
Reliability Mechanisms for File Systems Using Non-Volatil e
Memory as a Metadata Store

Kevin M. Greenan and Ethan L. Miller
Dept. of Computer Science, University of California, Santa Cruz

Santa Cruz, CA, USA

kmgreen@cs.ucsc.edu, elm@cs.ucsc.edu

ABSTRACT
Portable systems such as cell phones and portable media
players commonly use non-volatile RAM (NVRAM) to hold
all of their data and metadata, and larger systems can store
metadata in NVRAM to increase file system performance
by reducing synchronization and transfer overhead between
disk and memory data structures. Unfortunately, wayward
writes from buggy software and random bit flips may result
in an unreliable persistent store. We introduce two orthog-
onal and complementary approaches to reliably storing file
system structures in NVRAM. First, we reinforce hardware
and operating system memory consistency by employing
page-level write protection and error correcting codes. Sec-
ond, we perform on-line consistency checking of the filesys-
tem structures by replaying logged file system transactions
on copied data structures; a structure is consistent if the re-
played copy matches its live counterpart. Our experiments
show that the protection mechanisms can increase fault tol-
erance by six orders of magnitude while incurring an ac-
ceptable amount of overhead on writes to NVRAM. Since
NVRAM is much faster and consumes far less power than
disk-based storage, the added overhead of error checking
leaves an NVRAM-based system both faster and more reli-
able than a disk-based system. Additionally, our techniques
can be implemented on systems lacking hardware support
for memory management, allowing them to be used on low-
end and embedded systems without an MMU.

Categories and Subject Descriptors
D.4.3 [File Systems Management]: Directory structures;
D.4.5 [Reliability]: Fault-tolerance

General Terms
Performance, design, reliability

Keywords
non-volatile memory, file system reliability, metadata, online
consistency checking, error correcting codes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.

1. INTRODUCTION
Non-volatile byte-accessible RAM is finally becoming a

reality, as magnetic RAM (MRAM) is available in quan-
tity and other technologies are maturing. Such technolo-
gies provide great opportunities for portable devices to store
large quantities of information in a small, power-conserving
package. Moreover, storing file system metadata in a non-
volatile RAM can significantly reduce the latency of file sys-
tem metadata operations even in systems that use disks
to store their data. Current systems simply use RAM as
a cache for block devices such as disks and flash memory;
however, caching in this manner has two problems. First,
cache contents with a relatively long life must occasion-
ally read from and written back to slower memory, incur-
ring additional latency. Second, all memory resident meta-
data must be synchronized with the more permanent disk-
resident metadata structures, incurring code complexity and
performance overheads—metadata designed to be stored on
disk is optimized for large block sizes rather than the more
natural smaller sizes made possible by in-memory metadata.

Portable devices such as cell phones will likely use new
non-volatile memory technologies as the primary store, mak-
ing higher reliability a critical issue. Even systems that use
other storage technologies such as disk and flash memory can
store file system metadata in byte-addressable non-volatile
memory, providing the performance of in-memory storage
with the reliability and data longevity of a disk store. Al-
though there are many non-volatile memory technologies,
including flash RAM, magnetic RAM (MRAM) [13], and
battery-backed dynamic RAM, our work focuses on MRAM
and other similar byte-addressable non-volatile memory tech-
nologies; flash memory must be written a block at a time,
making it less suitable for the small writes that metadata
updates require. We assume that MRAM will be accessed
through an interface similar to DRAM and thus, unlike
disk and most flash memory, will be directly addressable.
Though this interface simplifies data access, it also brings
with it the possibility of wild writes and data corruption.
Since MRAM contents are never synchronized to disk, the
system must ensure that data in MRAM is always com-
pletely consistent. To achieve this consistency, we propose
methods which not only add additional memory-level pro-
tection and guarantee consistency, but also provide failure
notification.

Our approach consists of two levels: guarantees at the
metadata store level, and consistency at the file system level.
Metadata store level guarantees are enforced using protec-
tion mechanisms such as page protection and check and re-
covery mechanisms through error correcting codes that pro-
tect “blocks” of memory. In addition to page protection [7],
we use in-memory error correcting codes (ECC) that guar-

antee correctness up to a prescribed threshold. Beyond that,
there is a high probability that an unrecoverable error no-
tification will be sent to the system. Unlike page protec-
tion, however, memory-based ECC does not require hard-
ware support for memory management, and is thus suitable
for portable or low-power embedded devices that lack an
MMU.

The file system consistency level ensures that the filesys-
tem metadata is in a consistent state by enforcing atomic
writes, logging all operations and periodically checking the
filesystem by replaying the log. The consistency checker
then compares the structures that result from replay with
those that were actually generated by the file system. This
is particularly useful when errors are too large for correc-
tion via memory-level checks or when the file system itself
contains a bug that writes an incorrect value to the meta-
data and then computes the (correct) ECC for that incorrect
value. In most cases, the online consistency checker can lo-
calize the error to the individual data structure in which it
occurred. Essentially, the memory-level protection mecha-
nisms protect the file system from other processes, while the
file system level mechanisms protect the file system from it-
self by ensuring that the file system metadata is in a consis-
tent state.

We show that the combination of these approaches can
dramatically reduce the occurrence of errors in a memory-
based file system. The use of orthogonal techniques catches
different types of errors, increasing file system reliability.
The overhead required for this improved reliability seems
high at about 1.5×; however, this is relative to a memory-
based file system that is much faster than existing disk-based
file systems. The result of implementing our techniques in
a file system that permanently stores its metadata is a file
system that is both faster and more reliable than disk-based
file systems.

2. RELATED WORK
There has been a great deal of previous work on using

non-volatile RAM in file systems, and in providing reliable
memory-based storage. This section summarizes that work,
showing how our research builds on previous work in this
area.

