
PRIMS: Making NVRAM Suitable for Extremely Reliable Storage †

Kevin M. Greenan
kmgreen@cs.ucsc.edu

Ethan L. Miller
elm@cs.ucsc.edu

Storage Systems Research Center
University of California, Santa Cruz

Abstract

Non-volatile byte addressable memories are becoming
more common, and are increasingly used for critical data
that must not be lost. However, existing NVRAM-based file
systems do not include features that guard against file sys-
tem corruption or NVRAM corruption. Furthermore, most
file systems check consistency only after the system has al-
ready crashed. We are designing PRIMS to address these
problems by providing file storage that can survive mul-
tiple errors in NVRAM, whether caused by errant operat-
ing system writes or by media corruption. PRIMS uses an
erasure-encoded log structure to store persistent metadata,
making it possible to periodically verify the correctness of
file system operations while achieving throughput rates of
an order of magnitude higher than page-protection during
small writes. It also checks integrity on every operation and
performs on-line scans of the entire NVRAM to ensure that
the file system is consistent. If errors are found, PRIMS
can correct them using file system logs and extensive error
correction information. While PRIMS is designed for relia-
bility, we expect it to have excellent performance, thanks to
the ability to do word-aligned reads and writes in NVRAM.

1 Introduction
Byte-addressable, non-volatile memory (NVRAM) tech-

nologies such as magnetoresistive random access mem-
ory (MRAM) and phase-change memory (PRAM) have re-
cently emerged as viable competitors to Flash RAM [1, 2].
These relatively low capacity technologies are perfect for
permanent metadata storage, and can greatly improve file
system performance, reliability and power consumption.
Unfortunately, due to the increased chance of data corrup-
tion, storing permanent structures in NVRAM is generally
regarded as unsafe, particularly when compared to disk.
The simplicity of most memory access interfaces makes er-
roneous writes more likely, resulting in data corruption—
it is far easier to manipulate structures in memory than on
disk. Such behavior is common in OS kernels, in which
buggy code can issue erroneous wild writes that acciden-

†This research was funded in part by NSF-0306650, the Dept. of
Energy-funded Petascale Data Storage Institute, and by SSRC industrial
partners.

tally overwrite memory used by another module or applica-
tion.
The goal of PRIMS (Persistent, Reliable In-Memory

Storage) is to provide reliable storage in NVRAM with-
out hindering the access speed of byte-addressable mem-
ory. Given the limitations of current in-memory reliabil-
ity mechanisms, we believe that a log-based scheme using
software erasure codes is the most effective way to ensure
the consistency of persistent, memory-resident data. We
present a log-based approach that has the ability to detect
and correct errors at multiple byte-granularitywithout using
page-based access control or specialized hardware support.
PRIMS consists of a single, erasure-encoded log structure
that is used to detect and correct hardware errors, software
errors and file system inconsistencies.

2 Motivation
Modern operating systems protect critical regions of

memory using access control bits in the paging structures.
While page-level access control is an effective tool for pre-
venting wild writes in write caches, it is not the best so-
lution for protecting small, persistent structures in byte-
addressable memory because every protected write requires
a TLB flush and two structure modifications to mark a page
as read-write and read-only. During periods of frequent
small writes, these permission changes have a dramatic ef-
fect on performance.
Disk interfaces also decrease the likelihood of wild

writes by requiring access through device drivers contain-
ing complex I/O routines. The probability of rogue code
accidentally corrupting disk blocks while evading the con-
trolled device driver interface is extremely low. This strict
I/O interface greatly improves data reliability with respect
to software errors, but hinders performance on low-latency
media, such as NVRAM.
In addition to software errors, hardware errors such as

random bit flips and cell wear may occur on the media,
leading to data corruption. Hardware-based error correction
schemes require a specialized controller and resolve errors
beyond the correction capability by rebooting the system.
Obviously, rebooting is not an option when protecting per-
sistent data in memory; thus, a more robust scheme is neces-
sary. Hardware-based error correction is also computed in-
dependent of any software implementation; as a result, wild



writes will most usually result in values that have consis-
tent hardware-based ECC values. In order to provide a high
level of flexibility and resiliency, error correction should be
moved into a software module that provides tunable redun-
dancy with respect to the target environment.
As the size of storage systems increases, the probabil-

ity of corruption and time required to make repairs increase
correspondingly. In an effort to prevent permanent damage
as a result of corruption and minimize system downtime,
PRIMS performs on-line checks that verify the consistency
of file system structures and all NVRAM-resident data. We
believe such integrity checking should be a requirement for
modern file systems.

