
Object-based SCM: An Efficient Interface for
Storage Class Memories

Yangwook Kang Jingpei Yang Ethan L. Miller
Storage Systems Research Center, University of California, Santa Cruz

{ywkang, yangjp, elm}@cs.ucsc.edu

Abstract—Storage Class Memory (SCM) has become increas-
ingly popular in enterprise systems as well as embedded and
mobile systems. However, replacing hard drives with SCMs in
current storage systems often forces either major changes in
file systems or suboptimal performance, because the current
block-based interface does not deliver enough information to
the device to allow it to optimize data management for specific
device characteristics such as the out-of-place update. To alleviate
this problem and fully utilize different characteristics of SCMs,
we propose the use of an object-based model that provides the
hardware and firmware the ability to optimize performance for
the underlying implementation, and allows drop-in replacement
for devices based on new types of SCM. We discuss the design of
object-based SCMs and implement an object-based flash memory
prototype. By analyzing different design choices for several
subsystems, such as data placement policies and index structures,
we show that our object-based model provides comparable
performance to other flash file systems while enabling advanced
features such as object-level reliability.

I. INTRODUCTION

Storage class memories (SCMs) are playing an increasingly
important role in the storage hierarchy. The combination of
low power consumption, relatively large capacity, fast random
I/O performance, and shock resistance make SCMs attractive
for use in desktops and servers as well as in embedded
systems. Recently, deployment of Solid State Drives (SSDs)
using NAND flash has rapidly accelerated, allowing SCMs to
replace disks by providing an interface compatible with current
hard drives. Systems using SSDs can deliver much better
I/O performance than disk-based systems. However, there are
many other SCM technologies beyond NAND flash, including
FeRAM, Phase Change RAM (PCM), and carbon nanotube,
that may see dramatically increased use in the near future. It
is critical to design systems that can both fully utilize flash
memory and easily accept drop-in replacements using future
technologies.

Although SCMs generally provide better performance than
hard drives, they require more intelligent algorithms to ef-
ficiently handle unique requirements such as out-of-place
update and wear-leveling. Because SCM technologies differ
in many characteristics, the design of file systems optimized
for each technology also varies significantly, creating issues
of portability and compatibility. Efforts to exploit these new
characteristics in file systems have driven a great deal of
research, primarily using one of two approaches; the direct-

access model and the FTL-based model. The first model,
shown in Figure 1(a), either places SCM on the main memory
path and supports direct access from a file system [10], or
uses a specific file system and hardware that allows SCMs
to work properly in the system [2]. This model provides
optimal performance for a specific hardware configuration,
but suffers from a potential requirement to redesign the file
system to optimally utilize (or simply function properly with)
different SCMs or even devices with different configurations
of a particular technology.

The second approach, shown in Figure 1(b), interposes
firmware (Flash Translation Layer, or FTL) between the raw
device and a standard block-based file system, hiding the
complexities of managing hardware from the file system and
allowing devices to be accessed directly by an unmodified
disk file system. However, this approach achieves suboptimal
performance due to the lack of file system semantics delivered
to the hardware and the duplication of block mapping in both
the file system and the device. For example, the use of the
TRIM command and nameless writes proposed by Arpaci-
Dusseau, et al. [4] enables SSDs to be more efficient on delete
and write operations. However, existing file systems must be
modified to use these operations, and file systems must still
maintain their own block maps for files in addition to those
kept on the flash device.

To alleviate the problems of current approaches to in-
tegrating SCMs into the file system and exploit the char-
acteristics of various SCM devices without either limiting
the design flexibility or introducing additional overhead, we
explore the use of an object-based storage model [12, 29] for
SCMs. This model offloads the storage management layer
from the file system to the underlying hardware, enabling
device manufacturers to optimize the mapping layer based
on the hardware configuration. The POSIX-level requests are
encapsulated in an object with their metadata information and
sent to the device through an object-based interface. By doing
so, the object-based storage model provides an easy transition
between different SCM devices, advanced features such as
object-level reliability, and compression. This model can be
implemented on any type of SCM device more flexibly, while
having one generic object-based file system on the host.

To demonstrate the utility of this approach, we design
and implement an object-based model for SCMs based on
flash memory, since flash memory appears to have the most978-1-4577-0428-4/11/$26.00 c© 2011 IEEE

(a) Direct access model.

File 1

File 2

File 3

SCM device

Inodes

block-based Interface

Disk-based file system

translation layer

(b) FTL-based model.

File 1

File 2

File 3

Object-based SCM

object-based Interface

Object-based file system

onodes(object nodes)

(c) Object-based model.
Fig. 1. Three approaches to access SCMs from file system

restrictions among SCMs, and is widely available today. By
developing an object-based SCM prototype on flash memory,
we show that an object-based interface is both efficient and
portable, and show how this prototype can be modified to
accommodate other types of SCMs. Based on this model,
we also discuss several design choices for the subsystems
in object-based SCMs such as data placement policies, index
structures and cleaning policies.

The rest of the paper is organized as follows. Section II in-
troduces different SCMs and explains the existing approaches
to access SCMs. Section III discusses the benefits of using
object-based model for SCMs. Section IV presents our imple-
mentation of an object-based model on flash memory, and the
effects of several design choices of the subsystems are shown
in Section V. Section VI discusses future work and Section VII
concludes.

II. BACKGROUND AND RELATED WORK

With the rapid development of semi-conductor technologies,
several new types of non-volatile memories have become avail-
able. However, the varying characteristics of these memories
and the restrictions of the block interface have led to many
different storage system designs.

A. Storage class memories

Storage class memory is a new class of non-volatile memory
devices that includes flash, FeRAM, magnetic RAM [7],
phase-change memory (PCM), and carbon nanotube mem-
ory [26]. SCM blurs the distinction between main memory
and secondary storage devices by providing non-volatility at
a cheaper price than DRAM, and faster random access than
disk. However, the direct use of SCMs in current systems
requires detailed knowledge of the hardware for extracting
higher performance and perhaps even proper operation.

Different SCM technologies have different characteristics,
as shown in Table I [16]. Flash memory supports page-level
access but does not support overwrites due to the need to
erase a block before rewriting it. While other types of SCMs
such as PCM and MRAM provide byte-addressability and in-
place update, each of them is also different in characteristics
such as scalability, reliability, wear resistance, performance,
and retention—differences that might favor different storage
system designs. For example, flash-aware file systems usu-
ally use a log-structure to support out-of-place updates, and
use a cleaner to reclaim invalidated blocks to generate free
blocks for future writing. However, these techniques may

NAND PRAM FeRAM MRAM
read 15µs 68 ns 70 ns 35 ns
write 200µs 180 ns 70 ns 35 ns
erase 2 ms none none none

in-place update No Yes Yes Yes
cleaner Yes No No No

write endurance 105 108 1015 1015

access unit Page Byte Byte Byte
power consumption High High Low Low

TABLE I
SCM CHARACTERISTICS. [16]

not be necessary for byte-addressable SCMs. Moreover, other
technologies may have their own drawbacks such as byte-
level wear-out in PCM and destructive read in FeRAM. Since
byte-addressable SCMs use rapidly evolving technologies and
there are a number of different candidates, each with different
strengths and limitations, it is not feasible to change the host
system to fit each change in SCM technology. Thus, both
portability and performance are primary issues in designing
a SCM-based storage system.