2.1 NVRAM in File Systems
Baker, et al. [4] observed that the use of NVRAM in a

distributed file system can improve write performance and
file system reliability. They use NVRAM in conjunction
with volatile RAM to form a consistent cache, thus improv-
ing reliability and performance in a distributed file system.
The goal of the eNVy storage system [21] was to improve
the performance and utilization of a flash-based storage sys-
tem. Instead of using disks for high capacity storage, eNVy
used flash memory for persistent storage and SRAM as a
non-volatile write buffer.

More recently, HeRMES [12] posited that file system per-
formance would improve dramatically if metadata were stored
in MRAM. The HeRMES work also claimed that on-line
consistency checking of metadata is a requirement for the
metadata store, and that including it may be possible with-
out degrading performance. Conquest [20] also used persis-
tent RAM to store small files, metadata, executables and
shared libraries. The distinction between memory regions
is similar to that between the protected and non-protected
regions used in the NVRAM store of our work. LiFS [1,
2] is a relational link-based file system that stores all of its
metadata structures in MRAM. While all of these systems
promise higher performance, none of these systems include

the combination of page protection via memory protection
and online consistency checking that we describe. Thus,
they are subject to corruption that cannot be fixed by re-
booting because the in-memory metadata is the only copy.

2.2 Safe Persistent Memory
The Rio file cache [7, 9] effectively makes a region of mem-

ory safe across crashes by turning off write permission bits
in the page table, protecting memory from software errors
and wild writes during a crash. One aspect of our mem-
ory protection scheme is very similar to that of Rio. Unlike
Rio, where protected regions enable a safe write cache in
RAM, we support long-term data storage in MRAM, requir-
ing larger memory space to be consistent over significantly
longer durations. A larger distinction is that we augment
the write locking mechanism with error correcting codes and
data structure integrity checking to guard against software
errors in the file system itself.

Write-protected data structures are used in the context of
database management systems to limit software error prop-
agation [17]. The authors propose three different update
models for write-protected data. This work is similar to
ours in that regions of data are protected at the page level.
Furthermore, the expose page update model closely resem-
bles the update scheme used for the protected regions in our
model.

2.3 File System Consistency
The popular fsck program [11] attempts to restore file

system consistency by scanning all of the file system meta-
data. Since the elapsed time of fsck is a function of the file
system size, this operation often takes a great deal of time
to complete and does not scale to very large file systems.
McKusick also discusses the use of a background version of
fsck [10], which is essentially fsck running on a snapshot
of a file system. Even though background fsck can run
while changes are made to the file system, it requires a long
latency that is not reasonable for our purposes.

File systems such as XFS [18] and LFS [16] use log-based
recovery to restore file system consistency. Using such re-
covery mechanisms lowers the time necessary to perform file
system recovery. The on-line consistency checker presented
in this paper uses an approach similar to these log-based re-
covery mechanisms. However, existing log-based recovery is
typically run only after a system crash; our system performs
recovery continuously, avoiding crashes and data corruption.

2.4 Fault Tolerance
Aumann and Bender [3] propose the addition of redundant

links to standard data structures such as linked lists and
trees. By adding the redundant links in a butterfly struc-
ture, they place bounds on the number of faults the data
structure can tolerate. Although such structures would be
very helpful for tolerating failures in the underlying meta-
data structures, we chose to not include fault-tolerant data
structures in this work.

The remote file service (RFS) [22] is a proposed frame-
work that can be used by network file systems to speed up
repair upon corruption due to security breach or human er-
ror. RFS relies on an external resource to determine which
processes cause data corruption. Once the external resource
flags a process or set of processes as contaminated, RFS uses
information in its log to perform backward recovery. RFS
recovers the file system with respect to a set of contami-
nated processes, while our scheme recovers with respect to
inconsistent metadata structures. In addition, our scheme
does not rely on an external resource for detection of cor-

D a t a B l o c k E V E N O D D M a t r i x
P a r i t y

.
Figure 1: Data block mapping to an EVENODD
matrix. Regions of each data block are sequentially
copied to each column of the EVENODD matrix.
Here, a region of ten symbols in the data block
(shaded) is mapped to the EVENODD matrix.

rupt data. Although there is some similarity between RFS
and our recovery scheme, the goals of each are somewhat
orthogonal.

3. DESIGN
Our approach to protection and consistency consists of

two layers, one at the metadata store level and another at
the filesystem level. By using two orthogonal techniques to
protect the integrity of in-memory data structures, our sys-
tem ensures that data stored in memory traditionally con-
sidered “less-safe” is actually more safe than data stored on
disk.

3.1 Metadata Store Consistency
As previously discussed, error correcting codes are used

as a form of fault tolerance in the metadata store. In our
scheme, any encoding algorithm that separates the data and
parity symbols may be used for error correction. The mech-
anisms covered in this paper rely on EVENODD [5, 6] codes
for error correction. EVENODD codes are XOR-based, and
are thus computationally cheaper than other codes such
as Reed-Solomon. Unfortunately, EVENODD codes incur
more storage overhead than Reed-Solomon codes.

3.1.1 EVENODD as an ECC
EVENODD codes are typically used for tolerating fail-

ures in RAID architectures. Traditionally, the EVENODD
scheme requires m data disks and two parity disks. The
disks are organized into columns of an (m − 1) × (m + 2)
matrix, where the first m columns represent data disks and
the last two columns represent parity disks; m should be a
prime number. Each element in a particular column is a
symbol from the corresponding disk. The first parity col-
umn holds the horizontal parity of the data columns such
that each element, i, of the first parity column is computed
by XORing the ith elements from the data columns. The
second parity column holds the diagonal parity of the data
column. The diagonal parity is computed in a way that en-
sures any errors in a single column can be detected. Once
the disk in error is detected, the horizontal parity can be
used to reconstruct the appropriate column of the matrix.
The mapping from a block of memory to an EVENODD
matrix is given in Figure 1.

