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Abstract

Reliability and Power-Efficiency

in Erasure-Coded Storage Systems

by

Kevin M. Greenan

Data reliability is paramount in modern storage systems. Such reliability is generally

provided using erasure codes across storage devices. Until recently, most systems em-

ployed mirroring and single parity to tolerate device failures. Recent studies suggest

that these techniques are not sufficient going forward. Recent advances in the theory

of erasure codes has resulted in an abundance of codes that induce interesting tradeoffs

in reliability, space-efficiency and performance. In the three parts of this thesis, we

study the structural properties of erasure codes and their effects on modern storage sys-

tems. We are particularly interested in linear codes with irregular fault tolerance. While

such codes offer many benefits over traditional coding techniques, reasoning about the

structure of these codes is non-trivial.

In the first part of this thesis, we describe our study on the reliability of

erasure codes. We have developed a generalized framework for evaluating the reliability

of an arbitrary erasure code over a system configuration. In the process of studying

the reliability of erasure codes, we found that many traditional modeling techniques do

not extend well to multi-disk fault tolerant systems, irregular codes, latent sector faults

and time dependent event rates. Our framework overcomes these obstacles and allows

efficient, apples-to-apples comparison between any class of linear erasure code.

In the second part of this work, we extended the simulation framework to study

the reliability of erasure-coded fragment placement in a system with heterogeneous de-

vices. In doing so, we designed a metric that quickly orders fragment placements by

reliability. The metric is used in conjunction with a brute force algorithm and a sim-

ulated annealing algorithm to efficiently find near-optimal placements. An exploratory

study shows the effects of fragment placement on system reliability.

Finally, we study a property we call reconstructability to evaluate the poten-

tial power savings in an erasure-coded storage system. Storage contributes a non-trivial



amount of energy to the ever increasing power budget of data centers. Given the var-

ious environmental and monetary consequences of power-hungry data centers, energy

consumption has joined performance and reliability as a principle metric in large-scale

storage systems. Here we define a novel technique in power-aware systems called power-

aware coding, which exploits the structure of an erasure code— which is generally used

to provide data reliability—to save power in a storage system. We define a minimal

device activation policy for a power-aware storage system and define the properties of

optimal codes under this policy. A suite of metrics are derived, which are used to com-

pare the relative expected power savings of arbitrary linear erasure codes. The metrics

and the reliability simulation framework are used to perform a rudimentary exploration

of the power-space-reliability tradeoff in a system that employs power-aware coding.



Chapter 1

Introduction

The emergence of low-power archival, petabyte-scale storage systems and other

novel systems motivates many interesting tradeoffs between erasure encoding schemes.

While new erasure codes are being developed within both the coding theory and storage

systems community, no clear winner has emerged from the performance, reliability and

space efficiency tradeoff space. Obviously, both the underlying storage system and

application have a huge effect on how to encode data for fault tolerance. Thus, each

scheme must be thoroughly analyzed for use in a particular system. We divide erasure

codes into three classes: general linear MDS codes [53], XOR-based array codes [7,

46, 68, 28, 22] and XOR-based flat codes [65, 20]. flat MDS codes, such as Reed-

Solomon codes, exhibit optimal space-efficiency and flexible fault tolerance, but many

turn out to be computationally expensive in practice. Many parity-check array codes

are MDS and less computationally expensive than Reed-Solomon, but are generally 2 or

3 disk fault-tolerant. Finally, XOR-based flat codes, such as Low-Density Parity Check

(LDPC) codes [30], are not generally space-optimal, but tend to be computationally

inexpensive, facilitate irregular fault tolerance and interesting localization properties.

Evaluating the reliability of an erasure-coded system is quite challenging. Tra-

ditionally, Markov models are used to evaluate the reliability of such systems [66, 25, 29].

Most models assume a RAID-like setting (i.e. MDS code), independence between fail-

ures and exponentially distributed failure/rebuild. In addition, many models do not

account for sector failures, do not accurately model device rebuild and assume that all

devices exhibit the same failure/rebuild rates. While Markov models have provided a

1



great deal of insight into the sensitivity of disk failure and repair on system reliabil-

ity, these models generally capture an extremely simplistic view of an actual system.