B. Existing approaches to access SCMs

Currently, there are two approaches to access SCM devices.
These approaches either use a direct access model on the host
side (Figure 1(a)) or an FTL-based model embedded in the
underlying hardware (Figure 1(b)).

1) Direct access model: The direct access model, shown in
Figure 1(a), supports direct access to SCMs by either placing
them on the main memory data path, or designing a specific
file system that allows SCMs to work properly in the system.
For instance, flash-aware file systems such as YAFFS [2],
JFFS2 [35], RCFFS [18], and UBIFS [14] directly access
flash memory via device drivers. Some storage systems for
byte-addressable SCMs place them on the main memory bus,
and use them as memory [10, 23], or secondary storage for
metadata [11, 21].

The main advantage of this approach is that the core
functionalities of the file systems such as indexing and data
placement policy can be efficiently implemented for high per-
formance. Since the characteristics of the underlying medium
are understood by the file system and the raw medium can
be accessed directly, the file system can fully control the
medium. However, since both the hardware that supports direct
access to SCM and the file system need to be developed, it
can be difficult to deploy the system, and migration to new
types of SCMs into the running system is problematic. Also,

it can be difficult to leverage the features of the underlying
hardware because the file system is generally not designed for
specific hardware. For example, the file system might be able
to optimize I/O operations if it is aware of the existence of
multiple data buses to multiple SCM modules in the system.

Portability is another issue with this approach. Since the
hardware for accessing SCM is usually integrated into the
storage system, it is not easy to move SCMs from one machine
to another as is done with hard drives. Moreover, lack of
generic interfaces for SCMs and the need for specific hardware
for each SCM make this model difficult to adopt in commodity
systems.

2) FTL-based model: The second approach, widely used
in modern SSD-based systems, is to access SCMs via a
translation layer. As depicted in Figure 1(b), the SCM device
in this model contains a sector-to-page mapping table, and
exposes a block interface to the host, allowing legacy file
systems to access the SCM as a block-based storage device.
Thus, FTL-based storage devices can replace current hard
disks without modifications to the operating system.

However, compatibility with legacy systems comes at a
high cost. Since the block interface is designed for disks and
supports only read and write sector operations, the device
cannot acquire essential information such a the type of “high-
level” operation being done and the data type; thus, it cannot
leverage this information to better place or reclaim data
blocks. As a result, there have been many efforts to improve
the performance of the flash translation layer that propose
mapping schemes, cache strategies and heuristics [9, 19, 22,
27] to improve these operations. For example, the use of
the TRIM command in flash memory allows the device to
recognize delete operations so that the device can invalidate
data blocks belonging to a deleted file [31]. In spite of these
efforts, they are not as efficient as the direct access model, and
are often very complex. Moreover, a fundamental problem of
the FTL-based model is the existence of two translation layers
in the data path, one in the file system, and one in the device.

Two approaches have recently been proposed to overcome
the limitations of the FTL-based model by removing or mini-
mizing the mapping table in the device. Arpaci-Dusseau, et al.
proposed nameless writes, allowing the file system to directly
manage the mapping table [4]. In this model, the device returns
the physical page number to the file system so that it can store
a mapping between a logical block number and a physical page
number in an inode. DFS is a flash file system that uses a
similar approach [15]. It also removes the mapping table from
the device, and moves it to the virtualized flash storage layer,
which is an FTL that resides in the operating system. Both
approaches focus on reducing the complexity of the device and
allow the operating system to control the device. However, the
nameless writes approach has some limitations in optimizing
the flash device: the file system has no information about the
underlying medium except for a physical page number, so
both the file system and device must still keep a complete
block mapping. In DFS, drop-in replacement for other types
of SCMs are not easy because they would require a new file

system for the underlying SCM or suffer from performance
issues of using the block interface.

3) Object-based storage model: The object-based storage
model has been used in high-performance and large-scale
distributed storage systems [8, 12, 33]. These systems, in-
cluding Panasas [25], Ceph [34], and Slice [3], use object-
based storage devices (OSDs) to allow each disk-based device
to work independently of the master server, and add more
functionality such as replica management, load-balancing, and
data placement to the device. Thus, the system can achieve
high scalability and robustness, by greatly reducing the neede
for central coordination.

While disk-based OSDs provide useful features in dis-
tributed systems, they have not gained much attention as
a replacement for block based devices because disks work
efficiently with the block interface—disks rarely remap blocks.
Recently, however, Rajimwale, et al. proposed the use of
an object-based interface for flash memory [29]. In systems
using SCMs where a richer interface than block interface is
required, this model could alleviate several problems with
existing approaches: the lack of file system level information
in the FTL-based model, portability in the direct access model,
and efficiency of implementation in both. Under this model,
the device can optimize the performance of the device using
informed optimizations. Moreover, this approach allows a
single file system to support multiple OSDs, making it easy to
switch to a new type of OSD or even include multiple types
of devices or even technologies in a single file system. More
advanced features exploiting the existence of objects such as
object-level reliability and compression can also be provided
independent of the file system.

III. OBJECT-BASED STORAGE MODEL FOR SCMS

The object-based model, shown in Figure 2, consists of two
main components: the object-based file system and object-
based devices; components communicate using objects. Each
object consists of variable-length data and metadata associated
with the data such as size and type, allowing the file system to
send information about data to the device. An object interface,
standardized in ANSI T10 [24], provides operations such as
create, delete, read, and write on objects, delivering requests
to the device without requiring additional operations such as
TRIM.

In systems built on the object-based storage model, a file
system does name resolution on the host side, offloading
the storage management layer to the OSD. By isolating
device-specific technology behind an object-based interface,
this model allows the file system to be independent of the
particulars of the storage medium while the characteristics of
the storage medium are efficiently handled within the device.
Thus, a single file system can be efficiently used with different
types of SCM devices, in contrast to the current approaches
that either require significant changes in the system or sacrifice
I/O performance. Since the device manufacturers have better
knowledge about the hardware configuration of SCM devices

Object 1

Data
Meta

data

Object 2

Data Meta

(a) Object-based file system.

O
bj
ec
t I
nt
er
fa
ce

Block Management Layer

Data Placement Policy

Index Structure

Cleaner

Wear-Leveling

Reliability

Security

SCMs

read

write

create

delete

(b) Object-based device.
Fig. 2. System overview of object-based SCMs

than file system designers, this model typically enables better
hardware optimizations than native SCM-aware file systems.

