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Abstract

Hierarchical file systems do not effectively meet the needs
of users at the petabyte-scale. Users need dynamic,
search-based file access in order to properly manage and
use their growing sea of data. This paper presents the
design of Copernicus, a new scalable, semantic file sys-
tem that provides a searchable namespace for billions of
files. Instead of augmenting a traditional file system with
a search index, Copernicus uses a dynamic, graph-based
file system design that indexes file attributes and relation-
ships to provide scalable search and navigation of files.

1 Introduction

Today, file systems store petabytes of data across billions
of files and can serve thousands of users. Current hier-
archical file organizations, which are over 40 years old
and are meant for orders of magnitude fewer files [3], no
longer match how users access and manage their files [14].
As a result, users are no longer able to easily knowwhere
to find their data and must use lengthy brute force search
when they do not know exactly where it is.

Instead, users need to be able to describewhat they are
looking for. For example, a scientist’s HPC application
may generate thousands of files containing data from ex-
periments; finding the few files with interesting results or
those with related or similar results can be difficult. Us-
ing and sharing these files requires that files be accessible
via their results (i.e.,content), the experiment parameters
(i.e., metadata), and the files and data used to generate
the results (i.e., inter-file relationships). Users are hard-
pressed to address even common problems, such as locat-
ing the files that consume the most disk space or finding
where files for an application have been installed.

As system capacities have grown, this problem has
been addressed by augmenting file systems with separate
applications that provide search and indexing functional-
ity. Search applications, which use additional file meta-
data and content indexes for faster search, have become
popular on both desktop [1] and enterprise [7] file sys-
tems. However, these applications are simply makeshift
solutions to a more fundamental problem: hierarchical
file systems do not provide the search and management

capabilities that users require. Additionally, storing files
in both the file system and a search application introduces
space, performance, and usability overheads that can limit
their effectiveness at the petabyte-scale.

This approach is far from ideal and suggest that file
systems themselves be re-designed to provide the func-
tionality required by users at the petabyte-scale. This pa-
per makes the following contributions: (1) it argues that
search and a semantic namespace should be primary goals
of the file system; (2) it presents some basic requirements
and challenges for building a solution; (3) and presents
the design of Copernicus, a file system that aims to ad-
dress these challenges at large scales. The core of the
Copernicus file system is a dynamic graph-based index
that clusters semantically related files into vertexes and al-
lows inter-file relationships to form edges between them.
This graph replaces the traditional directory hierarchy, can
be efficiently queried, and allows the construction of dy-
namic namespaces. The namespace allows “virtual” di-
rectories that correspond to a query and navigation us-
ing inter-file relationships. Additionally, by integrating
search directly into the file system Copernicus can effec-
tively scale to billions of files.

1.1 Motivating Examples

The following examples show how Copernicus can im-
prove file management.
Understanding file dependencies.Consider a scientist
running an HPC DNA sequencing application. To inter-
pret the results, it is useful to know how the data is being
generated. As the experiment runs, Copernicus allows the
results to be searched in real time. If a compelling result
is found, a virtual directory can be created containing files
from past experiments with similar results. By searching
the provenance links of those files, the scientist can find
which DNA sequencing libraries or input parameters are
the common factor for all of the result files.
System administration. Imagine a storage administrator
who discovers a serious bug in a script that has affected
an unknown number of files. To locate and fix these files,
the administrator can search provenance relationships to
find the contaminated files (e.g.,files opened by the script)
and build a virtual directory containing these files. A cor-
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Figure 1: File search applications. The search application re-
sides on top of the file system and stores file metadata and con-
tent in separate search-optimized indexes. Maintaining several
large index structures can add significant space and time over-
heads.

rected version of the script can be run over the files in this
directory to quickly undo the erroneous changes.
Finding misplaced files. Consider a user working on
a paper about file system search and looking for related
work. The user recalls reading an interesting paper while
working on “motivation.tex” but does not know the pa-
per’s title or author. However, using temporal links and
metadata, a virtual directory can be constructed of all files
that were accessed at the same time as “motivation.tex”,
are PDFs, and contain “file system” and “search”. The
directory allows the user to easily browse the results.

2 Petabyte-Scale Challenges

As file systems have grown to store many billions of files,
search-based access and navigation have become criti-
cal requirements. Unfortunately, current file system and
search solutions are not well equipped to address these
challenges.