Instead of encoding data from disks, we encode blocks of
memory into an EVENODD matrix. If we choose m = 257,
we can encode 256-byte chunks of memory into each of the
257 columns of the matrix, which allows for a burst error of
at most 256 bytes. Each EVENODD matrix is constructed

P a r i t y
D a t a D a t a P a r i t y

M R A MP r o t e c t e d P a g e
E a c h c e l l r e p r e s e n t sa n e n c o d e d b l o c k

Figure 2: Protected regions in MRAM. Two pro-
tected regions—data and parity—are shown here.
Processes using the protected regions can only ac-
cess the data portion, which is organized into pages
of encoded blocks. The regions are protected
through page-write locks and error correcting codes.

by serializing a region of memory and mapping a m − 1-
byte moving window to a column. This moving window
is illustrated by rows of the data block in Figure 1. A 2-
dimensional parity scheme is essentially equivalent to this
EVENODD scheme, since cross-column bursts—errors that
span more than one column—cannot be detected. For ex-
ample, suppose bytes 0 through 255 are mapped to column 1
and bytes 256 through 511 are mapped to column 2 of some
matrix. A burst error over bytes 253 through 260 would be
a cross-column error burst, and might not be caught.

Even though we did not implement functionality to de-
tect cross-column error bursts, existing schemes can toler-
ate some cross-column burst errors covering two columns
using EVENODD [14]. In the remainder of this section,
E(n, n − m) will be used to denote an encoding in which n
is the total number of data symbols and m is the number of
appended parity symbols.

3.1.2 MRAM Layout
MRAM is a byte-addressable storage technology, which,

like many other random access storage media, can be orga-
nized into blocks or pages. In this context, pages of blocks
will be used as the unit of storage. Figure 2 illustrates the
page layout of MRAM in this scheme. Memory is organized
into protected and unprotected regions. In order for the pro-
tection mechanisms to operate on a region of MRAM, the
region must be declared as protected. Figure 2 illustrates
the layout of MRAM with protected regions. Each protec-
tion region is organized into two sections: data and parity.
By making a distinction between the two regions, data can
be read at no additional cost. The data section of a pro-
tected region is organized into pages of blocks of size n−m,
where each block is encoded using a E(n, n − m) encoding.
The parity section is organized in a similar manner with
a block size of m. Placement of the data and parity sec-
tions are not necessarily known before creation, although it
is important to ensure that these sections are not physically
adjacent. Figure 2 shows an example with two protected
regions in MRAM. As shown, each region has one data sec-
tion and a corresponding parity section. Note that the data
section of each protected region should be the only portion
of the region visible to a process.

3.1.3 Write Protection
An error correcting code is augmented with write protec-

tion to protect against corruption in MRAM. We use locking
techniques similar to the Rio file cache [7] to protect pages
from wild writes. Every page in a protected region is write

1: Input : (data, addr , size)
2: (dataSet, paritySet)← getBlocks(addr , size)
3: for (data blk , parity blk) ∈ (data set, parity set) do

4: scratch ← blk data
5: write appropriate portion of data to scratch
6: new parity ← encode(scratch)
7: unprotect(data blk, parity blk)
8: data blk ← scratch
9: parity blk ← new parity
10: protect(data blk , parity blk)
11: if check(data blk, parity blk) 6= OK then

12: throw exception
13: end if
14: end for

Figure 3: Write algorithm for protected regions.
Line 2 detects all blocks affected by the write.
Lines 4–6 copy each block to a scratch region, up-
date the block and re-encode the block, returning
the new parity. Each affected block is unprotected,
updated and re-protected in lines 7–10. Finally, each
block is checked in lines 11–13.

locked until a process is performing a write on a particu-
lar page. It is assumed that kernel-level tasks will obey
page-level write locks, which guarantees that while a page
is locked it will not be subject to wild writes. Protection is
strictly enforced using the simple algorithm for writing data
to a protected region.

As shown in Figure 3, multiple steps are required to write
data out to a protected region of MRAM. MRAM byte ad-
dress and data size are used to determine the blocks that
will be affected by the write. Each affected block is up-
dated to reflect all of the appropriate changes. First, the
block is copied to a scratch location outside of its protected
region. Next, the appropriate data is written to the copy
of the block, which is immediately re-encoded. In order to
overwrite the old block encoding with the new encoding, the
pages of both the data and parity blocks must be unlocked
for writing. The pages are unlocked and the new data and
parity are written on top of the old values. The pages are re-
locked and decoded to ensure no corruption occurred while
the pages were unlocked.

There are a few issues with the algorithm as described
above. Currently, it is unclear where a block should be
copied when performing writes in a protected region. By
copying a block to another protected region we may en-
counter an infinite protection chain, since a copied block
would then be subject to the original write policy. It is pos-
sible to use a cheaper, less fault-tolerant region for copied
blocks. For instance, scratch regions using checksums could
be used for this purpose. Currently, no restrictions are
placed on the location of a block copy, as long as the scratch
regions are placed outside of the respective protected region.

In addition to checking the integrity of blocks during the
write algorithm, periodic integrity checks can be performed
on groups of blocks. The checks can simply check the in-
tegrity of a random group of blocks or contain more com-
plicated functionality such as considering a group of blocks
that have passed a threshold (i. e., not checked in a long
time). Currently, we simply employ a “sweeping check” that
performs an integrity check on all of the blocks within a par-
ticular address interval.