The block interface is limited in that it only delivers
the sector number and the request type (read or write) to
the device. In contrast, the object-based interface delivers
objects (which contain both data and associated metadata)
and recognizes all types of requests that the file system does.
By doing so, the OSD is able to receive the same level of
information that the file system maintains, allowing devices
to provide features such as hot/cold separation to reduce
cleaning overhead that have traditionally been provided by
native file systems. For small objects, OSDs can achieve better
space efficiency than block-based devices due to the lack of a
minimum allocation size. OSDs can reduce index overheads by
using extent-based allocation for large, infrequently updated
objects. In addition, by encapsulating data in objects, OSDs
can provide more advanced features, such as object-level relia-
bility, compression, and execution-in-place. Moreover, adding
an object interface will not add significant complexity to
existing FTL firmware since SCM devices already need a
translation layer for data placement and segment management.
For example, when hybrid phase-change/flash memory is used,
the file system can store data efficiently by simply sending a
write-object request to the OSD; the file system need not know
about the two types of memory in the device.

We now discuss the design choices for each subsystem of
the object-based SCMs in Section III-A and Section III-B, and
we subsequently discuss the advanced features enabled by the
object-based model in Section III-C.

A. Object-based File System

An object-based file system maintains files consisting of
one or more data objects, which contain the file data, and a

single inode object, which records metadata information about
the file, such as permission and ownership. However, the inode
does not point to the physical blocks, but rather the objects that
make up the file, a mapping that can be done algorithmically
by having the objects be identified by a combination of the
unique file ID and the object’s offset in the file.

Since objects are identified by a unique identifier, not by
human-readable names, there is no information about the logi-
cal relationship among objects in this flat file system, offering
the file system more flexibility when distributing objects to
several OSDs. Replicas of each file can be maintained at
the object level by OSDs. Moreover, variable-sized objects
can be named with any n-bit identifier that need not have a
relationship to the physical location of the data. This sparse
name space provides the file system more flexibility when
assigning object identifiers for different purposes. Thus, the
object-based model can guarantee scalability for SCM-based
file systems in large-scale distributed systems [13].

When a file request comes in from the virtual file system
(VFS) layer, the file system finds objects related to the request
based on an inode number and a file offset, and generates an
object request for the data. It then determines whether the
requests should be aggregated before being sent to the OSD;
since the OSD can deal better with a single large request
than with multiple small requests, aggregation can improve
performance. For directory operations, the file system can
assign an object for each directory entry or store all entries for
a directory in a single data object. Although an object-based
model uses a flat namespace, support for directories is not very
different from that of typical file systems, since typical file
systems also need to convert the directory and file name into
unique inode numbers in order to maintain a hierarchy. For ex-
ample, when receiving a delete request, the file system only
needs to finds the objects that contain the requested range of
data, and send one or several delete_object() requests
to the OSD, instead of generating several read_block
and write_block operations to the device as is done in
traditional block-based file systems.

B. Object-based Devices for SCMs

Similar to SSDs, an OSD consists of SCM chips and
multiple subsystems required to handle the characteristics of
the medium such as a data placement policy and a wear-
leveling mechanism, as shown in Figure 1(c). However, the
design of its subsystems are more similar to that of typical
native block managers for SCMs because OSD subsystems can
utilize the same level of information that native file systems
have while SSDs require many heuristic algorithms to alleviate
the problems of using the block interface, such as a log-block
merge optimization.

By having rich information about the requests and a block
management layer in the device, the OSD approach enables
better hardware optimizations as well as simple and efficient
subsystems. For example, device manufacturers can split a
large write request into small concurrent write requests to
multiple SCM chips in order to improve performance. More-

data
page

index
page

onode

data
page

onode

onode

onode

seg
meta

...

(a) Typical log-structured layout.

data
page

data
page

...
seg
meta

...
seg
meta

index
page

onode

onode

onode

onode

object id access time size root node addr ...

(b) Separation of data and metadata.

data
page

data
page

...
seg
meta

...
seg
meta

index
page

onode

onode

onode

onode

atime

atime

atime

atime

atime

atime

atime

atime

...

...

...

...

object id access time

(c) Separation of data, metadata and access time.
Fig. 3. Three kinds of data allocation policies

over, OSDs can further exploit the existence of objects to
provide more advanced features such as object-level reliability
and compression. In the following subsections, we discuss the
design of core subsystems and new features enabled in the
object-based SCMs.

Data placement policies. The focus of a data placement
policy is the maximization of performance and lifetime by
carefully placing data on SCMs. Typically, flash-based storage
systems use a variation of a log-structure to store data because
it supports out-of-place update and wear-leveling by placing
data and metadata together in a log, an approach we term
a combined policy, shown in Figure 3(a). Since data and
metadata are sequentially written to a log and never updated in
this policy, log-structured storage requires a cleaner to generate
free space by reclaiming invalidated blocks. Cleaning overhead
is known to be a primary factor determining log-structure file
system performance [6], so reducing it is a key goal of data
placement policies for flash memory. Log structures may also
be used for other SCMs which support in-place update to
facilitate wear-leveling, so similar design choices could be
made in order to reduce the cleaning overhead. The design
of data placement policies for byte-addressable SCMs could
be changed more flexibly by the manufacturer.

In object-based SCMs, since the type and size of the
requests and other hints about data are known, various tech-
niques to reduce the cleaning overhead can be applied. For
example, hot-and-cold separation, which stores frequently
accessed data blocks in a different segment, can be used
since the device can identify which objects or internal data
structures are more frequently accessed. Existing intelligent
cleaning algorithms that have been developed for native file
systems for SCMs can also be adopted with little modification.
Our approach to optimize the data placement policy is based
on the combined policy, with the addition that we separate
frequently updated data from cold data such as object metadata
and access time. Separating data and metadata was also used

in other file systems such as DualFS [28] and hFS [36]. Unlike
those systems and other SCM devices that do not manage file
metadata internally, this approach can easily be accomplished
in object-based SCMs as metadata of objects are maintained
by the device itself.

Since the inode no longer maintains the physical addresses
of file blocks, the OSD internally maintains the metadata of
each object in a data structure called an onode. It contains
information of each object such as size, access time and object
ID as well as a pointer to the object’s constituent blocks. An
onode is one of the most frequently updated data structures in
the device, and thus stored separately in our data placement
polices, as shown in Figures 3(b) and 3(c).

Index structures. FTL-based approaches require a complex
sector number to page number mapping table to determine the
physical addresses of data blocks because the index structure
does not recognize which block belongs to which file and
the sector number is the only information they can use.
Thus, various FTL schemes have been proposed to alleviate
this problem. For example, the log-block mapping scheme
maintains a small number of blocks in flash memory as
temporary storage for overwrites [20]. However, in native file
systems for SCMs or OSDs, an index structure utilizes the
full semantics of the requests and does not require a complex
mapping table, allowing it to be simpler and more efficient.