3 Related Work
A great deal of work has gone into many of the perfor-

mance implications associated with the use of NVRAM in
file systems. In addition, methods to achieve reliability in
file systems and data caches have been used for a great deal
of time. As we will see, no single method has the ability
to effectively handle both software and hardware errors in
NVRAM.
Baker, et al. [3] observed that the use of NVRAM in a

distributed file system can improve write performance and
file system reliability. More recently, HeRMES [10] posited
that file system performance would improve dramatically if
metadata were stored in MRAM. Conquest [16] also used
persistent RAM to store small files, metadata, executables
and shared libraries. While these systems promise higher
performance, none of the systems provided improved reli-
ability. As a result, they are potentially unsafe to use for
long-term metadata storage because they are subject to cor-
ruption that cannot be fixed by rebooting—the in-memory
metadata is the only copy.
The Rio file cache [4, 7] utilizes page permission bits

to set the access rights for areas of memory, providing a
safe non-volatile write cache. In general, page protection
does not have a profound effect on write throughput; page
protection does heavily degrade write performance in work-
loads consisting of small I/Os. Since most metadata updates
are relatively small, we believe that page protection should
not be used to protect persistent metadata.
Earlier work on metadata reliability in NVRAM used a

combination of error correcting codes and page-protection
via the mprotect system call to ensure the integrity of
persistent, memory-resident metadata [5]. The cost of page
protection significantly hurt performance, while on-line
consistency checks of memory-resident metadata proved to
be inexpensive.
Mondriaan memory protection [17] provides fine-

grained isolation and protection between multiple domains
within a single address space. SafeMem [12] determin-
istically scrambles data in ECC memory to provide pro-
tected regions of memory, providing mprotect-like pro-
tection. After scrambling the data, ECC is re-enabled
and the ECC controller faults when the region is accessed.
While these approaches provide an interesting alternative
to mprotect, both require specialized hardware support

and prevent data corruption without correcting the corrup-
tion when it occurs. Our approach assumes that error re-
covery is just as important is error detection in ensuring the
reliability of persistent data in NVRAM.
The popular fsck program [9] and its background vari-

ant [8] attempt to restore file system consistency by scan-
ning all of the file system metadata. Since the running time
of fsck is a function of the file system size, this opera-
tion often takes a great deal of time to complete and does
not scale to very large file systems. Chunkfs [6] divides
on-disk data into individually repairable chunks promising
faster fsck and partial on-line consistency checks. These
techniques are more similar to ours, and Henson, et al. ex-
plore tradeoffs between performance and reliability in an
effort to speed up the file system repair process.
DualFS [11] physically separates data and metadata onto

different devices or different partitions on the same device.
Themetadata device is treated as a log-based file system and
the data device resembles an FFS file system. The separa-
tion of metadata and data results in fast crash recovery, sim-
plified log cleaning and improved file system performance.
File systems such as XFS [15] and LFS [13] also use log-
based recovery to restore file system consistency. Unfortu-
nately, these systems only apply recovery mechanisms after
a crash, which may lead to system downtime or data loss. In
addition, they do not proactively check file system integrity
while the file system is running, potentially leading to latent
errors that may go undetected for days or weeks.

4 Design
The performance implications and reliability constraints

associated with current memory protection schemes force
us to take a new approach when providing reliability for
persistent data in memory. The overall structure of PRIMS
is based on five key design requirements:

Place metadata in NVRAM and data on disk Moving
metadata from disk to NVRAM allows PRIMS to
exploit parallelism between the independent devices,
enabling better performance, simple structures and the
ability to do fast, on-line metadata checks.

Periodically scan file system structures in NVRAM
On-line consistency checks are expected to decrease
or prevent down-time in the face of media or software
failures.

Avoid the need for hardware support An MMU is not
necessary and ECC schemes and reliability levels can
be changed.

Allow recovery from software and hardware faults
Since we plan to store persistent data on easily
accessible, low-reliability media, consistency must be
maintained by protecting against both software and
hardware faults.

Provide reliability with minimal overhead Persistent
data is stored in NVRAM in an effort to improve
performance, thus any reliability mechanisms should
have a small impact on performance.



⊕ ⊕ ⊕

⊕ ⊕

Figure 1: An example of the erasure-encoded log. Each parity
block is computed from corresponding data blocks in a segment.
Signatures are used in each data chunk to detect integrity viola-
tions. Corruption is detected at the chunk level and corrected by
decoding the corrupted chunk’s segment.

The most widely-used memory protection technique—
page table-based protection—provides isolation and protec-
tion through paging and access control using the page pro-
tection bits in each page table entry (PTE). Because page-
level access control requires modifying PTEs and flushing
the TLB each time page permissions are changed, a small
but constant penalty is incurred for each write. This penalty
is relatively small for large writes, but greatly degrades per-
formance for workloads consisting of small writes.
Access control provides very little in terms of hardware

and software error recovery. These mechanisms are de-
signed to prevent different parts of the operating system
from performing unauthorized data access. Thus, if a hard-
ware error occurs or a piece of software evades the access
control mechanisms—performing an unauthorized write—
the original data cannot be recovered. When dealing with
persistent data, even a single instance of corruption could
lead to loss of file system data.
To address the issues listed above we developed PRIMS.