3.2 Filesystem-level Consistency
So far, we have described protection on the metadata-

store level using error correcting codes and page-level write
protection. However, these techniques cannot identify errors

T 1 T 2 T n. . .
a) T r a n s a c t i o n L o g O P 1 . . . O P kO P 1 . . . O P jI D O P D a t a# o p s

I n d e x S t a t e< I D 1 >< I D 2 >< I D k > S (I D 1)S (I D 2)S (I D k)b) S t a t e T a b l e.
o p s

c) O L C C T r a n s a c t i o n T a b l e
1 1 12 23 7

2 3 1 7d) P e n d i n g i n o d e c h e c k l i s t
Figure 4: Data structures for logging and file sys-
tem consistency checking. a) The log is a FIFO of
transactions, which contain a series of metadata op-
erations. b) The state table holds the initial state of
logged inodes. c) The OLCC transaction table clus-
ters inode changes. In this figure, the changes for
inodes 1, 2, 3 and 7 are clustered. d) The pending
inode list is the set of updated inodes that require
a replay and check.

caused by file system bugs that correctly update both the
data and parity in the metadata store but result in incorrect
file system data structures. For example, establishing a new
hard link to an inode might fail to increment the reference
count; this error would not be flagged by page-level protec-
tion. The filesystem mechanisms take care of rolling back if
MRAM writes fail and periodically checking the log against
the actual metadata to ensure the integrity of the file system
data structures. The consistency checker could be written
by a separate design team using the file system specifica-
tion; this approach would increase the likelihood that bugs
in either the file system or the checker would be caught. By
including these online consistency checks, recovery time is
reduced and faults in the metadata can be caught before
they are propagated.

3.2.1 Additional Structures
In order to maintain integrity on the filesystem level, a

few structures must be created. First, all of the file system
metadata transactions are logged. This log may be placed in
a protected region of memory to ensure that it is not mod-
ified accidentally. Depending on the overhead incurred by
the encoding, however, this protection may simply be in the
form of write protection. Figure 4 contains the structures
required to maintain filesystem metadata integrity.

All of the metadata operations for each file system call
are batched and placed into a transaction. Each transaction
contains a series of operations, and each operation consists
of an ID, an operation identifier and a data field. An ID
field is used to uniquely identify the structure that the cor-
responding operation is changing (i. e., inode number). The

last two fields contain the operation identifier and the data
associated with the operation (i. e., link with 〈src, dest〉).
Each transaction contains the number of operations neces-
sary for the transaction and may contain one to many of
these operation structures. The transaction log is a FIFO
log of all of these transactions. The structure of the trans-
action log is illustrated in Figure 4a.

Three more structures are required for online consistency
checking. The first structure, shown in Figure 4b, is a state
table that holds the state of all structures that have changed
since the last consistency check. The state of each structure
is indexed by inode number. Each time a transaction re-
quires a change to an inode, the table is checked. If an
entry exists in the state table for that particular inode, we
do nothing and continue writing to the log. If the inode is
not in the state table, then an entry containing the live-state
of the inode (i. e., size, permissions, etc.) is created. The
state table has two purposes: it holds initial state for roll-
forward within the consistency checker and can be used by
the consistency checker to determine if a particular inode
has been updated since the checker was invoked.

In addition to the state table, the consistency checker
maintains a persistent hash table of operations, the online
consistency checker (OLCC) transaction table, as shown in
Figure 4c. The table contains transaction operations in-
dexed by inode number, with each bucket in the table con-
sisting of a cluster of operation entries for an inode. These
clusters are temporally ordered because inserted entries are
traversed and removed in FIFO order from the log. The
consistency checker uses the operation entries in a cluster to
replay the updates of a single inode. A pending inode list is
used to determine which inodes require a consistency check
and is illustrated in Figure 4d. The list simply contains an
inode number per entry, and is temporally ordered.

3.2.2 Online Consistency Checker
All of the structures described above are used by the on-

line consistency checker, as this section describes. Immedi-
ately before the consistency checker is started, a new loca-
tion is allocated for the log and state table, so future trans-
actions will be written to newly initialized structures. The
old log and both old and new state table are used by the
consistency checker.

The consistency checker first traverses the log in FIFO or-
der and inserts each operation associated with every trans-
action into the transaction table. After updating the trans-
action table, the consistency checker traverses the pending
inode list and individually processes each inode cluster in the
transaction table. Before processing a cluster of operations
on an inode, the consistency checker must check the current
state table to see if any updates have been made to the cor-
responding inode. If an entry is in the live state table, the
check is deferred until the next consistency check and the
consistency checker moves on to the next cluster. If no en-
try exists in the live state table for the corresponding inode,
then a lock is placed on the structure and all of the opera-
tions within the cluster are replayed on the state taken from
the old state table entry for the inode. Once all of the oper-
ations within a cluster are replayed, they are removed from
the transaction table and the replayed inode is compared to
the live inode. If the two states differ, then a consistency
problem exists and a notification is generated. Any clusters
remaining in the list after the checker completes will be pro-
cessed on the next iteration of the consistency checker. Both
the old state table and old log are freed from memory once
the consistency checker completes. The basic algorithm for
the consistency checker is shown in Figure 5. We assume the

1: old log ← live log
2: live log ← init new log()
3: old st tbl ← live st tbl
4: live st tbl ← init new st tbl()
5: 〈olcc tbl, pend list〉 ← insert into olcc tbl(old log)
6: for inode num ∈ pend list do
7: inode ← st tbl lookup(old st tbl, inode num)
8: 〈op[],data []〉 ← get ops(olcc tbl, inode num)
9: inode ← replay(inode, op[],data [])
10: live inode ← get live inode(inode num)
11: if compare(inode, live inode) 6= OK then

12: throw exception
13: end if
14: end for

Figure 5: Basic algorithm for the online consistency
checker. A new log and state table are created in
lines 1–4. The contents of the old log are added to
the OLCC transaction table in line 5. Lines 6–14
describe the operations performed for each inode in
the pending inode list. Note that line 8 fetches all
of the changes for a particular inode. For brevity,
locking and state table checks are left out of the
pseudocode.

recovery of a corrupted inode will simply involve overwriting
the live inode with the replayed inode.

4. PROTOTYPE IMPLEMENTATION
The MRAM protection and file system consistency mech-

anisms were independently written and tested. Due to the
fact that large quantities of MRAM are currently unavail-
able (current chips hold only 4Mbits), the MRAM-level
mechanisms were incorporated into an MRAM simulator,
which was implemented as a user space MRAM allocator.

