracle works on the principal that all file accesses

are in one of three categories, either they are predictable,
unpredictable, or may be delayed. Predictable files are files
that have been seen before and if a prefetching algorithm
was smart enough, could predict and choose to prefetch.
An unpredictable file access, whether it is a write that needs
to happen immediately or just a file that has not been seen

A B A B C D D D B B B B

A B C D B
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(a) No prefetching
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(b) Perfect greedy prefetching
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(c) Optimal Prefetching

Figure 2. The initial file access pattern with even
spaces between each access and the corresponding disk ac-
cesses for: no prefetching, greedy prefetching, and optimal
prefetching.

before, are files that can never be predicted and will always
result in a disk access. File accesses that can be delayed
are a special case. These are file accesses whose resulting
disk access can be postponed for at most a given time pe-
riod. After that time period expires, if the file has yet to be
written to disk or accessed, it becomes an unpredictable file
access that must happen immediately. An example of a file
accesses that can be postponed is a write request stored in a
write buffer and waiting for a flexible time-out before being
written to disk. This allows the file system to batch writes
with other requests based on the current state of the disk so
that they can all go to the disk at the same time, creating a
busier burst period and a possibly longer idle period. Weis-
sel et al. [33] have also shown that flexible write time-outs
can be used to batch disk requests and save disk power.
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Once the oracle reads in all the file accesses in the trace
into a table and marks each of them as predictable, unpre-
dictable, or postponable. It can then process the trace again
and compute the new idle periods created. These idle peri-
ods are the maximum idle periods that could be found by the
oracle. Once all the new idle periods are created, the oracle
performs a second pass through the traces and finds the op-
timal path, or sequence, of disk accesses that results in the
minimum energy usage. The oracle then uses backtrack-
ing to compute the series of disk accesses and prefetches
that comprise the optimal sequence for that workload. This
is our optimal disk access schedule, assuming 100% accu-
rate prefetching for the trace. The oracle also optimizes for
the spin-down policy. If the idle period is long enough to
make a spin-down energy efficient, then the oracle assumes
a spin-down occurs at the start of the idle period. This al-
lows the oracle to represent not only an optimal prefetching
and request batching strategy, but also an optimal spin down
strategy as well. The energy value estimated by the oracle
for the given workload is a strict lower bound on how much
energy a given trace would require.

3 The Best Shifting Policy

Each of the implemented prefetching policies use past
file events to predict future file accesses. Different prefetch-
ing policies work better for different workload patterns. The
Figures 5, 6, 7, and 8 show how different prefetching poli-
cies work better for different days, using day long traces
from instructional computers at the University of Califor-
nia, Berkeley [28], and traces taken from research systems
(a Windows laptop and a desktop PC) at the University of
California, Santa Cruz during early 2005 [29]. Both sets
of traces demonstrate that a single prefetching policy does
not always perform best. This is typical of all traces we
have considered. Computers run many different programs
and can have many different users who perform different
file accesses depending on the task, causing workloads to
change rapidly. Limiting yourself to one fixed prefetching
policy is suboptimal because current workload determines
the best policy.
Since it can be shown that different prefetching policies

can performbest for different workloads, and that file access
patterns change, it would be best to use an algorithm that
would automatically switch to the best prefetching policy
in response to the current workload. is the basis of our Best
Shifting prefetching policy, which shifts which prefetching
policy it uses based on which policy can save the most en-
ergy for the current file access workloads.
The Best Shifting policy uses machine learning tech-

niques to choose which policy out of the six imple-
mented (unmodified, last successor, first successor, Stabil-
ity, FMOC, and EPCM) works best for the file access work-

load at that point in time. The Best Shifting policy dynam-
ically chooses the best policy, not based upon hit ratio, but
based on an energy savings metric.
To keep track of the performance of the different pre-

dictors, each policy has its own virtual cache, containing
the files it would have in the cache if it was the system’s
prefetching policy. The virtual cache then allows us to de-
rive which file accesses would cause disk accesses for the
different policies. Each policy then stores these disk ac-
cesses in its own Disk Access Window, which is a snapshot
of all the disk accesses a given policy would have created in
the past N seconds had it been the system’s prefetching pol-
icy. From this window, we can directly calculate our energy
saving metrics.