2.1 Current Limitations

Hierarchical file organization was designed for systems
with thousands of files and aimed to provide only basic
navigation for persistent storage [3]. As a result, basic hi-
erarchical organization has several limitations that do not
match the needs of users who use and manage billions of
files. First, files are only allowed to have a single catego-
rization (i.e., its pathname). Useful information describ-
ing a file cannot be used to access it and is often lost; it
is often impossible for users to recall a single categoriza-
tion in large systems. Second, files can only be related
through parent→ child relationships. Other important
inter-file relationships, such as provenance, temporal con-
text, or use in a related project, are lost. Third, hierarchies
provide no convenient search functionality. When a file’s
location is not known, a brute force search, which can be
extremely slow, is required.

The limitations of current hierarchical organization are
well documented, and there are a variety of proposed so-
lutions. Early solutions, such asfind andgrep, aimed
to make brute force search less cumbersome. Semantic
file systems [6] provided new namespaces that allowed
search-based access to files and construction of “virtual”
directories that were associated with queries. Semantic
file systems provided better methods for accessing files,
but were designed as applications above the file system
which caused serious performance and consistency prob-
lems. Other search applications improved performance by
using new index designs tailored for file systems [10, 12].
Today, tools that provide metadata and content search for
desktop [1] and small-scale (tens of millions of files) en-
terprise [7] file systems are common.

However, current solutions are applications that reside
separatelyfrom the file system. As a result, they can sim-
ply concealcurrent hierarchical limitations, rather than
solve them. Figure 1 shows how these applications in-
teract with the file system. The search application main-
tains search indexes for file metadata and content, such as
databases or inverted files, which are stored persistently
as files in the file system.

Separate search applications are not an ideal solution
because they require a level of indirection that is ineffi-
cient. A resource overhead is incurred, which can be sig-
nificant at the petabyte-scale, because each file requires
resources in both the file system’s and application’s in-
dexes. Additionally, the application must track file sys-
tem changes, either by crawling or monitoring activity,
a slow process that often leaves the application inconsis-
tent with the file system because each file modification re-
quires updates to the indexes of each. Moreover, querying
the search application can be highly inefficient. A query
requires the search indexes to be accessed, which must
then leverage the file system’s index (since they are stored
in the file system); actually retrieving the file requires an-
other look up in the file system index. These kinds of inef-
ficiencies are well known to the database community [17]
and the reason that many databases manage their own stor-
age. Finally, users must interact with multiple interfaces
depending on how they want to access their files.

We posit that a scalable, searchable namespaceis func-
tionality that file systems should provide because 1) it is
becoming increasingly important functionality, 2) a sepa-
rate application limits scalability and usability and 3) the
file system already provides existing indexing functional-
ity that can be leveraged. Other recent work supports the
idea that “hierarchical file systems are dead” [14].

2.2 Modern File System Requirements

To address the needs of today’s users, modern large-scale
file systems must meet some basic requirements.
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Flexible naming. The main drawback with current hi-
erarchies is their inability to allow flexible and semantic
access to files. Files should be able to be accessed using
their attributesand relationships. Thus, the file system
must efficiently extract and infer the necessary attributes
and relationships and index them in real-time.
Dynamic navigation. While search is extremely use-
ful for retrieval, users still need a way to navigate the
namespace. Navigation should be more expressive than
just parent→ child hierarchies, should allow dynami-
cally changing (or virtual) directories and need not be
acyclic. Relationships should be allowed between two
files, rather than only directories and files.
Scalability. Large file systems are the most difficult to
manage, making it critical that both search and I/O per-
formance scale to billions of files. Effective scalability
requires fine-grained control of file index structures that
allow disk layouts and memory utilization to properly
match workloads.
Backwards compatibility. Existing applications rely on
hierarchical namespaces. It is critical that new file sys-
tems be able to support legacy applications to facilitate
migration to a new paradigm.

3 Copernicus Architecture

Copernicus is designed as an object-based parallel file
system so that it can achieve high scalability by decou-
pling the metadata and data paths and allowing parallel
access to storage devices [18]. However, Copernicus’s
techniques are applicable to a wide range of architectures.
Object-based file systems consist of three main compo-
nents: clients, a metadata server cluster (MDS), and a
cluster of object-based storage devices (OSD). Clients
perform file I/O directly with OSDs, but submit meta-
data and search requests to the MDS, which manages the
namespace; thus, most of the Copernicus design is fo-
cused on the MDS.

Copernicus achieves a scalable, semantic namespace
using several new techniques. A dynamic graph-based in-
dex provides file metadata and attribute layouts that en-
able scalable search, as shown in Figure 2. Files that are
semantically similar and likely to be accessed together are
grouped intoclusters, which are similar to traditional di-
rectories, and form the vertices of the graph. Inter-file re-
lationships, such as provenance [13, 15] and temporal ac-
cess patterns [16], create edges between files that enable
semantic navigation. Directories are “virtual,” and are in-
stantiated by queries. Backwards naming compatibility
can be enabled by creating a hierarchical tree from the
graph. Clusters store metadata and attributes in search-
optimized index structures. The use of search indexes for
native storage mechanisms allows Copernicus to be easily
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Figure 2: Copernicus overview. Clusters, shown in different
colors, group semantically related files. Files within a clus-
ter form a smaller graph based on how the files are related.
These links, and the links between clusters, create the Coper-
nicus namespace. Each cluster is relatively small and is stored
in a sequential region on disk for fast access.

searched without additional search applications. Finally,
a new journaling mechanism allows file metadata modifi-
cations to be written quickly and safely to disk while still
providing real-time index updates.