Since improving space efficiency both reduces the number
of I/Os and affects the life time in SCM devices, it is one of
the important design issues of an index structure for SCM.
For example, YAFFS stores the index in the spare area of
each flash page to remove the index overhead [2]. However,
it must perform a time-consuming scan of the entire spare
area to build an in-memory index structure when mounting.
Although YAFFS recently added checkpointing and lazy-
loading techniques in order to improve the mounting time, it
still requires scanning if the device is not properly unmounted.
Thus, as capacity of flash chips grows, this approach would
require more time, which can be a tradeoff between index
overhead and mounting time.

Another approach to store indices in SCM devices is to use
on-media index structures such as an inode-like structure or a
variant of a B-tree. UBIFS [14] uses a wandering tree, which is
a B+-tree that supports out-of-place updates by writing all the
internal tree nodes whenever a leaf node is updated, resulting
in a much higher index overhead than that of a normal B+-
tree. A few attempts have been made to reduce the cleaning
overhead of the index structures. For instance, the mu-tree
places all the internal nodes in one page so that only one
page needs to be written [17]. Subsequently, Agrawal, et al.
proposed a lazy-adaptive tree, which minimizes the access to
the flash medium by using cascaded buffers [1].

In order to reduce the overhead of an index structure in
object-based SCMs, we used two optimizations based on a
wandering tree with a dedicated cache. The first is the use of
extent-based allocation. Since an object has a variable-length,
and its size and request type are known to the device, an OSD
can efficiently support extents, particularly if the file system

can generate large object requests. This tree structure uses
a combination of object ID and data type as a key, and a
combination of physical address, offset and length as a value.
The second approach to reduce the index overhead is to use a
write buffer for small objects. Small objects whose size is less
than a minimum write unit can be stored together to reduce the
internal fragmentation within one unit, thus saving some page
I/Os and index records. By sequentially writing large objects,
high write performance can be achieved as well.

Wear-leveling and cleaning. Increasing the lifetime of the
medium is another important goal in designing SCM devices,
since many SCMs burn out after a certain number of writes.
Therefore, most SCM devices need to maintain the wear-
level of each erase unit and try to use them evenly. Since the
storage management layer is inside the device in the object-
based storage model, the device manufacturers can freely
choose appropriate wear-leveling and cleaning policies for
target SCMs.

In SCMs that do not support in-place updates, global wear-
leveling is typically done by a log-structure cleaner, which
maintains metadata for each segment such as number of erases
and age, and selects victim segments based on those values.
For byte-addressable SCMs such as PCM, other approaches
can be used to track the wear-level of SCMs. Condit, et al.
proposed two techniques for efficient wear-leveling; rotating
bits within a page at the level of the memory controller and
swapping virtual-to-physical page mappings [10]. Although
some wear-leveling techniques require hardware support, the
manufacturers can add more hardware without affecting the
host system in the object-based storage model.

In our prototype, different cleaning thresholds are used
for different types of segments. Since atime (access time)
segments do not contain any valid data in them, they are
always picked first. We set a lower threshold for metadata
segments than data segments because the live data in metadata
segments is more likely to be modified soon.

An object-based storage model can keep track of the status
of an entire object, so more optimizations are possible. For
example, by knowing the update frequency and size of each
object, OSDs could place cold objects in blocks where erase
counts are higher than others, or group an object’s blocks
together.

C. Advanced features of Object-based SCMs

Object-level reliability. Most SCM devices used today rely
on per-page error correction algorithms, which can detect and
correct a certain number of bytes in a page depending on
the size of the ECC. However, this approach cannot protect
data against whole page failures, reading the wrong data back,
or misdirected writes, which store the requested page to the
wrong address and return a success code to the file system [5].
An object-based SCM can recover from this type of error by
providing per-object parity. The device generates one group
of parities for all data pages, and another group of parities
for an onode whenever an object is modified. By reading all
data blocks belonging to an objects and comparing against the

parity, it can detect and correct misdirected writes and whole
page failures as well as bit-flips. The amount of parity can be
adjusted based on the error rates of the medium by the device
manufacturers or specified by the user on a per-object basis.
In our prototype, we maintain one parity for data pages and
one parity for index nodes for each object.

Object-level compression and encryption. Since OSDs
have access to object metadata, they can infer an object’s
type and determine whether it is a worthwhile candidate for
compression. The type of object, such as text or multimedia,
can be inferred by reading a hint from a user or by reading the
first few bytes of an object. Both compression and encryption
can be done by specialized hardware chips in the device to
improve I/O performance as well as reducing CPU utilization
at the host.

Data compression and encryption can improve space effi-
ciency and security as well as overall performance in SCM
devices. In object-based SCMs, the device can provide either
system-wide encryption or per-object encryption. The device
can determine which object to encrypt based on its content,
or users can specify that an object should be encrypted by
setting a flag as a hint when sending a request. Thus, the SCM
device could set different security levels for different types of
objects and do encryption per-object, perhaps using different
keys for different objects. Moreover, if the device does both
compression and encryption, it can do it in the right order:
compression followed by encryption.

Client library for object-based SCMs. A client library can
allow users to customize OSD behavior by providing hints
to the device. For example, users can provide an encryption
key or specify the level of reliability for a specific object.
Moreover, the library can provide an interface that bypasses
the VFS layer to achieve a smaller memory footprint for small
files by avoiding the need to have the VFS assign 4 KB pages
to those small files before sending them to the file system.
Moreover, an OSD is capable of managing variable-length
objects efficiently; in our prototype, we have the file system
send a hint to embed inode objects in onodes to reduce index
records and page I/Os.

Object-level transaction. It is often difficult to support
transactions in block-based devices because the device lacks
information about higher-level file system semantics. In object-
based storage devices, however, because metadata is handled
inside the device and an object can send a hint from the
upper layer to the device, the devices can provide transac-
tions without requiring modifications to the host system. For
example, users can start the transaction by setting a common
transaction ID to objects in the same transaction. The OSD can
use this transaction ID to establish a dependency hierarchy and
complete the transaction when a top-level object in the hier-
archy is being created or deleted. One way to implement the
transaction in the device is to use copy-on-write, which writes
modifications to a different place until the commit begins, as
commonly used in the process subsystem. Moreover, OSDs
can seamlessly support per-object transactions, guaranteeing
atomic object I/Os.

In summary, the object-based storage model enables device
manufacturers to provide SCM devices with various levels of
functionality depending on the needs of their customers and
make them fully customizable without host system changes.
This model has the advantages of both FTL-based storage
devices and native file systems: portability and efficiency. It
also provides an abstraction of a request that can be used in
various subsystems to provide intelligence to the device.

IV. IMPLEMENTATION

We built an object-based model prototype as a file system
module in the Linux 2.6 kernel to investigate several design
issues in the object-based model. This file system module
consists of both the object-based file system and object-based
storage device. The two components communicate only via an
object interface, and do not share any in-memory data since
they need to be independent of each other; they use memory
copy instead of passing a pointer.