3.1 Tracking Policy Performance

To keep track of the performance of each policy, the
Best Shifting algorithm keeps virtual caches for each work-
load reshaping policy. Each prefetching policy has a virtual
cache which keeps track of all the files that would be in the
cache if the policy was currently being used by the system
cache. By using virtual caches, the file accesses that need
to go to disk can be derived for each prefetching policy.
We then know the past disk access pattern and idle peri-
ods created by each of the different policies. This allows
us to come up with the idle period length and approximate
energy usage for the recent history of each policy. This in-
formation can then be used to decide which policy will give
us the maximum energy conservation.
Virtual caches were used previously by Ari et al. [3] and

Gramercy et al. [12]. Our strategy, however, is different. In
previous work, the virtual caches were used to keep track
of cache hit and miss ratios. These metrics were then used
to determine which policy is the best and should be chosen
for the current workload. Our algorithm uses these virtual
caches to determine the disk accesses each policy would
create had it been the system cache’s policy. Then, keeping
track of these disk accesses for each policy, we can derive
the idle periods and an estimate of the energy used by the
policy. The policy with the lowest energy saving metric is
chosen as the winner and is adopted as the policy for the
main cache.
To keep track for the disk accesses each policy creates,

we use a Disk Access Window. For each policy, the disk
accesses in the past N seconds, where N is a user defined
variable, are kept track of in a window. Typical windows
sizes range from 120 seconds (2 minutes) to 600 seconds
(10 minutes). From this window of disk accesses, idle peri-
ods can be derived and estimations can be made on the en-
ergy usage. These Disk Access Windows allow us to com-
pute energy saving metrics for each policy that we then use
in our machine learning process. The metrics are: number
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of idle periods, potential energy savings, average idle period
length and maximum idle period length. These metrics can
be calculated directly from the idle periods in the Disk Ac-
cess Window for each policy. These metrics are then used
to compute the loss of each of the policies, which then is
used to recompute the weight, using a multiplicative weight
algorithm with a share update, of each policy and choose a
winner.

3.2 Policy Evaluation & Selection

The Disk Access Window for each policy allows us to
derive the energy saving metrics for each policy, which are
used to compute the loss of the given policy. Equation 3
shows how the loss for a policy is computed using the met-
rics drawn from the Disk Access Window. If the policy has
the best metric out of all the policies, then its loss will be 0.
Otherwise, its loss will be anywhere from 0 to 1, depending
on the performance of the prediction policy at moving fu-
ture disk accesses and creating longer idle periods. This loss
is then used to recompute the weights for each policy. We
use a share update function [16], which is a member of the
multiplicative weight family of algorithms. The update uses
a Vovk exponential update [32] to first compute the next
weight, reducing the weights of poorly performing experts,
then shares some of the remaining weights equally with all
the policies. It has parameters of and which are defined
as the share parameter and the learning rate, respectively.
Equation 4 shows how the new weights are computed using
the loss for each policy and the share update functions.

Lossi =
max(Metric)−Metrici

max(Metric)
(3)

Wi =Wi× e− Lossi

pool =
alli

(1− (1− )Lossi×Wi))

Wi = ((1− )Lossi ×Wi)+ (
1

# of Policies
)× pool (4)

These two parameters control the action of the update.
The learning rate, , controls how rapidly the weights of
incorrect experts are decreased while the share parameter,
, controls how fast a previously poorly predicting expert
recovers when its performance increases. In our application
and previous works [15], the precise values of these param-
eters have little effect on the overall performance of the al-
gorithm. To find the best values for and , tests where
run on the traces to evaluate a range of values. The best
values of these parameters were found to be approximately
0.08 for and approximately 10.0 for .
When the main cache’s policy changes, there are two

strategies that we can perform to realize this change. First

we can simply change the policy without affecting the con-
tents of the cache. This changes the way future predicted
files will be prefetched, though it does nothing to the files
that are already in the cache. The second strategy is to “roll
over” the cache. This is the process of synchronizing the
virtual cache of the winning policy with the main cache by
prefetching files that are not in the system cache yet are in
the winning policy’s virtual cache. This operation, however,
can take many disk accesses to perform, and so is only to be
attempted if the disk is in the active state. If the cache pol-
icy changes while the disk is down, roll-over does not take
place. If the disk is already active, then we can fetch the
files we need to synchronize the cache in the background
without causing an unnecessary disk spin-up. Roll-over can
quickly help cache performance after the policy is switched
due to a workload change that favors the new policy.

