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Abstract

We are constructing caching policies that have 13-20% lower miss rates
than the best of twelve baseline policies over a large variety of request
streams. This represents an improvement of 49–63% over Least Recently
Used, the most commonly implemented policy. We achieve this not by
designing a specific new policy but by using on-line Machine Learning
algorithms to dynamically shift between the standard policies based on
their observed miss rates. A thorough experimental evaluation of our
techniques is given, as well as a discussion of what makes caching an
interesting on-line learning problem.

1 Introduction

Caching is ubiquitous in operation systems. It is useful whenever we have a small, fast main
memory and a larger, slower secondary memory. In file system caching, the secondary
memory is a hard drive or a networked storage server while in web caching the secondary
memory is the Internet. The goal of caching is to keep within the smaller memory data
objects (files, web pages, etc.) from the larger memory which are likely to be accessed again
in the near future. Since the future request stream is not generally known, heuristics, called
caching policies, are used to decide which objects should be discarded as new objects are
retained. More precisely, if a requested object already resides in the cache then we call it a
hit, corresponding to a low-latency data access. Otherwise, we call it amiss, corresponding
to a high-latency data access as the data is fetched from the slower secondary memory into
the faster cache memory. In the case of a miss, room must be made in the cache memory
for the new object. To accomplish this a caching policy discards from the cache objects
which it thinks will cause the fewest or least expensive future misses.

In this work we consider twelve baseline policies including seven common policies
(RAND, FIFO, LIFO, LRU, MRU, LFU, and MFU), and five more recently devel-
oped and very successful policies (SIZE and GDS [CI97], GD* [JB00], GDSF and
LFUDA [ACD+99]). These algorithms employ a variety of directly observable criteria
including recency of access, frequency of access, size of the objects, cost of fetching the
objects from secondary memory, and various combinations of these.

The primary difficulty in selecting the best policy lies in the fact that each of these policies
may work well in different situations or at different times due to variations in workload,
system architecture, request size, type of processing, CPU speed, relative speeds of the
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Figure 1: Miss rates (y axis)of a) the twelve fixed policies (calculated w.r.t. a window of 300 requests)
over 30,000 requests (x axis), b) the same policies on a random permutation of the data set, c) and d)
the policies with the lowest miss rates in the figures above.

different memories, load on the communication network, etc. Thus the difficult question
is: In a given situation, which policy should govern the cache? For example, the request
stream from disk accesses on a PC is quite different from the request stream produced by
web-proxy accesses via a browser, or that of a file server on a local network. The relative
performance of the twelve policies vary greatly depending on the application. Furthermore,
the characteristics of a single request stream can vary temporally for a fixed application.
For example, a file server can behave quite differently during the middle of the night while
making tape archives in order to backup data, whereas during the day its purpose is to
serve file requests to and from other machines and/or users. Because of their differing
decision criteria, different policies perform better given different workload characteristics.
The request streams become even more difficult to characterize when there is a hierarchy
or a network of caches handling a variety of file-type requests. In these cases, choosing a
fixed policy for each cache in advance is doomed to be sub-optimal.

The usual answer to the question of which policy to employ is either to select one that
works well on average, or to select one that provides the best performance on some im-
portant subset of the workload. However, these strategies have two inherent costs. First,
the selection (and perhaps tuning) of the single policy to be used in any given situation
is done by hand and may be both difficult and error-prone, especially in complex system
architectures with unknown and/or time-varying workloads. And second, the performance
of the chosen policy with the best expected average case performance may in fact be worse
than that achievable by another policy at any particular moment. Figure 1 (a) shows the hit
rate of the twelve policies described above on a representative portion of one of our data
sets (described below in Section 3) and Figure 1 (b) shows the hit rate of the same policies
on a random permutation of the request stream. As can be clearly be seen, the miss rates
on the permuted data set are quite different from those of the original data set, and it is this
difference that our algorithms aim to exploit. Figures 1 (c) and (d) show which policy is
best at each instant of time for the data segment and the permuted data segment. It is clear
from these (representative) figures that the best policy changes over time.