Instead of determining new methods of modeling the reliability of storage systems,

most analysis simply extend the canonical Markov model [45]. Due to the existence of

non-exponentially distributed failure rates [55, 49, 14], sector errors [56, 29, 14], hetero-

geneous devices and a vast difference between erasure encoding schemes, we believe that

traditional reliability models, while appropriate for back-of-the-envelope comparisons,

are insufficient for accurate reliability analysis.

Traditionally, performance, reliability and space-efficiency have been the pri-

mary metrics of storage systems. Recent monetary and environmental limitations have

lead to efforts involving the power consumption of storage systems. Digital storage is

an integral part of our society and will continue to expand. A great deal of the world’s

data exists on spinning media; thus, simply hosting the data requires an extraordinary

amount of power. Many power saving techniques rely on device deactivation [9]. We

believe that such techniques can be augmented with erasure code-aware algorithms that

avoid the activation of deactivated devices. Such techniques motivate an interesting

tradeoff between power efficiency, reliability and space efficiency.

1.1 Thesis Statement

The complex nature of both reliable storage systems and the erasure codes

used to secure digital data make the analysis of such systems difficult and prone to

error. Novel techniques are required to reason about and evaluate reliability in modern

storage systems. In addition, the structural properties of the erasure codes used to

provide data reliability may be used to further increase reliability and potentially avoid

disk activation in a power-managed storage system.

1.2 Roadmap

There are eight distinct parts of this dissertation. Chapters 2 and 3 provide

related work and background information.

Chapter 4 reviews traditional reliability modeling techniques for erasure-coded

2



storage systems and identifies area in which these techniques fail to correctly model

system reliability. A novel reliability architecture, called the High-Fidelity Reliability

(HFR) Simulator, is presented in Chapter 5. Unlike traditional modeling techniques,

the HFR Simulator has the ability to efficiently simulate systems under arbitrary fail-

ure/repair distributions, any linear erasure code and sector failures. The HFR Simulator

is thoroughly evaluated in Chapter 6.

In Chapter 7, we develop a simple analytic model, called the Relative mttdl

Estimate (rme), that quickly estimates the reliability of a erasure-coded fragment place-

ment across heterogeneous devices. The HFR Simulator simulator described in Chap-

ter 5 is used to validate the analytic model.

A novel technique, called power-aware coding, is presented in Chapter 8. We

explore how the structure of certain erasure codes affect reliability and potential power

savings an erasure-coded storage system. We place bounds on the rate of codes that are

likely to be useful in such a setting. Additionally, we have developed a general metrics

for comparing the potential power savings of different erasure coding schemes under a

variety of data reconstruction policies and disk spin-up policies. These metrics are used

in conjunction with our simulation framework described in Chapter 4 to analyze the

reliability-power tradeoff in power-managed, erasure-coded systems.
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Chapter 2

Background and Related Work

In this chapter we review background and related work in the main areas of this

dissertation: erasure-coded storage (Section 2.1), reliability (Section 2.2), placement of

replicated data (Section 2.3) and reliable, power-managed systems (Section 2.4).

2.1 Erasure Coded Storage

In general, reliable storage is provided via erasure codes. Whether data is

mirrored or transformed via matrix operations, almost every large-scale storage system

relies on erasure codes for reliability [54, 58, 57, 33, 1]. Most systems assume the exis-

tence of an k -of-n encoding scheme to protect data without considering the underlying

structure of the code. At first glance, this seems sufficient. Upon closer inspection, we

find that two distinct k -of-n codes may have very different performance, fault-tolerance

and reliability properties.

For clarity and consistency, we define common terms used to describe erasure-

coded systems. This terminology is taken from [24]. A visual representation of these

terms is presented in Figure 2.1 as an array of 4 disks that encode parity through

mirroring. The unit of I/O to and from disk is commonly called a sector. A code

element is the rudimentary unit of data and parity, which corresponds to a bit within

a code symbol. In the simplest case, a code element corresponds to a single sector, but

may contain several sectors. A stripe is a connected set of data and parity elements.