4 Experimental Results

To test our dynamic prefetching policy, Best Shifting, we
used file system traces from a varied selection of sources.
A cache emulator is employed to model the system cache
whilst keeping track of the demand-fetched and prefetched
files, along with cache statistics. If a trace entry asks for a
file that is not in the cache, a disk request is created. Our
cache emulator records the timing of file accesses that re-
sult in cache misses and require physical disk activity. This
output is then used as the input to a spin-down algorithm,
and workload’s energy usage can then be calculated. For
our tests, we used a cache emulator with a typical 30 sec-
ond write buffer time-out. The output for this emulator was
then run through a dynamic spin-down time-out algorithm,
implemented as described by Helmbold et al. [15]. The de-
cisions of the spin-down algorithm were then used to calcu-
late the energy usage.
We applied our dynamic prefetching algorithm to traces

from varied workloads. These included file traces of in-
structional systems at the University of California, Berke-
ley [28], and file system traces recorded fromWindows sys-
tems at the University of California, Santa Cruz [29].
The bulk of single user systems today run Microsoft

Windows as their operating system. To obtain typical work-
loads from a typical single user system, we decided to trace
both desktop and laptop PCs. running Microsoft Windows
XP. We collected these traces to serve as typical workload
for our dynamic prefetching algorithm. These traces, were
collected in January and February of 2005. Both desk-
top and laptop machines are single-user systems. The raw
traces taken from these systems contain file activity in the
form of file opens, and disk activity, in the form of disk
read andwrite operations. Through post-processing of these
traces, we derive an accurate picture of the file operations
performed and the time at which they occurred, allowing us
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Figure 3. The energy usage for a fixed cache size, write
buffer size and time-out,and spindown policy for mobile
host Jrybz at the University of California, Santa Cruz on
February 16, 2005.

Figure 4. The energy usage for a fixed cache size, write
buffer size and time-out,and spindown policy for host Peri-
odot at the University of California, Santa Cruz on February
14, 2005.

to have a workload containing file read and write operations
to test our dynamic prefetching policy.
The Berkeley traces contain file system requests from

three different workloads, graduate research computers, un-
dergraduate instructional machines, and web servers. They
were taken from machines in computer labs at the Univer-
sity of California, Berkeley campus from late 1996 to early
1997. Roselli and Anderson [28] used these traces in their
argument for optimizing disk layout to improve read perfor-
mance. The traces contain OPEN, EXEC, READ, WRITE,
CREATE, and CLOSE file operations along with file size
and user ID information for all file activity.
Host INS#23 is one of many typical workloads we saw

in the Berkeley traces. A Windows laptop PC, Jrybz and
Periodot, a Windows Desktop PC, were used as file access
workloads from the the University of California, Santa Cruz

Figure 5. The energy usage for a fixed cache size,
write buffer size and time-out,and spindown policy for host
INS#23 at the University of California, Berekely on October
1, 1996.

Figure 6. The energy usage for a fixed cache size,
write buffer size and time-out,and spindown policy for host
INS#23 at the University of California, Berekely on October
2, 1996.

traces. Energy usage results for these workloads are shown
in Figures 5 through 4.
Figures 5 through 8 and Figures 3 and 4, show energy

usage our dynamic prefetching algorithm, which dynam-
ically chooses the “best” prefetching policy for the given
workload, based on energy usage. These results demon-
strate that our algorithm produces disk behavior that is at
worst the same in terms of energy usage as an a priori best
fixed prefetching policy, and in most cases outperforms all
the fixed prefetching policies. By dynamically choosing the
“best” prefetching policy for the workload at a given point,
we are able to modify the workload and increase the length
of idle periods, allowing our algorithm to spin the disk down
for longer periods of time, conserving more energy than
with an unmodified trace.
While our algorithm combines workload reshaping with

a dynamic spin-down algorithm, it is reasonable to con-
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Figure 7. The energy usage for a fixed cache size,
write buffer size and time-out,and spindown policy for host
INS#23 at the University of California, Berekely on October
3, 1996.

Figure 8. The energy usage for a fixed cache size,
write buffer size and time-out,and spindown policy for host
INS#23 at the University of California, Berekely on October
4, 1996.

sider other combinations. Figure 9 shows the relative per-
formance of our combination of prefetching and disk spin-
down policies compared to other policy combinations. The
value being represented is a ratio of the energy used by un-
der the given policy, to the minimum possible energy usage
as computed by the oracle. Our oracle gives us the abso-
lute minimum energy usage for the given workload by cal-
culating optimal busy burst periods and long idle periods.
The oracle considers both optimatl prefetching and request
batching along with an optimal spin-down policy for the
given workload. These results demonstrate the possibility
of saving as much as 65% to 75% energy over traditional
non-prefetching and fixed-time-out spin-down algorithms.
Achieving this ideal would require perfect and complete
knowledge of the future, and yet our dynamic prefetching
policy and our dynamic spin-down time-out algorithm al-
lowed us to save a substantial 15% to 35% energy.