The MRAM allocator uses the malloc call to allocate a
large region of DRAM. Once the MRAM allocator obtains
a region of DRAM and initializes its internal structures,
the offset and size of the simulated MRAM are passed to
the protection module, which initializes the data and par-
ity sections of MRAM. Page-level protection comes in the
form of mprotect system calls. All encoding and decod-
ing is done using a simple EVENODD library created for
the experiments in the next section. The library does not
include write optimizations [5] and cross-column error toler-
ance [14]. Since cross-column error tolerance is not included
in the EVENODD library, 1-byte errors were used for fault
injection.

Data access within the MRAM simulator requires two
calls: toMRAMPointer and toNormalPointer. MRAM point-
ers represent addresses relative to their position within the
simulated MRAM, which range from 0 to the size of the re-
gion. Normal pointers simply represent the actual address of
the heap allocated memory, which the allocator obtains us-
ing malloc. The toMRAMPointer and toNormalPointer calls
enable programs using the MRAM allocator to map MRAM
relative addresses to their virtual addresses for manipulation
and vice versa.

Mechanisms for protected regions and logging were in-
corporated into an experimental file system called LiFS [1].
The consistency checking code currently resides outside of
LiFS, but runs against a log generated by LiFS. LiFS is im-
plemented in user space using the FUSE kernel module and
supporting libraries [8], extending file system metadata to
handle relational links between objects in a file system. All
of the metadata in LiFS is stored in a persistent MRAM
store.

In the current implementation, the log and its supporting
structures are stored in the protected region of MRAM along
with the file system metadata. Thus, all metadata writes,
log appends and state table insertions involve the write al-
gorithm described in Section 3. This not only increases the
complexity of the code, but it also results in slightly more
expensive file system operations. The latency of write oper-
ations could be decreased by subjecting log appends to write
protection without encoding. This choice may be acceptable
due to the relatively short life of the log compared to the
file system and the effectiveness of write protection.

Logging was added by creating transactions in calls that
result in structural change to the metadata; this approach
is similar to that used by other logging file systems such
as ext3 [19]. A transaction is created at the beginning of
the system call, all metadata update operations are added to
the transaction in the body of the call and the transaction is
finally added to the log before the call returns. All metadata
operations with the exception of extended attributes and
extents are being captured by the logging code.

The consistency checker currently resides outside of the
file system, but can still be used to verify the logged meta-
data transactions against live metadata by calling it with
the location of the log. In order to decrease the latency of
the consistency checker, it runs in an unprotected region.

In the future, the persistent information held by the con-
sistency checker would reside in a write protected area. This
information will be copied out to a scratch region every time
the checker runs and will be written back out to the pro-
tected area once the checker completes. This is done since
most of the consistency checker’s structures do not have a
long life; thus there is no need to incur protection overhead.
As stated, protection will be used on the unprocessed struc-
tures.

5. PROTOTYPE PERFORMANCE
Four metrics are necessary in order to effectively analyze

the performance of the reliability mechanisms presented in
the previous sections: fault tolerance, raw MRAM write per-
formance, file system performance on a workload focused on
metadata operations, and consistency checker performance.
We first measured fault tolerance by injecting faults while
running a workload against the file system. Next, we ran a
metadata-centric workload against various configurations of
LiFS, which is used to determine the overhead introduced
by logging, write protection and encoding. A breakdown of
the protected region write overhead is presented to give the
reader an idea of how these mechanisms would perform in
the kernel. Finally, we analyzed the properties of the file
system consistency checker.

It is important to note that LiFS is currently running in
user space; thus, the evaluation in terms of running time
or throughput should not be compared to any kernel-based
file system. In order to get a clean comparison, LiFS is
essentially compared to itself throughout.

5.1 Experimental Setup
The prototype was implemented and evaluated on a Sun

workstation running the Linux kernel version 2.6.9-ac11.
The workstation was configured with an AMD Opteron150
processor running at 2400 MHz with 1 GB of RAM. The pro-
tected regions were protected with EVENODD codes with
either 16 or 8 columns with a size of 8 or 16 byte-length
symbols, respectively. Thus, each 96-byte encoded block
has a 64-byte data section (EVENODD(96,64)) and each
288-byte encoded block has a 256-byte data section (EVEN-

ODD(288,256)). A 200 MB protected region was created for
each experiment.

The current EVENODD library is based on [5, 6], which
can tolerate up to m−1-byte error bursts that do not occur
in more than one EVENODD column. Cross-column opti-
mization [14] only requires additional decoding complexity
and should not affect running time or throughput in the
general case. In order to avoid the problems associated with
cross-column error bursts, we used 1-byte error injections to
test the efficacy of the MRAM-level mechanisms. A modi-
fied decoder could tolerate much larger bursts.

5.2 Error Injection
Software faults can be simulated by spawning threads that

continuously attempt invalid writes to the protected region.
If one of the threads attempts a write to a protected page,
a segmentation fault is raised. A signal handler is in place
to catch the fault and increment a counter. This aggressive
injection estimates the benefit of the protection mechanisms
when subjected to a large number of “wild writes”—writes
to incorrect locations.

In our first scenario faults were randomly injected into the
entire 200 MB protected MRAM region, while a process si-
multaneously performed a workload of 250,000 valid 16-byte
writes. After 10 runs with this scenario, only 4 of the tar-
geted injections did not result in a segmentation fault (i. e.,
was not caught by page protection). This result confirms
the validity of the Rio file cache [7], while also raising a red
flag: these 4 writes could corrupt an entire file system. The
purpose of the ECC is to prevent the wild writes that make
it through the Rio protection from corrupting data stored
in a protected region. Furthermore, it should be noted that
our analysis produced accelerated faults in the protected re-
gion. This approach was necessary to show that although
page protection alone results in a great deal of fault toler-
ance, a few mechanical errors are likely to slip through over
time.

In order to analyze the more vulnerable points in the pro-
tected write algorithm, the test above was repeated on a
much smaller, targeted region. The aforementioned injec-
tion scenario was rerun on a 160,000 byte region, with the
active writes directed to this region. Figure 6 shows the re-
sults of this targeted attack. Roughly 10,000 injected writes
were attempted in all three trials shown in Figure 6. Each
run is divided into three categories: errors not detected, er-
rors caught by page protection and errors caught by error
correcting codes.