Every data element in a stripe is necessary for computing the parity elements. Finally,
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Figure 2.1: Illustration of terminology in an erasure-coded system. Here we have 4 disks
that organize data and parity into stripes of height 2 (i.e. each strip contains two code
elements). Parity is calculated as mirrored code elements.

a unit of storage that contains all contiguous elements from the same disk and stripe

is called a strip. In coding theory terminology a strip is generally referred to as a code

symbol and a stripe is a codeword.

We divide erasure codes into three classes : flat MDS codes, parity-check array

codes and flat XOR-based codes. Flat MDS codes, such as Reed-Solomon codes [53],

exhibit optimal space-efficiency and flexible fault tolerance, but turn out to be compu-

tationally expensive in practice. Most array codes are space- optimal in the number of

disks and less computationally expensive than Reed-Solomon, but are typically only 2 or

3 disk fault-tolerant. Finally, flat XOR-based codes, such as Low-Density Parity Check

(LDPC) codes [15], are not generally space-optimal, but tend to be computationally

inexpensive and facilitate irregular fault tolerance. We only consider systematic erasure

codes—codes that store the data and parity symbols—because their use is generally

considered a necessity to ensure good read/write performance in storage systems.

A maximum distance separable (MDS) erasure code encodes k data symbols

into k total symbols, (n − k) = m of which are parity symbols and can tolerate all

erasures of size m or less. Plank’s 2005 tutorial on erasure codes is a great introduction

to Reed-Solomon codes in storage systems [50]. The standard Vandermonde Reed-

Solomon code generates each parity symbol using k Galois Fields multiplies, which are
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computationally more demanding than the required per parity symbol cost of (k − 1)

xor operations. A special Reed-Solomon code, called a Cauchy Reed-Solomon code,

transforms each Galois field multiplication into a set of xor operations.

An XOR-based erasure code consists of k symbols, k of which are data symbols,

and m of which are parity symbols (redundant symbols). Two well known sub-classes of

XOR-based erasure codes are low-density parity-check (ldpc) codes and parity-check

array codes. ldpc codes trade imperfect space-efficiency for improved performance [15,

37]. Luby et al. [37] identified methods of constructing ldpc codes, and efficiently

encoding and decoding them; such codes were originally identified by Gallager [15].

Plank and Thomason briefly surveyed ldpc code constructions for their appli-

cability to peer-to-peer and distributed storage systems [30]. They focus on three types

of constructions: systematic, unsystematic and systematic irregular repeat-accumulate

codes. They focus on the overhead factor of these codes. That is, the fraction of total

symbols required, on average, to reconstruct all of the data symbols. The codes are

compared in terms of both decoding performance and overhead factor, making their

study a good complement to a reliability analysis.

Parity-check array codes are specialized erasure codes for storage arrays and

have a stripe height strictly greater than 1. One property the array codes have in

common is an explicit mapping of disk blocks to symbols, which ensures the code can

tolerate a predefined number of disk failures. Using the HoVer terminology we classify

array codes as being Horizontal, Vertical or both [22]. This distinction refers to the

location of parity blocks and the specific blocks used to calculate the parity. A vertical

code is an erasure code in which a strip contains both data and parity, while strips in a

horizontal code may only contain data or parity. The simplest horizontal array code is

raid 4, which tolerates any single disk failure by calculating a single parity symbol that

is the xor of all the corresponding data symbols and storing the parity symbol on a disk

designated for parity. More advanced horizontal array codes include EVENODD [7],

Row-Diagonal Parity (RDP) [46] and STAR [28]. Examples of vertical codes include

WEAVER [21] and X-Code [68]. Many parity-check array codes are MDS in the ratio of

parity disks to total disks. For example, evenodd is 2-disk fault tolerant and encodes

parity on two disks.
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GRID codes are xor-based, highly fault-tolerant codes [35]. GRID codes are

constructed from two matched xor-based parity-check array codes: one representing

the row-stripes (horizontal) and the other representing column-stripes (vertical). The

symbols from two matched codes are mapped to the strips of an array layout. The

placement of symbols is determined in one of two ways: map the horizontal code symbols

first or map the vertical symbols first. After the first code is mapped to the strips, the

second code is mapped to the corresponding substripes that do not contain parity.