3.1 Graph Construction

Copernicus uses a graph-based index to provide a meta-
data and attribute layout that can be efficiently searched.
The graph is managed by the MDS. Each file is repre-
sented with an inode and is uniquely identified by its inode
number. Inodes and associated attributes—content key-
words and relationships—are grouped into physical clus-
ters based on their semantic similarity. Clusters are like
directories in that they represent a physical grouping of
related files likely to be accessed together, in the same
way that file systems try to keep files adjacent to their con-
taining directory on disk. This grouping provides a flex-
ible, fine-grained way to access and control files. How-
ever, unlike directories, cluster groupings are semantic
rather than hierarchical and are transparent to users: clus-
ters only provide physical organization for inodes. Given
a file’s inode number, a pseudo-random placement algo-
rithm, CRUSH [19], identifies the locations of the file’s
data on the OSDs, meaning data pointers are not stored
within the inode.

Inodes are grouped into clusters usingclustering poli-
cies, which define their semantic similarity. Clustering
policies may be set by users, administrators, or Coperni-
cus, and can change over time, allowing layouts to ad-
just to the current access patterns. Inodes may move be-
tween clusters as their attributes change. Example cluster-
ing policies include clustering files for a common project
(e.g.,files related to an HPC experiment), grouping files
with shared attributes (e.g.,files owned by Andrew or all
virtual machine images), or clustering files with common
access patterns (e.g.,files often accessed in sequence or in
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parallel). Previous work has used Latent Semantic Index-
ing (LSI) as a policy to group related files [8]. In Coperni-
cus, files are allowed to reside in only one cluster because
maintaining multiple active replicas makes synchroniza-
tion difficult. Clusters are kept relatively small, around
105 files, to ensure fast access to any one cluster; thus, a
large file system may have 104 or more clusters.

Copernicus creates a namespace using the semantic re-
lationships that exist between files. Relationship links
are created implicitly by Copernicus depending on how
files are used and can also be created explicitly by users
and applications. Unlike a traditional file system, links
only exist between two files; directories in Copernicus are
“virtual” and simply represent the set of files matching a
search query. Virtual directories allow dynamic names-
paces to be constructed, while links provide an easy, se-
mantic way to navigate the namespace. Relationships
are directed and are represented as triples of the form
〈relationship type, source file, target file〉, and can define
any kind of relationship. Relationship links may exist be-
tween files within the same or different clusters as illus-
trated in Figure 2. The graph need not be acyclic, permit-
ting more flexible relationships.

3.2 Cluster Indexing

Files in Copernicus may be retrieved using their metadata,
content, or relationship attributes. Each cluster stores
these attributes in separate search-optimized index struc-
tures, improving efficiency by allowing files to easily be
searched without a separate application. File metadata is
represented as〈attribute,value〉 pairs and includes sim-
ple POSIX metadata and extended attributes. Metadata is
indexed in a in-memory, multi-dimensional binary search
tree called a K-D tree [2]. K-D trees, which have been
used previously to index metadata [10], provide fast, log-
arithmic point, range, and nearest neighbor queries. A
key advantage of multi-dimensional search trees is that all
metadata attributes can be indexed in a single structure,
as opposed to a B-tree, which would require one per at-
tribute. Since clusters are relatively small, each K-D tree
can often be stored in a sequential region on disk. This
layout, which is similar to embedded inodes [5], provides
fast read access and prefetching of related metadata.

Relationship attributes are also stored in a K-D tree. K-
D trees allow any combination of the relationship triple to
be queried. If a relationship exists between files in dif-
ferent clusters, the cluster storing the source file’s inode
indexes the relationship, to prevent duplication. This K-D
tree can also usually be stored sequentially on disk.

Each cluster stores full-text keywords, which are ex-
tracted from its files’ contents using application-specific
transducers, in its own inverted index. This design allows
keyword search at the granularity of clusters and helps

keep posting lists small so that they can be kept sequen-
tial on disk. A global indirect index [11] is used to identify
which clusters contain posting lists for a keyword. An in-
direct index consists of a keyword dictionary with each
keyword entry pointing to a list of〈cluster,weight〉 pairs,
allowing the MDS to quickly identify the clusters most
likely to contain an answer to a query and rule out those
clusters thatcannotsatisfy the query.