To avoid the perils associated with trying to hand-pick a single policy, one would like to
be able to automatically and dynamically select the best policy for any given situation. In
other words, one wants a cache replacement policy which is “adaptive”. In our Systems



Research Group, we have identified the need for such a solution in the context of complex
network architectures and time-varying workloads and suggested a preliminary framework
in which a solution could operate [AAG+ar], but without specific algorithmic solutions to
the adaptation problem. This paper presents specific algorithmic solutions that address the
need identified in that work.

It is difficult to give a precise definition of “adaptive” when the data stream is continually
changing. We use the term “adaptive” only informally and when we want to be precise
we use off-line comparators to judge the performance of our on-line algorithms, as is com-
monly done in on-line learning [LW94, CBFH+97, KW97]. A good adaptive on-line policy
must do well compared to off-line comparators. In this paper we use two off-line compara-
tors: BestFixedandBestShifting(K;L). BestFixed is thea posterioriselected policy with
the lowest miss rate on the entire request stream for our twelve policies. BestShifting(K;L)
considers all possible partitions of the request stream into at mostK segments of length
up toL along with the best policy for each segment. BestShifting(K;L) chooses the parti-
tion with the lowest total miss rate over the entire dataset. The upper boundsK andL are
necessary so that BestFixed(K;L) can be feasibly computed with dynamic programming.
Off-line comparators that optimally partition the data stream are used extensively in the
on-line learning community [LW94, HW98, BW02]. For completeness, we also compare
to thede factostandard policy, Least Recently Used (LRU).

Rather than develop a new caching policy (well-plowed ground, to say the least), this paper
uses amaster policyto dynamically determine the success rate of all the other policies and
switch among them based on their relative performance on the current request stream. We
show that with no additional fetches, this policy works about as well as BestFixed. We
define arefetchas a fetch of a previously seen object that was kept by the currently favored
policy but was discarded from the real cache. With refetching, this policy can outperform
BestFixed. In particular, when all required objects are refetched instantly, this policy has
a 13-20% lower miss rate than BestFixed, and almost the same performance as BestShift-
ing. For reference, when compared with LRU, this policy has a 49-63% lower miss rate.
Disregarding misses on objects never seen before (compulsorymisses), the performance
improvements are even greater.

Because the refetches are themselves potentially costly, it is important to note that they can
be done in the background. Our preliminary experiments show this to be both feasible and
effective, capturing most of the advantage of instant refetching.

2 The Master Policy

We seek to develop an on-line master policy that determines which of a set of baseline
policies should currently govern the real cache. Appropriate switch points need to be found
and switches must be facilitated. Our key idea is “virtual caches”. Avirtual cachesimulates
the operation of a single baseline policy. Each virtual cache records a few bytes of metadata
about each object in its cache: ID, size, and calculated priority. The object data is only kept
in the real cache, making the cost of maintaining the virtual caches negligible1. Via the
virtual caches, the master policy can observe the miss rates of each policy on the actual
request stream in order to determine their performance on the current workload. A simple
heuristic for doing this is to continuously monitor the number of misses of each policy in a
past window of, for example, 1000 requests. The master policy can give control of the real
cache to the policy with the least misses in this window.

While this works well in practice, maintaining such a window for many fixed policies is

1As an additional optimization, we record the id and size of each object only once, regardless of
the number of virtual caches it appears in.



expensive. A better master policy keeps a single weightwi for each policy (non-negative
and summing to one) which represents an estimate of its current relative performance. The
master policy is always governed by the policy with the maximum weight2.

Weights are updated by using the combinedlossandshareupdates of Herbster and War-
muth [HW98] and Bousquet and Warmuth [BW02] from the expert framework [CBFH+97]
for on-line learning. Here the experts are the caching policies. This technique is preferred
to the window-based master policy because it uses much less memory, and because the
parameters of the weight updates are easier to tune than the window size. This also makes
the resulting master policy more robust (not shown).