In PRIMS, all file systemmetadata is written to a log. Main-
taining log consistency is extremely crucial because the log
holds the only copy of the file system metadata—metadata
is never written to disk. Thus, NVRAM-resident metadata
may be compromised due to wild writes, random bit flips,
media wear or, in the case of multiple NVRAM banks, me-
dia failure. PRIMS uses the log structure to verify the con-
sistency of file system metadata by replaying log transac-
tions against the live state of the system, and by checking
that written data matches the signatures stored for the data.
As an additional measure, module identification informa-
tion may be added to each write, giving PRIMS the ability
to determine which part of the OS issued the write.
PRIMS contains a set of logically contiguous, fixed-

sized segments, as shown in Figure 1, with each segment

Workload (1M writes of various sizes)
0 20 40 60 80 100

Th
ro

ug
hp

ut
 (M

B/
s)

0

50

100

150

200

Page Protection vs. RSLOG (AMD − Linux)

AMDRSLOG(+1)
AMDRSLOG(+2)
AMDRSLOG(+4)
AMDMPROT

Figure 2: Throughput when writing data using our log-based en-
coding vs. writes surrounded by mprotect calls. These results
were generated from the average throughput over 20 trials of each
workload on an 2.4 GHz AMD Opteron machine running Linux.
As shown in the graphs, depending on the choice of encoding,
small write throughput in the encoded log is much greater than
page protection for the same workload.

containing the same number of fixed-sized chunks. Data is
appended to the log by writing to the current data chunk
and writing parity updates to the appropriate parity chunks
in the current segment. Each chunk is composed of indivis-
ible, fixed-sized blocks; these blocks may be any size, and
may be significantly smaller than standard disk blocks. The
log-structure gives PRIMS a way to distinguish between
live and dead regions, where a live region contains writable
segments and a dead region contains filled segments. If a
dead region is changed, PRIMS will detect an unauthorized
change and reverse it using the erasure encoding.
PRIMS uses linear erasure codes, such as Reed-Solomon

codes, to allow flexible numbers of data chunks and as-
sociated redundancy chunks. Linear erasure codes have a
reputation for being slow because of the expensive Galois
field multiples required for encoding; however, we obtain
reasonable encoding speeds by using multiplication tables
and incremental parity updates. PRIMS uses algebraic sig-
natures rather than cryptographically secure hash functions
such as SHA-1 to perform periodic integrity checks [14].
To check the integrity of a segment, PRIMS must do two
things: verify that each chunk is consistent with its alge-
braic signature, and verify that the algebraic signatures for
a segment are consistent with one another. The use of al-
gebraic signatures and linear erasure codes enables this ap-
proach, since the computation of algebraic signatures and
the use of erasure codes based on the same Galois field com-
mute. These operations can be done together, or they can be
decoupled, allowing sets of signatures over a segment to be
verified in the background and the correspondence of data
and a signature to be verified when the data is used. If an
error is found during verification PRIMS treats the chunk as
an erasure and recovers the correct data.
Figure 2 shows the performance of our log structure

compared to an approach that uses page protection. These



preliminary results are taken from a simple erasure en-
coded log implementation on two architectures (Intel and
AMD) and two operating systems (Linux 2.6.17 and Mac
OS 10.4.8) using a Reed-Solomon and algebraic signature
library we are developing. Because Intel performance was
similar to that on AMD, we only present the AMD results
in Figure 2. The experiment performs one million writes,
each between 10 and 100 bytes, to the log and to a pro-
tected region. Writes to the protected region require two
calls to mprotect to unprotect and protect a page. Log
writes require a single data write and one or more parity up-
dates. In our test, we chose to use 1, 2 and 4 parity chunks
per segment. As Figure 2 shows, the use of mprotect is
not appropriate for small-write workloads that require fre-
quent permission changes. For writes of size 10–50 bytes,
our log-based approach outperforms page protection by at
least a factor of six, and in most cases more than an order of
magnitude. Though not shown in Figure 2, page protection
outperforms the encoded-log at write sizes of at least 1KB,
confirming the utility of page protection in write caches for
page-based data. We believe that most of the mprotect
overhead was due to modifying the page tables and flushing
regions of the TLB during each protection call.