We picked flash memory as a target SCM for our prototype
since it has more restrictions than other types of SCMs and
is increasingly used in many devices such as SSDs in spite
of several performance issues. The flash memory is simulated
using NANDsim, the NAND flash simulator distributed with
the kernel. This approach allowed us to use “raw” flash
memory for the OSD; commercial flash memory typically
contains an FTL and thus does not allow raw access to flash
chips.

An object-based file system generates two objects per file;
one for file data and one for inode, as shown in Figure 4.
They are treated as separate objects in the device; an inode
now contains only metadata information that is not frequently
changed such as permission and ownership. By using a hint
for inode objects, as discussed in Section III-C, inodes are
stored in onodes in our prototype.

Support for hierarchical namespaces follows an approach
similar to that used in disk-based systems. The directory file
contains 〈objID , dirname〉, so the file system updates a data
page in the directory file whenever an entry changes. One
optimization we use in this prototype is a hashed directory
that contains a pair of an offset of the directory entry and
hash of the directory entry name. Given a directory name, it
looks up the hash directory to find an offset of the entry, and
tries to read the contents of data at the offset. The use of a
hash directory helps to reduce lookup time when there are
many subdirectories or files under one directory.

Since generating large objects helps reduce the index over-
head of the device, an object-based file system maintains a
cache for data pages to be written. The data page cache tries
to cluster sequential writes to a file and collect them into a
few large objects. The maximum size of the cache and each
object is configurable to achieve the benefits of clustering
multiple small pages into a large object. The object metadata
operations, which usually need to be synchronously written,
are directly flushed to the device. Notice that the file system
does not assume flash memory in this implementation, but
rather focuses on object management and the integration with

the VFS, and is independent of the implementation of the
underlying device.

As with most flash devices, a log-structure is used to
handle the no-overwrite restriction and wear-leveling issues.
As depicted in Figure 3(a), data and metadata are written
sequentially within a segment, and segment metadata, such
as timestamp, segment usage, reverse indices and superblock
information, is written at the end of each segment. When there
are not enough free segments, a cleaner is invoked to reclaim
free segments.

Besides a typical log-structure, we implement two new data
placement policies, shown in Figures 3(b) and 3(c), that are
enabled by the object-based storage model. The idea behind
these policies is to reduce the cleaning overhead by separating
frequently accessed data from cold data so that the cleaner
can pick a segment that has small live data (or metadata)
in it. The split policy stores metadata and data separately in
metadata segments and data segments respectively, based on
the assumption that metadata will be more quickly invalidated
than data. In this policy, the metadata of an object (its onode)
and index structure nodes are stored in the metadata segment
and other user data is stored in data segments. The split+atime
policy further separates access time from the rest of the onode,
avoiding frequent onode updates due to access time updates
when an object is read but not modified. Since the size of an
onode is larger than that of an access time entry, this approach
can reduce the amount of metadata to written for the read
request, thus reducing the cleaning overhead. In this approach,
the access times of objects are journaled in the access time
segment. Each entry requires only 16 B to store an object ID
and access time, so a single 2 KB page can usually hold more
than 128 entries, while only 10–20 onodes can be stored in
one page. Access time entries are merged to the corresponding
onodes when the total number of entries exceeds a certain
threshold or when an object with a pending atime update is
modified by a write.

Since flash memory does not support in-place updates,
we use a wandering tree [14] combined with extent-based
allocation in our system to show the effects of extent-based
allocation in the object-based model. Each object has its own
tree structure (local tree) that contains the physical location of
its data blocks, and there is one global tree that maintains the
physical location of onodes, small objects and reverse indices,
as shown in Figure 4. Small objects—those less than one page
long—are maintained by the global tree instead of generating
a tree node that has only one entry, thus improving space
efficiency.

In order to show the effects of the hints from a file system
or user space, we set a flag for an inode so that it can be
stored within an onode. Since inodes are very small and onodes
need to be read to retrieve the inode object, embedding inodes
into onodes can remove at least one page read per each inode
operation.

A cleaner is invoked whenever the number of free segments
is below a certain value. Unlike a combined policy, which
has only one type of segment, victim segments are ordered

File

Directory

Inode

Data

object id
root addr
parity addr

Inode
...

onodes

global index tree

per-object index tree

parity pages

dentry

Dir hash

Inode

object id
root addr
parity addr

Inode
...

small obj buffer

object-based file system object-based flash memory

flash memory

Fig. 4. Implementation of object-based flash memory.

by segment priority. For example, an access time segment
contains very little live data, and the data in metadata segments
is likely to be invalidated. Thus, we set a different threshold
for each type of segment so that access time segments have the
highest priority. Data segments have the next highest priority,
and metadata segments have the lowest priority. This means
a data segment will be picked first if a metadata segment has
similar amount of live data, because metadata segments are
likely to be invalidated sooner.

To demonstrate the advanced features enabled by the object-
based storage model, we implemented object-level reliability
in our prototype. For all data pages in an object, the OSD uses
a Reed-Solomon code to generate a parity page and algebraic
signature to detect bit corruptions [18]. The signature of each
data page is stored in the spare area of a flash page, and the
parity page is written as a part of an object. Since the algebraic
signature and Reed-Solomon code use the same Galois field,
the device can run a quick scan to check the validity of an
object by the operations of taking the signatures of each page
and combining them via XOR; the parity of the signatures of
data pages should be the same as the signature of a parity page.
For per-object index tree nodes , the file system generates a
parity page for tree nodes and stores the page as a part of an
object.

There are several other data structures that are adopted
to improve the efficiency of the device. For example, since
onodes and tree nodes are accessed frequently, the OSD has
a cache for each data structure. A one page write buffer is
also used to store multiple onodes and small writes in a page.
In order to reduce the mount time, the OSD uses the next-k
algorithm, which enables the file system to quickly find the
most recently written segment [18].

The object-based storage devices for byte-addressable
SCMs may require different block management policies de-
pending on the characteristics of each type of SCM. For
example, the minimum unit of allocation on many SCMs can
be adjustable, in contrast to flash memory, which has a fixed
page size. A different indexing and data placement scheme
can also be used, instead of a log-structure [32]. Although the
internal data structure of OSDs might change, the object-based
storage model does not require the changes of upper layers
in the storage hierarchy. Thus, as SCM technologies evolve,
an object-based file system can easily switch to an advanced
device without requiring any modification.

V. EVALUATION

We evaluate our object-based flash memory using two
sets of performance benchmarks. First, we set the Postmark
benchmark to generate a read-intensive workload and write-
intensive workload, each of which contains a large number
of data and metadata operations. These two workloads are
used to show the effects of our two data placement policies.
The second benchmark we use is a large file benchmark,
which Seltzer, et al. used to evaluate the log-structured file
system [30]. It creates one large file using four types of I/Os;
sequential write, sequential read, random write and random
read, and used to evaluate extent-based allocation. To measure
the cleaning overhead and space efficiency, we make our
file system module report the number of segment erases, the
number of page I/Os for each subsystem, and the number of
bytes copied during cleaning.