As shown in the graph, 1.5–2.2% of the erroneous writes
bypassed page protection. Of the writes bypassing page pro-
tection, over 90% were caught by EVENODD encoding. The
errors were either caught during the write algorithm or by
the “sweeping check” described in Section 3 that was run
after the workload completed.

There are two explanations for the cases in which errors
were undetected. First, we found that the mprotect system
call incurred a great deal of overhead in terms of latency.
Some of these uncaught injections may have occurred be-
tween the call to unprotect and the data copy from the
scratch region to the home location in protected memory.
Thus, the error was injected, but was quickly overwritten
by the correct data from the scratch region. We also found
that due to the granularity of the page protection mech-
anisms, injection may occur in regions that have not been
subject to writes. In this case the error would not be checked
until a process performs a valid protected write or until the
background checker is run.

Trial1 Trial2 Trial3N
um

be
r

of
 In

je
ct

io
ns

9800
9900

10000
10100
10200
10300
10400
10500
10600

PageProtection
ECC
NotDetected

Figure 6: Effectiveness of MRAM-level protection
with raw writes. Most of the errors are caught by
page protection, while a majority of those that es-
cape page protection are caught by the error cor-
recting codes. Note that the y axis starts at 9000
injections.

We have shown that page protection used in conjunction
with error correcting codes can improve fault tolerance by
roughly six orders of magnitude over a scheme using no pro-
tection mechanisms. Page-level write protection accounts
for a majority of the fault tolerance, with the error correct-
ing codes protecting persistent data in MRAM when errors
get through page-protection.

5.3 Metadata-centric File System Workload
Performance

Since we are mainly concerned with the effect of subject-
ing LiFS to a large amount of metadata change, we created a
simple workload with a great deal of metadata writes. This
workload first creates 100 directories, writes 100–500 zero
byte files to each directory, creates one link per file, changes
the permissions of the directories and finally touches all of
the files. The goal was to generate a large number of meta-
data changes and measure the latency with various configu-
rations of protection within LiFS, without relying on any of
the bottlenecks that currently exist in LiFS, such as extent
allocation.

Figure 7 shows the average throughput in operations per
second of six different variations of the workload on five
configurations of LiFS. The ALL PROT configurations, rep-
resent LiFS configured with page protection using EVEN-
ODD encoding with 64 or 256 bytes of data per code and
logging. The NO MPROT configurations are similar to the
ALL PROT configurations, but lack page protection with
the mprotect system call. The last two experiments were
run with logging only and without any of the protection
mechanisms.

Turning on all protections generally resulted in a 3–4×
latency overhead relative to stand-alone LiFS, as Figure 7
shows. At first this result seems high, especially since EVEN-
ODD encoding requires a constant number of XOR opera-
tions per encode/decode call. However, the second set of
experiments run without hardware page protection show the
root cause of the slowdown: overhead associated with the
mprotect system call. We believe most of the mprotect over-
head is due to frequent context switches. By combining the
data given in Figure 7 with performance estimates for page
protection reported from Rio [7], we expect that all of the
protection mechanisms will incur less than a 2× overhead
when incorporated into a kernel-based file system.

Configuration

A
LL

_P
R

O
T

_2
56

A
LL

_P
R

O
T

_6
4

N
O

_P
R

O
T

_2
56

N
O

_P
R

O
T

_6
4

LO
G

G
IN

G
_O

N
LY

Li
F

S

O
pe

ra
tio

ns
/S

ec
on

d

0

4000

8000

12000

16000

4665.43
3580.48

8101.448854.46

13064
14674.4

Figure 7: Throughput of various LiFS configura-
tions with a metadata-centric workload, with values
shown above each bar.

Protection Level

ALL NO_PROT NPND NOTHING

R
un

ni
ng

 T
im

e
(s

)

0
0.5

1
1.5

2
2.5

3
3.5

2.912

1.042
0.526

0.096

2.536

0.462
0.246 0.082

EVENODD(288,256)
EVENODD(96,64)

Figure 8: This figure shows the time required to
do raw writes to protected regions of MRAM using
both 256 byte and 64 byte data regions. The ALL
scheme is a fully protected region, while NO PROT
is a region without page protection and NPND is a
region with nothing but data encodes. NOTHING
is a region with no page protection or data encoding.

5.4 Breakdown of Write Overhead
In order to effectively analyze the overhead associated

with our protection mechanisms, we performed 250,000 16–
byte writes on four MRAM configurations: one with all pro-
tection mechanisms, one that uses encoding and decoding
but not mprotect, one with no protection and no decoding
(but with encoding), and one with no protection mecha-
nisms. We omitted logging from these experiments because,
as shown in Figure 7, logging does not incur a significant
amount of overhead compared to page protection and error
correcting codes.

The average running time over 10 runs of the four scenar-
ios is given in Figure 8. Each scenario was run with a 256-
byte and a 64-byte block configuration. This figure shows
that the mprotect system call accounts for most of the write
overhead. Encoding and decoding incurs a 5–10× overhead
over writes without any protection mechanisms. Encoding
alone causes a factor of three overhead over no encoding
using 256 byte blocks and a factor of five for 64 byte blocks.

mprotect(82%)

encode(6%)
structure(3%)

decode(9%)

Figure 9: Breakdown of raw write overhead for
EVENODD on 64 byte blocks.

Finally, we show the breakdown of writes, which is based
on the data given in Figure 8. Figure 9 illustrates the break-
down of write overhead with respect to protection, encod-
ing/decoding and organizational structures. Again, this fig-
ure shows that most of the write overhead is due to the
mprotect calls. Given a kernel implementation, the pro-
tection overhead is expected to decrease such that encod-
ing/decoding accounts for most of the overhead. As stated
earlier, such an implementation should result in 2–3× over-
head, instead of 3–4× overhead on metadata-centric work-
loads.