3.3 Query Execution

All file accesses (e.g.,open() andstat()) translate to
queries over the Copernicus graph index. While naviga-
tion can be done using graph traversal algorithms, queries
must also be able to identify the clusters containing files
relevant to the search. Since semantically related files are
clustered in the namespace, it is very likely that the vast
majority of clusters do not need to be searched. This has
already been shown to be the case in hierarchical file sys-
tems [10], despite only modest semantic clustering. Ad-
ditionally, Copernicus employs an LRU-based caching al-
gorithm to ensure that queries for hot or popular clusters
do not go to disk.

For file metadata and relationships, Copernicus identi-
fies relevant clusters usingsignature files[4]—bit arrays
with associated hashing functions that compactly describe
the contents of a cluster. When a cluster stores a metadata
or relationship attribute, it hashes its value to a bit position
in a signature file, which is then set to one. To determine
if a cluster contains any files related to a query, the values
in the query are also hashed to bit positions, which are
then tested. If, and only if, all tested bits are set to one is
the cluster read from disk and searched.

Signature files are one-dimensional; thus, one is main-
tained for each type of attribute indexed. To ensure fast
access, signature files are kept in memory. To do this,
each is kept small: 103 to 105 bit positions per signature
file. While false positives can occur when two values hash
to the same bit position, the only effect is that a cluster
is searched when it does not contain files relevant to the
query, degrading search performance but not impacting
accuracy.

The sheer number of possible keywords occurring in
file content make signature files ineffective for keyword
search. However, the indirect index allows fast identifica-
tion of the clusters containing posting lists for the query
keywords. For each keyword in the query, the list of
clusters containing the keyword is retrieved. Assuming
Boolean search, the lists are then intersected, producing
the set of clusters that appeared in all lists. Only the
posting lists from the clusters appearing in this set are re-
trieved and searched. The weights can be used to further
optimize query processing, first searching in clusters that
are most likely to contain the desired results.
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3.4 Managing Updates

Copernicus must effectively balance search and update
performance, provide real-time index updates, and pro-
vide the data safety that users expect. Copernicus uses
a journal-based approach for managing metadata and re-
lationship updates, and a client-based approach for man-
aging content keywords. When file metadata or relation-
ships are created, removed or modified, the update is first
written safely to a journal on disk. By first journaling up-
dates safely to disk, Copernicus is able to provide needed
data safety in case of a crash. The K-D tree containing
the file’s inode or relationship information is then mod-
ified and marked as dirty in the cache, thereby reflect-
ing changes in the index in real-time. When a cluster
is evicted from the cache, the entire K-D tree is written
sequentially to disk and its entries are removed from the
journal. Copernicus allows the journal to grow up to hun-
dreds of megabytes before it is trimmed, which helps to
amortize multiple updates into a single disk write.

Unfortunately, K-D trees do not efficiently handle fre-
quent inserts and modifications. Inserting new inodes
into the tree can cause it to become unbalanced, degrad-
ing search performance. As a result, K-D trees are re-
balanced before they are written to disk. Also, inode mod-
ifications first require the original inode to be removed and
then a new inode to be inserted. Both of these operations
are fast compared to writing to the journal, but since disk
speed dictates update performance, storing the journal in
NVRAM can significantly boost performance.

Clients write file data directly to OSDs. When a file is
closed, Copernicus accesses the file’s data from the OSDs
and use a transducer to extract keywords. To aid this pro-
cess, clients submit a list of write offsets and lengths to the
MDS when they close a file. These offsets tell the MDS
which parts of the file to analyze and can greatly improve
performance for large files. Cluster posting lists are then
updated with extracted keywords. Since cluster posting
lists are small, an in-place update method [9] can be used,
ensuring that they remain sequential on disk.

4 Conclusions and Open Questions

Hierarchical file organization was designed for the sys-
tems of yesterday. At the petabyte-scale, file systems must
break away from this paradigm and provide a semantic,
searchable namespace where users can ask forwhat they
want, rather than sayingwhereto find it. Existing search
applications, which are separate from the file system, will
not effectively scale. To address this problem we designed
Copernicus, which uses a novel graph-based index to pro-
vide a semantic namespace and scalable performance.

Because Copernicus changes many common file sys-
tem concepts, a number of practical questions remain

open. First, how effectively does a generic graph index
scale and how effective are search trees at handling file
system workloads? Second, what are the challenges with
providing needed functionality such as security? Third,
can the Copernicus graph be leveraged for better file
search result ranking or interface? We intend to explore
these and other issues as we continue our design.
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