Our experiments were conducted on a virtual machine
which has a single CPU, 1024 MB RAM, and a 10 GB hard
disk. The NANDsim module is configured to model a 128 MB
NAND flash memory with 2 KB pages and 128 KB erase
blocks. The overall flash size is set by looking at the average
response time of readpage and writepage operations.
When we increased the size further, we began suffering from
long latency, making the writepage operation take up to
4 seconds due to virtual memory reclamation. The use of
a small flash size will limit the number of cold data pages
we can generate and the size of the segment, making it
difficult to look at long-term effects of the cleaning policies.
However, each experiment in this section is designed to
involve a large number of cleaning operations so that it would
not underestimate the cleaning overhead due to the limited
flash size; more than 500 segments were cleaned in each
experiment. The size of the cache is also set proportional to
the size of flash memory: the onode cache is set to 10 KB
and the tree node cache to 50 KB. The segment size is set to
256 KB. In the Postmark benchmark, the read/append ratio
is set to 1, the smallest number we can set for a write-
intensive workload, and the number of files is increased to
1000 while the number of transactions is set to 40000. For a
read-intensive workload, we set the read/append ratio to 8 and
the number of transactions is increased to 90,000 in order to
generate a read-dominant environment. The cleaning threshold
for data segments and metadata segments is set to 80% and

20 40 60 80 100
metadata segment threshold

0

5

10

15

20
n
u
m

b
e
r

o
f

b
y
te

s
m

o
v
e
d
 (

M
B

) dataseg-threshold-100 dataseg-threshold-80

Fig. 5. Effects of cleaning thresholds for different types of segments

60% respectively, based on the result in Section V-B. The
default read/append ratio of the Postmark benchmark, which
generates five times more metadata than data, is used in other
experiments. Each experiment is conducted 20 times and we
take an average except for the highest value and the lowest
value.

A. Cleaning Overhead of Data Placement Policies

We first measure the cleaning overhead of the three data
placement policies under both read-intensive workload and
write-intensive workloads using the postmark benchmark. For
each policy in Figure 6, the left bar indicates the total number
of segments cleaned and the right bar indicates the number of
bytes copied during cleaning. Since more onodes and index
nodes are written to update access time in the read-intensive
workload, both the split policy and the split+atime policy work
better than the combined policy, as shown in Figure 6(a). This
is because each segment in the combined policy has some
invalidated metadata pages and a large number of live data
pages, causing only a small amount of free space per victim
segment. On the other hand, each metadata segment in the
split and split+atime policies contain a very small amount
of metadata, thus reducing the cleaning overhead as well as
the total number of pages written. The split+atime policy
further reduces the cleaning overhead because fewer onodes
are written by atime journaling.

In the write-intensive workload, separating metadata has a
smaller benefit because access times are written together when
updating the fields in onodes and these dirty onodes are cached
in memory. However, we still get some benefit from the onodes
that are read but not written, as shown in Figure 6(b).

B. Effects of cleaning thresholds

Since the three different types of segments have different
update frequencies, the device can set a different cleaning
threshold for each segment in order to reduce the cleaning
overhead. Figure 5 shows the cleaning overhead of the device
varying the threshold for data segment and metadata segment.
The number after each type of segment represents the per-
centage of the maximum amount of live data that the victim
segments of that type can have. In a pure greedy policy, each

w/o inode embed w/o small obj buf with all
pages read 378101 389165 364142
pages write 92006 91606 66615
seg write 718 714 288
seg clean 240 235 65

TABLE II
EFFECTS OF INFORMED-PLACEMENT

threshold value is set to 100. Setting a lower threshold for
metadata segments works well because the live data in meta-
data segment is likely to be invalidated quickly, so deferring
cleaning often results in metadata segments containing even
less live data. However, when the threshold for data segments
is less than 60, the flash runs out of space, because there
is insufficient space on the flash to have a large number of
almost half-empty data segments. The pure greedy policy also
works well in this short term cleaning overhead test due to the
existence of metadata segments, which contain less live data—
the segments that had the least amount of live data were the
metadata segments in most cases.

C. Index Structures

The efficiency of the index structure is critical to device
performance, especially for devices that do not support in-
place update. In order to show the effects of an extent-based al-
location, we measure the cleaning overhead and I/O operations
with and without extent-based allocation. When extent-based
allocation is enabled, physical locations of objects are stored
in terms of several address-length pairs. Otherwise, each data
page is maintained by a wandering tree.

We measure the number of page I/Os issued by the index
structure. In the largefile benchmark, since only one large file
is sequentially written and then randomly rewritten, the result
includes both the benefits of sequential writes and the overhead
from random rewrites, and thus it is a good showcase for the
effect of an extent-based allocation. Figure 7(a) shows that
extent-based allocation significantly reduces both the number
of page reads and the number of page writes, regardless of
the overhead of random rewrites. In the Postmark benchmark,
which generates many small metadata operations and a small
number of large data files, the benefit of using extents are
minimized, as shown in Figure 7(b). However, even this small
file workload still realizes some benefits from extent-based
allocation, which reduces the number of page writes by around
1000.

D. Effects of Informed Placement

The file system or user applications can send hints to the
device to optimize the behavior of the subsystems on the OSD.
For example, the write-amplification problem, which happens
when the size of the request is smaller than the minimum unit
of writes can be alleviated by using a hint for inode objects,
since inode objects are now very small, infrequently updated,
and have a fixed size. Because one tree node is generated for
each object, the use of this flag reduces the generation of a
separate tree node to store the inode and may eliminate some
internal tree nodes as well.

combined split split+atime
read intensive

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
cl

e
a
n
in

g
 o

v
e
rh

e
a
d

data segments cleaned
metadata segments cleaned
atime segments cleaned

bytes of data
bytes of metadata

(a) Read-intensive workload

combined split split+atime
write intensive

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

cl
e
a
n
in

g
 o

v
e
rh

e
a
d

data segments cleaned
metadata segments cleaned
atime segments cleaned

bytes of data
bytes of metadata

(b) Write-intensive workload
Fig. 6. Cleaning overhead of the three data placement policies. The X-axis represents three data placement policies and the Y-axis is the cleaning overhead
normalized to combined policy

B+ tree w/o extents B+ tree with extents
0

200

400

600

800

1000

1200

1400

1600

n
u
m

b
e
r

o
f

p
a
g
e
s

I/
O

s

index page read index page write

(a) Largefile benchmark

B+ tree w/o extents B+ tree with extents
0

10000

20000

30000

40000

50000

60000

70000

80000

n
u
m

b
e
r

o
f

p
a
g
e
s

I/
O

s

index page read index page write

(b) Postmark benchmark
Fig. 7. Effects of an extent-based allocation

The size of an object can also be used as a hint for the
device. We use a one page buffer for small objects, so the
device can store multiple small objects in a single page. In
our implementation, a directory entry fits in this category. The
size of each directory entry is around 256 B; thus, the OSD
could store around 10 entries per 2 KB page.