5.5 FS Integrity Check Performance

5.5.1 Verifying FS Integrity
In order to analyze the validity of the file system consis-

tency checker errors were injected into MRAM while running
a file system workload. Errors were injected by choosing a
random inode, obtaining the address of the inode in MRAM
and writing 1–8 bytes to a random address within the in-
ode. The injections were performed by a separate thread of
execution and written to a log for later comparison; there
were 100 injections done for each experiment. The on-line
consistency checker was run after each file system workload
terminated, writing any detected inconsistencies to a log.
The contents of the OLCC log and the injection log were
compared to determine whether the OLCC caught all of the
errors.

A total of five workloads were used in the validity test;
the first workload created 10,000 files and every subsequent
workload created 10,000 more files. We ran each workload
three times with the injector turned on. All 1500 injected
errors were correctly detected by the consistency checker,
with no false positives.

5.5.2 Running Time
We constructed a log with the file system workload from

Section 5.3 to test the running time of the consistency checker.
As stated earlier, the consistency checker does not currently
reside in LiFS, but can access the log. The consistency
checker builds its structures outside of the protected region
and pulls the old log in from the protected region and com-
pares the state of every live inode to the replayed inode from
the state table. This operation is expected to be relatively
fast, since all of the inode changes are clustered in a hash
table.

The on-line consistency checker was run against a series
of logs constructed from workloads similar to the metadata-
centric workloads. Figure 10 shows the average elapsed time
required to run the consistency checker against all of the op-
erations in the log. The number of operations loaded into
the transaction table varies from about 200,000 to 2 million.
As shown in the figure, the consistency checker takes a rela-
tively small amount of time to run. Thus, a time-dependent

Number of Operations

20
0K

40
0K

60
0K

80
0K

10
00

K

12
00

K

14
00

K

16
00

K

18
00

K

20
00

K

R
un

ni
ng

 T
im

e
(s

)

0

1

2

3

4

5

6

Figure 10: Consistency checker performance with
various log sizes. The logs were generated using the
metadata-centric file system workload. The number
of directories is held constant at 100 and the number
of files per directory starts at 100 and increases by
100 for each bar.

policy for consistency checking would probably suffice, since
roughly 2 million metadata operations can be replayed and
checked in about 5 seconds. We expect that the consistency
checker’s structures will be stored in protected MRAM and
copied out when needed, which should not add much to the
elapsed time of the consistency checker or logging routines.

6. FUTURE WORK
Our first goal is to fully incorporate the consistency checker

into LiFS, increasing the cohesion between the MRAM-level
protection mechanisms and the consistency checker, and log-
ging extents and extended attributes. By allowing the con-
sistency checker and lower-level mechanisms to communi-
cate, errors beyond the threshold limit of the encoding may
be fixed. Extents were not immediately incorporated due
to a new allocator, which was created in parallel with this
work.

As mentioned in the performance section, we need to con-
firm our intuition with respect to the few errors not caught
by mprotect getting through our mechanisms. We would
also like to experiment with other encoding schemes. EVEN-
ODD is faster, but there are other encoding schemes that
have better storage efficiency.

Finally, we wish to incorporate all of these mechanisms
and LiFS itself into the Linux kernel. Doing so would make a
highly reliable, very fast in-memory file system available for
Linux. Unlike existing in-memory file systems, LiFS is opti-
mized for memory-style access and is thus simpler and sig-
nificantly more space-efficient than the traditional approach
of using disk-based file systems on a RAM disk. Once the
system is available for Linux, we hope to make it available
for embedded devices as well.

7. CONCLUSIONS
In this paper, we have presented three orthogonal mech-

anisms to ensure reliability in file systems that use non-
volatile byte-addressable RAM for long-term data storage.
We showed that page protection blocks almost all of the
invalid, targeted writes from processes outside the file sys-
tem; however, it cannot handle bugs in the file system itself
that involve well-intentioned, but incorrect, writes to critical
data structures. Moreover, it does not catch all mistargeted
writes. We showed that the use of error correcting codes
on a block basis can detect and correct errors that page

protection fails to block, further increasing reliability. We
also showed that the use of a replay log processed by an
independently-written online consistency checker can detect
errors introduced into the file system, further improving re-
liability.

We have also shown that these protection mechanisms do
not excessively degrade performance. On our workloads,
which are nearly exclusively writes, performance is reduced
by at most a factor of 3–4, much of which is caused by the
low performance of the kernel-based page protection pro-
posed in earlier work. By moving the entire file system
into the kernel, we estimate the performance of our write-
intensive workload to be about half the speed of an unpro-
tected workload. Since reads incur no additional overhead
and many metadata operations are reads [15], the actual ef-
fect on a real workload would be a 1.5× slowdown over an
unprotected memory-based file system.

Finally, we have shown that we can periodically check file
system metadata integrity at a low cost. The file system
level checks are in place to maintain the consistency of the
file system structures. Due to the low cost of running the
consistency checker, we can ensure the file system is in a con-
sistent state at all times. This check is very fast, and might
be able to replace page protection if hardware page protec-
tion is difficult or slow, perhaps due to implementation is-
sues in the TLB. Additionally, neither the online consistency
checker nor the ECC techniques make use of an MMU, mak-
ing them potentially useful in portable or low-power devices
with less complex CPUs that lack MMU hardware.

By combining the existing technique of page protection
with page-based error-correcting codes and log replaying,
our techniques for ensuring file system integrity in non-
volatile memory reduce the number of errors by more than
six orders of magnitude over an unprotected file system
in memory. The use of log replaying allows our design to
constantly check the file system to ensure its integrity and
guard against software errors in the file system, while the
combination of page protection and error correction ensure
that errors elsewhere in the operating system do not cor-
rupt memory-based file system information. Using these
techniques, designers can build in-memory structures that
need never be flushed to disk without worrying that they
will be corrupted over time. By doing this, designers can
keep metadata structures in non-volatile RAM without fear
of corruption. These techniques also facilitate the design of
file systems for low-power portable devices that lack disks by
protecting in-memory data structures without the need for
hardware page protection. Using these techniques, memory-
based file systems can be as reliable as, if not more reliable
than, traditional disk-based file systems.