5 PRIMS Advantages
The goal of PRIMS is to provide a reliable system that

permanently places small pieces of data, particularly meta-
data, in NVRAM. However, our initial design provides a
number of additional benefits beyond higher performance.
Storage system capacity is increasing at an exponential

rate. As capacity grows, so does the probability of error and
time required for recovery. Instead of focusing solely on
performance, we are exploring the tradeoffs between per-
formance and reliability. In doing so we are creating a sys-
tem that will exhibit high performance and maintain firm
consistency guarantees. In addition, distributed file systems
will benefit from the potential power savings and perfor-
mance boost associated with storing metadata and indices
exclusively in NVRAM. One clear advantage is the ability
to search the file system even when a great deal of the disks
are spun-down.
PRIMS is being designed to run on any platform or hard-

ware architecture. All error correction is computed in soft-
ware, so there is no need for hardware-based ECC. More-
over, PRIMS does not even require anMMU because it does
not rely upon page tables for protection, reducing hardware
costs and resulting in tunable fault tolerance and encoding
across independent banks of NVRAM. The software-based
erasure-encoded log is expected to tolerate wild writes, file
system bugs, media errors and media wear regardless of the
underlying platform, making it well-suited for portable de-
vices and single-host file systems as well as distributed sys-
tems.

6 Status
We are currently implementing PRIMS using off-the-

shelf DRAM as a stand-in for either phase-change RAM or
MRAM. We are designing metadata structures that take ad-

vantage of the high performance and reliability of PRIMS
to provide a significantly faster, more reliable file system
than is possible using disk-based metadata. While our pre-
liminary tests do not give any indication of how effective
an erasure-encoded log will be at protecting metadata, we
expect that our mechanisms provide better protection than
page-based access control by catching a wider range of
hardware and software errors. We plan to have an in-kernel
prototype of PRIMS available in the coming months, and
will use this prototype to demonstrate both the improved
performance and improved reliability that storing file sys-
tem metadata in reliable NVRAM can provide.
References
[1] Samsung Introduces the Next Generation of Nonvolatile

Memory-PRAM, Sep 2006.
[2] Toshiba and NEC Develop World’s Fastest, Highest Density

MRAM, Feb 2006.
[3] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer.

Non-volatile memory for fast, reliable file systems. In Pro-
ceedings of ASPLOS-V, pages 10–22, 1992.

[4] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani,
and D. Lowell. The Rio file cache: Surviving operating sys-
tem crashes. In Proceedings of ASPLOS-VII, Oct. 1996.

[5] K. M. Greenan and E. L. Miller. Reliability mechanisms for
file systems using non-volatile memory as a metadata store.
In Proceedings of ACM/IEEE EMSOFT ’06, Oct. 2006.

[6] V. Henson, A. van de Ven, A. Gud, and Z. Brown. Chunkfs:
Using divide-and-conquer to improve file system reliability
and repair. In Proceedings of HotDep ’06, 2006.

[7] D. E. Lowell and P. M. Chen. Free transactions with Rio
Vista. In Proceedings of SOSP ’97, pages 92–101, 1997.

[8] M. K. McKusick. Running fsck in the Background. In Pro-
ceedings of the BSDCon, pages 55–64, 2002.

[9] M. K. McKusick and T. Kowalski. 4.4 BSD System Man-
ager’s Manual, chapter 3, pages 3:1–3:21. O’Reilley and
Associates, Inc., Sebastopol, CA, 1994.

[10] E. L. Miller, S. A. Brandt, and D. D. E. Long. HeRMES:
High-performance reliable MRAM-enabled storage. In Pro-
ceedings of HotOS-VIII, pages 83–87, May 2001.

[11] J. Piernas, T. Cortes, and J. M. Garcı̀a. DualFS: a new jour-
naling file system without meta-data duplication. In Pro-
ceedings of ICS ’02, pages 137–146, 2002.

[12] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-
memory for detecting memory leaks and memory corruption
during production runs. In Proceedings of HPCA-XI, 2005.

[13] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Transactions
on Computer Systems, 10(1):26–52, Feb. 1992.

[14] T. Schwarz, S. J. and E. L. Miller. Store, forget, and check:
Using algebraic signatures to check remotely administered
storage. In Proceedings of ICDCS ’06, July 2006.

[15] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-
moto, and G. Peck. Scalability in the XFS file system. In
Proceedings of USENIX Annual Tech. ’96, Jan. 1996.

[16] A.-I. A. Wang, G. H. Kuenning, P. Reiher, and G. J. Popek.
Conquest: Better performance through a disk/persistent-
RAM hybrid file system. In Proceedings of USENIX Annual
Tech. ’02, Monterey, CA, June 2002.

[17] E. Witchel, J. Cates, and K. Asanović. Mondrian memory
protection. In Proceedings of ASPLOS-X, Oct 2002.