To show the effects of these optimizations, we set the
Postmark benchmark to create more files by setting the number
of files is to 2000 and executing 30,000 transactions including
read, append, and delete operations. The read/append ra-
tio is set to 5. As shown in Table II, when inode objects are not
stored with onodes, they consume more pages, thus increasing
the cleaning overhead due largely to the additional index
overhead. If a small object buffer is not enabled, each directory
entry has to use one flash page due to write-amplification, thus
increasing the number of page I/Os. With both optimizations
enabled, the number of page I/Os is reduced by more than
65%, and the overall cleaning overhead is also significantly
reduced.

E. Object-level Reliability

The use of object-level reliability allows the device to
detect more types of errors than the current error correction
mechanism, which stores 4–8 bytes of ECC on the spare area
of each page. It can even be used in conjunction with the
current error correction mechanism to reduce the recovery time
for simple errors such as a single bit-flip. In this section, we
measure how much additional space is required in order to

support object-level reliability. Since we generate two parity
pages per each object, and the parities are updated whenever
an object needs a modification, the overhead is proportional
to the number of files and the number of operations.

We separately measure the parity overhead—the number
of pages written by the object-level reliability mechanism—
and compare it with the total number of page I/Os during
the benchmark while increasing the number of files from 500
to 1000 with the same transaction size. As shown in Table
III, the number of pages written or read by the object-level
reliability mechanism increases, but the overall overhead is
less than 10% of the total I/Os, and there is no significant
performance difference between the two setups. Object-level
reliability thus provides detection and correction of errors
that cannot otherwise be achieved while incurring a minimal
performance overhead,

F. Overall Performance

Lastly, we compare the overall performance of our file
system module with the currently available flash-aware file
systems: YAFFS, JFFS2, and UBIFS. Neither YAFFS nor
JFFS2 has on-media index structures, so they have less index
overhead, but both, as a result, require more mounting time,
especially when the file system is not unmounted cleanly.
UBIFS uses write-back, compression, and a small write buffer
to improve both performance and space-efficiency. In our file
system, we use the split+atime policy, B+ tree combined

number of files total page read total page write parity read parity write with obj reliab (sec) w/o obj reliab (sec)
500 93633 43822 2437 3388 16.50 15.25
750 140326 86740 5666 7865 21.67 20.25

1000 273931 171369 14892 33827 24.50 23.00

TABLE III
SPACE AND PERFORMANCE OVERHEAD OF OBJECT-LEVEL RELIABILITY.

20000 40000 60000 80000 100000
number of transactions

24

25

26

27

28

29

210

211

E
la

p
se

d
 t

im
e
 (

se
c)

OBFS
UBIFS

UBIFS_SYNC

YAFFS2

JFFS2

Fig. 8. Overall performance

with extent-based allocation, small object buffers and inode
embedding.

Figure 8 shows the overall performance of flash-aware file
systems and our file system under a read-intensive workload
and write-intensive workload. OBFS represents our prototype,
the object-based SCM for flash memory, and UBIFS SYNC is
the ubifs file system runs in synchronous mode. UBIFS shows
the best performance among the file systems as it uses write-
back while other file systems are using write-through. When
the write-back is turned off, the performance became slower
than YAFFS and OBFS.

Overall, OBFS shows performance comparable to other
flash-aware file systems, even though the block management
layer resides in the device and each file system uses different
optimizations. For example, YAFFS and JFFS2 have less index
overhead and UBIFS uses compression to increase the space-
efficiency. Our prototype can be further improved by optimiz-
ing the implementation and adopting other features such as
compression and write-back. Moreover, object-based SCMs
can further improve performance by hardware optimizations
in the real devices.

VI. FUTURE WORK

We are exploring ways of using byte-addressable SCMs as
a hybrid with flash memory or as the main storage medium
in an object-based storage model. One of the primary issues
we are considering is reliability. Since power-cycling does not
recover the system from failure in those devices, we need to
rollback unnecessary changes in the media and also provide
data integrity. Wear-leveling is still important in these SCMs
because they could be used as a main memory, which could
possibly have lots of small random updates, and tracking the
wear-level of each byte is not realistic. There are several
other optimizations that could improve the performance of

an object-based flash device, such as write-back and com-
pression. Although the cleaning overhead heavily depends on
the cleaning policy, only the greedy policy and high-threshold
policy are explored in this paper. We plan to implement other
cleaning policies to measure long-term wear-leveling effects
and cleaning overhead. The implementation can be further
optimized by revisiting the use of locks.

We are also exploring techniques to better integrate the
object-based interface for SCMs with other operating sys-
tem services such as execution and transaction support. By
providing a slightly richer interface, we can enable powerful
yet flexible integration of SCMs into operating systems with-
out requiring wholesale changes each time SCM technology
changes.

VII. CONCLUSION

As storage class memories become popular in storage
systems, the need to efficiently use these devices increases.
To avoid the limitations of standard block-based interfaces,
we propose the use of object-based SCMs, which provide
portability and efficiency by delegating storage management
to SCM devices and eliminating duplicate mapping tables on
both host and device. Further, this approach allows systems to
immediately utilize new SCM technologies with no change
to host systems, providing flexibility to system designers
without the need to optimize the file system for many different
types of SCMs. Moreover, this approach can also provide
new functionality such as object-level reliability and object-
level compression by leveraging the semantics of object-based
requests.

By implementing our object-based model prototype for
flash memory in the 2.6 Linux kernel, we explored several
design issues in object-based SCMs: three data placement
policies, two index structures, and other possible optimizations
enabled in the object-based storage model such as object-level
reliability and embedding inodes into onodes. Our experiments
show that separating frequently accessed metadata from data
can reduce the cleaning overhead in both workloads, and a
B+ tree variant with an extent-based allocation can further
reduce overhead. We also showed that object-level reliability
can be added to the existing reliability mechanism improving
the recoverability without incurring much overhead. The per-
formance of our object-based model prototype is comparable
with other flash-aware file systems, which are much more
efficient than current SSD-disk file system pairings. By using
an object-based model for storage class memories, systems can
realize the full performance and reliability benefits of current
flash-based SCM, while avoiding the need to rewrite the file
system as new SCM technologies are deployed.

ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation under award CCF-0937938, the Department of
Energy’s Petascale Data Storage Institute under award DE-
FC02-06ER25768, and the Center for Research in Intelligent
Storage (CRIS) under NSF grant IIP-0934401. Support was
also provided by the industrial sponsors of CRIS and the
Storage Systems Research Center (SSRC), including IBM,
LSI, NetApp, Northrop Grumman, and Samsung Information
Systems America.