Figure 9. This figure shows a day long trace’s disk en-
ergy usage given different prefetching and disk spin-down
policies. This behavior is representative of the workloads
tested.

5 Related Research

By creating bursty disk patterns using prediction and
prefetching, our disk spin-down policy could save more
energy by aggressively spinning down the disk. We have
employed the batching of disk requests, the prediction and
prefetching of data, and the judicious application of disk
spin-down policies. Significant research has been done in
each of these areas individually.
Effectively spinning down the disk drive can save valu-

able energy in a mobile environment [23, 11]. We have
used a dynamic spin-down algorithmwhich adjust the time-
out value based on past disk request history. Helmbold et
al. [15] described another dynamic spin-down timeout algo-
rithm that employed a machine learning algorithm to adjust
the timeout. Bisson and Brandt demonstrated the practical-
ity of implementing such an algorithm [4].
The nature of the access workload, and its interaction

with the underlying cache and disk, is crucial for for effec-
tive disk power management. Zhu et al. [36] showed that
simply minimizing cache misses does not necessarily result
in the minimum energy usage for a given cache replacement
policy. They proposed four different power-aware caching
policies that can save up to 16% disk energy over a tra-
ditional LRU cache policy. Creating busier burst periods
and longer idle periods allows the disk to be spun down
for longer periods of time. The exploitation and promotion
of such bursty behavior has been explicitly attempted by
Weisel et al. [33], and Papathanasiou and Scott [27, 26, 25].
They found that traditional OS resource management poli-
cies tend to “smooth out” these burst and idle periods. The
Milly Watt Project [8] shows that because application needs
are the driving force behind power management strategies,
it is useful to propagate energy efficiency information to the
application. Nobel’s implementation,Odyssey [24], showed
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a factor of five increase in performance over three different
benchmarks. More specifically Flinn et al. [9] showed that
collaboration between the operation system and applica-
tions can be used to achieve longer battery life and less en-
ergy consumption. Their implementation in the Linux ker-
nel monitored energy supply and demand to select a trade-
off between energy conservation and performance. Others
have also used collaboration between the operation system
and applications the increase energy efficiency and perfor-
mance [33, 31].
A great deal of work has been done in the area of ac-

curate file prediction and prefetching. The Seer project
applied prediction to automate mobile file hoard construc-
tion [22, 21]. Griffioen et al. [14] applied a graph-based
algorithm to predict file accesses, while Curewitz et al. [6]
first proposed the use of data compressions techniques.
Kroeger and Long [20] used similar techniques to create
a practical, space-efficient and more adaptive prediction
model, that was the implemented in the Linux kernel. A
multi-expert prediction technique was proposed by Whit-
tle et al. [34]. Brandt et al. [5] demonstrated another form
of multi-expert prediction algorithm that further considered
non-prediction as a mechanism to reduce mispredictions.

6 Conclusion and Future Research

By creating burstier disk access patterns and longer disk
idle periods we can significantly increase the disk energy
savings. This in turn allows us to use aggressive disk spin-
down policies to effectively conserve energy. We have
implemented a dynamic prefetching policy, Best Shifting,
which dynamically chooses among six basic policies. The
individual policy that creates the most potential energy sav-
ings is deemed best and selected. We then combined this
policy with a dynamic spin-down mechanism, described
by Helmbold et al. [15], with the resulting approach using
5% to 10% less energy than the dynamic spin-down pol-
icy alone. This combined strategy results in 15% to 35%
less energy usage than traditional predictive prefetching and
spin-down policies.
While we have shown that by dymanically selecting the

prefetching strategy, we can lengthen disk idle periods and
save energy, our oracle results show that there is more en-
ergy yet to be saved. Future investigation will be aimed
at further reducing energy consumption. By implementing
different prefetching strategies, with the goal not only to
make accurate predictions but to create busier burst periods,
we aim to come closer to optimal disk energy savings.

References

[1] A. Amer and D. D. E. Long. Noah: Low-cost file access pre-
diction through pairs. In Proceedings of the 20th IEEE In-

ternational Performance, Computing and Communications
Conference (IPCCC ’01), pages 27–33. IEEE, Apr. 2001.

[2] A. Amer, D. D. E. Long, J.-F. Pâris, and R. C. Burns. File
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