2.1 The Weight Updates

Updating the weight vector(w1; : : : ; w12) after each trial is a two-part process. First, the
weights of all policies that missed the new request aremultiplied by a factor� 2 (0; 1)
and then renormalized. We call this
the loss update. Since the weights are
renormalized, they remain unchanged
if all policies miss the new request.
As noticed by Herbster and War-
muth [HW98], multiplicative updates
drive the weights of poor experts
to zero so quickly that it becomes
difficult for them to recover if their
experts subsequently start doing well.
Therefore, the secondshare update
prevents the weights of experts that
did well in the past from becoming

0

0.2

0.4

0.6

0.8

1

205000 210000 215000 220000 225000 230000 235000

FS
U

P 
W

ei
gh

t

Requests Over Time

Weight History for Individual Policies

lru
fifo
mru
lifo
size
lfu

mfu
rand
gds

gdsf
lfuda

gd

Figure 2: Weights of baseline policies.

too small, allowing them to recover quickly, as shown in Figure 2.

There are a number of share updates [HW98, BW02] with various recovery properties. We
choose the FIXED SHARE TO UNIFORM PAST (FSUP) update because of its simplicity
and efficiency. Note that the loss bounds proven in the expert framework for the combined
loss and share update do not apply in this context. This is because we use the mixture
weights only to select the best policy (discussion in full paper). However, our experimental
results suggest that we are exploiting the recovery properties of the combined update that
are discussed extensively by Bousquet and Warmuth [BW02].

Formally, for each trialt, the loss update is

wm
t;i =

wt;i�
misst;i

Zt+1

; Zt+1 =

NX

i=1

wt;i�
misst;i ; for i = 1; : : : ; N;

where� is a parameter in(0; 1) and misst;i is 1 if the t-th object is missed by policyi
and 0 otherwise. The initial distribution is uniform, i.e.w1;i = 1=N . The Fixed-Share
to Uniform Past mixes the current weight vector with the past average weight vectorrt =Pt

q=1w
m
q =t, which is easy to maintain:

wt+1 = (1� �) wm
t + � rt�1;

where� is a parameter in(0; 1). A small� parameter causes high weight to decay quickly
if its corresponding policy has currently more misses than other policies with high weights.

2This can be sub-optimal in the worst case since it is always possible to construct a data stream
where two policies switch back and forth after each request. However, real request streams appear
to be divided into segments that favor one of the twelve policies for a substantial number of requests
(see Figure 1).
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Figure 3: BestFixed - P, where P2 fInstantaneous, Demand, and Background Rolloverg.

The higher the� the more quickly past good policies will recover. In our experiments we
used� = 1=e and� = 1=5000.

2.2 Demand vs. Instantaneous Rollover

When space is needed to cache a new request, the master policy discards objects not present
in the governing policy’s virtual cache3. This causes the content of the real cache to “roll
over” to the content of the current governing virtual cache. We call thisdemand rollover
because objects in the governing virtual cache are refetched into the real cache on demand.
While this master policy works almost as well as BestFixed, we were not satisfied and
wanted to do as well as BestShifting. We noticed that the content of the real cache lagged
behind the content of the governing virtual cache and had more misses. As a consequence,
the miss rate of the master policy was greatly improved if, as soon as we switched over to a
new governing policy, we refetched all the files in that policy’s virtual cache that were not
retained in the real cache. We call thisinstantaneous rollover. By appropriate tuning of the
update parameters� and�, the number ofinstantaneous rolloverscan be kept reasonably
small and the miss rates of our master policy are almost as good as BestShifting(K;L).
Here an upper bound forK is chosen (generously) to be twice the number of rollovers used
by our master policy, andL is set to the maximum segment length.

2.3 Background Rollover

Because instantaneous rollover immediately refetches everything in the governing virtual
cache that is not already in the real cache, it may cause a large number of refetches even
when the number of policy switches is kept small. If all refetches are counted as misses,
then the miss rate of such a master policy is comparable to that of BestFixed. The same
is true for BestShifting. However, from a user perspective, refetching is advantageous be-
cause of the latency advantage gained by having required objects in memory before they
are needed. And from a system perspective, refetches can be “free” if they are done when
the system is idle. To take advantage of these “free” refetches, we introduce the concept
of background rollover. The exact criteria for when to refetch each missing object will
depend heavily on the system, workload, and expected cost and benefit of each object. To
characterize the performance of background rollover without addressing these architectural
details, the following background refetching strategies were examined: 1 refetch for every
cache miss; 1 for every hit; 1 for every request; 2 for every request; 1 for every hit and 5 for
every miss, etc. Each background technique gave fewer misses than BestFixed, approach-
ing and nearly matching the performance obtained by the master policy using instantaneous