REFERENCES

[1] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and S. Singh. Lazy-
adaptive tree: an optimized index structure for flash devices. Proc. VLDB
Endow., 2:361–372, August 2009.

[2] Aleph One Ltd. YAFFS: Yet another flash file system.
http://www.yaffs.net.

[3] D. C. Anderson, J. S. Chase, and A. M. Vahdat. Interposed request
routing for scalable network storage. In Proceedings of the 4th
Symposium on Operating Systems Design and Implementation (OSDI),
Oct. 2000.

[4] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and V. Prabhakaran.
Removing the costs of indirection in flash-based SSDs with nameless
writes. In Proceedings of the 2nd Workshop on Hot Topics in Storage
and File Systems (HotStorage ’10), June 2010.

[5] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. An analysis of data corruption in
the storage stack. In Proceedings of the 6th USENIX Conference on File
and Storage Technologies (FAST), pages 223–238, Feb. 2008.

[6] T. Blackwell, J. Harris, , and M. Seltzer. Heuristic cleaning algorithms in
log-structured file systems. In Proceedings of the Winter 1995 USENIX
Technical Conference, pages 277–288. USENIX, Jan. 1995.

[7] H. Boeve, C. Bruynseraede, J. Das, K. Dessein, G. Borghs, J. De Boeck,
R. C. Sousa, L. V. Melo, and P. P. Freitas. Technology assessment for
the implementation of magnetoresistive elements with semiconductor
components in magnetic random access memory (MRAM) architectures.
IEEE Transactions on Magnetics, 35(5):2820–2825, Sept. 1999.

[8] L.-F. Cabrera and D. D. E. Long. Swift: Using distributed disk striping
to provide high I/O data rates. Computing Systems, 4(4):405–436, 1991.

[9] H. J. Choi, S.-H. Lim, , and K. H. Park. JFTL: A flash translation layer
based on a journal remapping for flash memory. ACM Trans on Storage,
4(4), Jan. 2009.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee. Better I/O through byte-addressable, persistent memory.
In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), pages 133–146, Oct. 2009.

[11] I. H. Doh, J. Choi, D. Lee, and S. H. Noh. Exploiting non-volatile
RAM to enhance flash file system performance. In 7th ACM & IEEE
Conference on Embedded Software (EMSOFT ’07), pages 164–173,
2007.

[12] G. A. Gibson and R. Van Meter. Network attached storage architecture.
Communications of the ACM, 43(11):37–45, 2000.

[13] J. He, A. Jagatheesan, S. Gupta, J. Bennett, and A. Snavely. DASH: a
recipe for a Flash-based data intensive supercomputer. In Proceedings
of SC10, 2010.

[14] A. Hunter. A brief introduction to the design of UBIFS.
http://www.linux-mtd.infradead.org/doc/ubifs whitepaper.pdf.

[15] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. DFS: A file system
for virtualized flash storage. ACM Transactions on Storage, 6(3), Sept.
2010.

[16] J. Jung, Y. Won, E. Kim, H. Shin, and B. Jeon. FRASH: Exploiting
storage class memory in hybrid file system for hierarchical storage. ACM
Transactions on Storage, 6(1):1–25, 2010.

[17] D. Kang, D. Jung, J.-U. Kang, and J.-S. Kim. µ-Tree : An ordered index
structure for nand flash memory. In 7th ACM & IEEE Conference on
Embedded Software (EMSOFT ’07), pages 144–153, 2007.

[18] Y. Kang and E. L. Miller. Adding aggressive error correction to a
high-performance compressing flash file system. In 9th ACM & IEEE
Conference on Embedded Software (EMSOFT ’09), Oct. 2009.

[19] H. Kim and S. Ahn. BPLRU: a buffer management scheme for
improving random writes in flash storage. In Proceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST), 2008.

[20] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. A space-efficient
flash translation layer for CompactFlash systems. IEEE Transactions on
Consumer Electronics, 48(2):366–375, May 2002.

[21] J. K. Kim, H. G. Lee, S. Choi, and K. I. Bahng. A PRAM and
NAND flash hybrid architecture for high-performance embedded storage
subsystems. In 8th ACM & IEEE Conference on Embedded Software
(EMSOFT ’08), pages 31–40, 2008.

[22] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song.
A log buffer-based flash translation layer using fully-associative sector
translation. ACM Trans. on Embedded Computing Systems, 6(3), 2007.

[23] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. Operating system
support for NVM+DRAM hybrid main memory. In Proceedings of the
13th Workshop on Hot Topics in Operating Systems (HotOS-XIII), 2009.

[24] D. Nagle, M. E. Factor, S. Iren, D. Naor, E. Riedel, O. Rodeh, and
J. Satran. The ANSI T10 object-based storage standard and current im-
plementations. IBM Journal of Research and Development, 52(4):401–
411, 2008.

[25] D. Nagle, D. Serenyi, and A. Matthews. The Panasas ActiveScale storage
cluster—delivering scalable high bandwidth storage. In Proceedings
of the 2004 ACM/IEEE Conference on Supercomputing (SC ’04), Nov.
2004.

[26] Nantero, Inc. Nano-ram. http://www.nantero.com/.
[27] S.-Y. Park, D. Jung, J.-U. Kang, J.-S. Kim, and J. Lee. CFLRU:

a replacement algorithm for flash memory. In Proc. of the 2006
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems, pages 234–241, 2006.

[28] J. Piernas, T. Cortes, and J. M. Garcı́a. DualFS: a new journaling
file system without meta-data duplication. In Proceedings of the 16th
International Conference on Supercomputing, pages 84–95, New York,
NY, 2002.

[29] A. Rajimwale, V. Prabhakaran, and J. D. Davis. Block management
in solid-state devices. In Proceedings of the 2009 USENIX Annual
Technical Conference, June 2009.

[30] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang, S. McMains, and
V. Padmanabhan. File system logging versus clustering: A performance
comparison. In Proceedings of the Winter 1995 USENIX Technical
Conference, pages 249–264, 1995.

[31] F. Shu and N. Obr. Data set management commands proposal for
ATA8-ACS2. http://t13.org/
Documents/UploadedDocuments/docs2008/e07154r6-
Data Set Management Proposal for ATAACS2.doc.

[32] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell.
Consistent and durable data structures for non-volatile byte-addressable
memory. In Proceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST), 2011.

[33] F. Wang, S. A. Brandt, E. L. Miller, and D. D. E. Long. OBFS: A
file system for object-based storage devices. In Proceedings of the 21st
IEEE / 12th NASA Goddard Conference on Mass Storage Systems and
Technologies, pages 283–300, College Park, MD, Apr. 2004. IEEE.

[34] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI), Nov. 2006.

[35] D. Woodhouse. The journalling flash file system. In Ottawa Linux
Symposium, July 2001.

[36] Z. Zhang and K. Ghose. hFS: A hybrid file system prototype for
improving small file and metadata performance. In Proceedings of
EuroSys 2007, Mar. 2007.