8. ACKNOWLEDGMENTS
We would like to thank the faculty and students in the

Storage Systems Research Center, particularly Nikhil Bobb
and Mark Storer, for their help and comments. This re-
search was funded in part by National Science Foundation
grant 0306650. Additional funding for the Storage Sys-
tems Research Center was provided by support from Hewlett
Packard Laboratories, Hitachi Global Storage Technologies,
IBM Research, Intel, Microsoft Research, Network Appli-
ance, Rocksoft, Veritas, and Yahoo.

9. REFERENCES
[1] Ames, A., Bobb, N., Brandt, S. A., Hiatt, A.,

Maltzahn, C., Miller, E. L., Neeman, A., and
Tuteja, D. Richer file system metadata using links
and attributes. In Proceedings of the 22nd IEEE /
13th NASA Goddard Conference on Mass Storage
Systems and Technologies (Monterey, CA, Apr. 2005).

[2] Ames, S., Bobb, N., Greenan, K. M., Hofmann,
O. S., Storer, M. W., Maltzahn, C., Miller,
E. L., and Brandt, S. A. LiFS: An attribute-rich
file system for storage class memories. IEEE.

[3] Aumann, Y., and Bender, M. A. Fault tolerant
data structures. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science
(Oct. 1996), IEEE, pp. 580–591.

[4] Baker, M., Asami, S., Deprit, E., Ousterhout,
J., and Seltzer, M. Non-volatile memory for fast,
reliable file systems. In ASPLOS ’92 (Oct. 1992),
ACM, pp. 10–22.

[5] Blaum, M., Brady, J., Bruck, J., and Menon, J.
EVENODD: An efficient scheme for tolerating double
disk failures in RAID architectures. IEEE
Transactions on Computers 44, 2 (1995), 192–202.

[6] Buyya, R., and Cortes, T., Eds. High Performance
Mass Storage and Parallel I/O: Technologies and
Applications. John Wiley & Sons, Inc., New York, NY,
USA, 2001.

[7] Chen, P. M., Ng, W. T., Chandra, S., Aycock,
C., Rajamani, G., and Lowell, D. The Rio file
cache: Surviving operating system crashes. In
ASPLOS ’96 (Oct. 1996), pp. 74–83.

[8] FUSE. http://fuse.sourceforge.net/.
[9] Lowell, D. E., and Chen, P. M. Free transactions

with Rio Vista. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP
’97) (Dec. 1997), pp. 92–101.

[10] McKusick, M. K. Running fsck in the Background.
In Proceedings of the BSDCon (2002), pp. 55–64.

[11] McKusick, M. K., and Kowalski, T. 4.4 BSD
System Manager’s Manual. O’Reilley and Associates,
Inc., Sebastopol, CA, 1994, ch. 3, pp. 3:1–3:21.

[12] Miller, E. L., Brandt, S. A., and Long, D. D. E.
HeRMES: High-performance reliable MRAM-enabled
storage. In Proceedings of the 8th IEEE Workshop on
Hot Topics in Operating Systems (HotOS-VIII)
(Schloss Elmau, Germany, May 2001), pp. 83–87.

[13] Nahas, J., Andre, T., Subramanian, C., Garni,
B., Lin, H., Omair, A., and Martino, W. A 4Mb
0.18um 1T1MTJ ’toggle’ MRAM memory. In IEEE
International Solid-State Circuits Conference (Feb.
2004).

[14] Raphaeli, D. The burst error correcting capabilities
of a simple array code. ACM Transactions on Internet
Technology 51, 2 (2005), 722–728.

[15] Roselli, D., Lorch, J., and Anderson, T. A
comparison of file system workloads. In Proceedings of
the 2000 USENIX Annual Technical Conference (June
2000), pp. 41–54.

[16] Rosenblum, M., and Ousterhout, J. K. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems 10,
1 (Feb. 1992), 26–52.

[17] Sullivan, M., and Stonebraker, M. Using write
protected data structures to improve software fault
tolerance in highly available database management
systems. In Proceedings of the 17th Conference on
Very Large Databases (VLDB) (Barcelona, Spain,
1991).

[18] Sweeney, A., Doucette, D., Hu, W., Anderson,
C., Nishimoto, M., and Peck, G. Scalability in the
XFS file system. In Proceedings of the 1996 USENIX
Annual Technical Conference (Jan. 1996), pp. 1–14.

[19] Tweedie, S. EXT3, journaling file system, July 2000.

[20] Wang, A.-I. A., Kuenning, G. H., Reiher, P., and
Popek, G. J. Conquest: Better performance through
a disk/persistent-RAM hybrid file system. In
Proceedings of the 2002 USENIX Annual Technical
Conference (Monterey, CA, June 2002).

[21] Wu, M., and Zwaenepoel, W. eNVy: a
non-volatile, main memory storage system. In
ASPLOS ’94 (Oct. 1994), ACM, pp. 86–97.

[22] Zhu, N., and Chiueh, T.-C. Design,
implementation, and evaluation of repairable file
service. In Proceedings of the 2003 International
Conference on Dependable Systems and Networking
(DSN 2003) (2003), pp. 217–226.

	Introduction
	Related Work
	NVRAM in File Systems
	Safe Persistent Memory
	File System Consistency
	Fault Tolerance

	Design
	Metadata Store Consistency
	EVENODD as an ECC
	MRAM Layout
	Write Protection

	Filesystem-level Consistency
	Additional Structures
	Online Consistency Checker

	Prototype Implementation
	Prototype Performance
	Experimental Setup
	Error Injection
	Metadata-centric File System Workload Performance
	Breakdown of Write Overhead
	FS Integrity Check Performance
	Verifying FS Integrity
	Running Time

	Future Work
	Conclusions
	Acknowledgments
	References