3We update the virtual caches before the real cache, so there are always objects in the real cache
that are not in the governing virtual cache when the master policy goes to find space for a new request.
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Figure 4: “Tracking” the best policy.
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Dataset
Works User Server
Week Month Month

LRU

#Requests 138k 382k 48k
Cache size 900KB 2MB 4MB
%Skipped 6.5% 12.8% 15.7%
# Compuls 0.020 0.015 0.152

# Shifts 88 485 93

LRU
Miss Rate 0.088 0.076 0.450
BestFixed

Policy SIZE GDS GDSF
Miss Rate 0.055 0.075 0.399
%<LRU 36.8% 54.7% 54.2%
Demand
Miss Rate 0.061 0.076 0.450
%<BestF -9.6% -0.5% -12.8%
%<LRU 30.9% 54.4% 48.5%

Backgrnd 1
Miss Rate 0.053 0.068 0.401
%<BestF 5.1% 9.8% -0.7%
%<LRU 40.1% 59.4% 55.5%

Backgrnd 2
Miss Rate 0.047 0.067 0.349
%<BestF 15.4% 11.9% 12.4%
%<LRU 46.6% 60.1% 60.3%
Instant

Miss Rate 0.044 0.065 0.322
%<BestF 19.7% 13.4% 19.3%
%<LRU 49.2% 60.8% 63%

BestShifting
Miss Rate 0.042 in- 0.312
%<BestF 23.6% feas- 21.8%
%<LRU 52.2% ible 30.1%

Figure 6: Performance Summary.

rollover. Of course, techniques which reduce the number of policy switches (by tuning�
and�) also reduce the number of refetches. Figure 3 compares the performance of each
master policy with that of BestFixed and shows that the three master policies almost always
outperform BestFixed.

3 Data and Results

Figure 4 shows how the master policy with instantaneous rollover (labeled ’roll’) “tracks”
the baseline policy with the lowest miss rate over the representative data segment used in
previous figures. Figure 5 shows the performance of our master policies with respect to
BestFixed, BestShifting, and LRU. It shows that demand rollover does slightly worse than
BestFixed, while background 1 (1 refetch every request) and background 2 (1 refetch every
hit and 5 every miss) do better than BestFixed and almost as well as instantaneous, which
itself does almost as well as BestShifting. All of the policies do significantly better than
LRU. Discounting the compulsory misses, our best policies have�1/3 fewer “real” misses
than BestFixed and�1/2 the “real” misses of LRU. Figure 6 summarizes the performance
of our algorithms over three large datasets. These were gathered using Carnegie Mellon
University’s DFSTrace system [MS96] and had durations ranging from a single day to
over a year. The traces we used represent a variety of workloads including a personal
workstation (Work-Week), a single user (User-Month), and a remote storage system with a
large number of clients, filtered by LRU on the clients’ local caches (Server-Month-LRU).
For each data set, the table shows the number of requests, % of requests skipped (size>
cache size), number of compulsory misses of objects not previously seen, and the number
of rollovers. For each policy, the table shows miss rate, and % improvement over BestFixed
(labeled ’% <BF’) and LRU.



4 Conclusion

Operating systems have many hidden parameter tweaking problems which are ideal appli-
cations for on-line Machine Learning algorithms. These parameters are often set to values
which provide good average case performance on a test workload. For example, we have
identified candidate parameters in device management, file systems, and network proto-
cols. Previously the on-line algorithms for predicting as well as the best shifting expert
were used to tune the time-out for spinning down the disk of a PC [HLSS00]. In this pa-
per we use the weight updates of these algorithms for dynamically determining the best
caching policy. This application is more elaborate because we needed to actively gather
performance information about the caching policies via virtual caches. In future work we
will do a more thorough study of feasibility of deferred rollover by building actual sys-
tems using the algorithms we investigated in the simulations described in this paper. We
will also explore the relationship of our methods to reinforcement learning and multi-arm
bandit problems.
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