GRID codes are typically implemented using traditional array codes such as X-code,

EVENODD, STAR and raid 4. The regular structure of these codes results in relatively

simple reconstruction algorithms.

We refer to non-array codes as flat codes: horizontal erasure codes whose

codewords are comprised of exactly one row (strip height of one). Because ldpc codes

are defined to be low density xor-based codes, i.e., have parity equations with fewer

than some small constant number of terms, ldpc codes are a subset of the class of

flat XOR-based codes. In addition, one way to define Reed-Solomon codes is through

the product of a n×k matrix and a k×1 vector. The result is an n×1 codeword vector,

which is consistent with our definition of flat.

2.2 Reliability in Disk-based Storage Systems

Recent reliability analyses conclude that storage systems should have the abil-

ity to tolerate at least two disk failures [46, 54, 52, 14]. This conclusion is based on

the absence of latent sector faults in traditional reliability analysis. In many cases, the

event of two concurrent disk failures in the same array is quite rare. As shown explicitly

in [14], a single disk failure coupled with a sector or block failure on another disk will

occur with much higher frequency.

Traditionally, it was assumed that disk failure and recovery fit the memory-

less, exponential distribution [45]. This assumption has propagated to a great deal of

reliability studies [52, 25, 66, 56]. Recent analyses of disk failure data by Schroeder

and Gibson [55], and by Pinheiro et al. [49] have shown that current assumptions about

disk failure distributions may be incorrect. In particular, Schroeder and Gibson have

shown that failure data collected from a set of 100K disks better fits a generalization of
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the exponential, called the Weibull distribution, which makes use of a shape parameter

to model time-dependent failure rate. Given the Markov model assumption that all

transitions follow an exponential distribution, using Markov models to estimate system

reliability may not be sufficient going forward.

Xin et al. were able to model disk infant mortality in a Markov model [67].

Opposed to traditional Markov models, modeling the effects of infant mortality requires

a model that accounts for time dependence: the failure rate is higher in early life than

during a device’s middle age. While this work made a step forward in terms of modeling

time dependence in storage systems, it only applies to a specific distribution.

Bairavasundaram et al. [3] performed a failure study on latent sector faults.

While specific failure rates are difficult to extract from this study, the authors show

how disk age, type and size affect the frequency of latent sector faults. The authors also

study the spatial locality of errors (i.e. distance on disk between errors). An alarming

data corruption study performed at CERN illustrates the true impact of disk and sector

failures in a real-world, high-performance storage system [44].

Elerath and Pecht recently performed a similar study that includes both latent

sector and disk failures [14], which uses simulation to approximate the impact of varying

failure/recovery of disks and sectors. Similar to [55], the data collected by Elerath and

Pecht fit a Weibull distribution. Elerath and Pecht performed a reliability analysis on

raid 5 arrays and show that many previous reliability studies may be incorrect due to

the lack of latent sector errors in the models.

Many reliability analyses consider the impact of sector redundancy within

disks [10, 58]. By adding the appropriate level of sector redundancy on a single disk, we

find that latent sector faults can be essentially eliminated. Disks may also be scrubbed

in an effort to combat sector failures [4, 14, 56]. In this case, the rate at which disks

are checked for integrity will affect the impact of latent sector faults on reliability.

A few studies build analytical models that incorporate sector failures into the

reliability calculation for two or more disk fault tolerant systems [25, 10]. Unfortunately,

these models do not account for partially reconstructed portions of failed disks in both

rebuilding disks and determining when sector failures lead to data loss. Due to this

observation, these models provide a lower bound for reliability and are only appropriate
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for comparing system policies.

More recently, Elerath has derived an equation for estimating the reliability

of raid 5 arrays in the face of device failures, latent defects and scrubbing [13]. The

equation is based on an availability metric for the first failure (latent defect or de-

vice failure) and the hazard rate of the disk failure distribution for the second failure.

The equation assumes homogeneity among device failure and repair characteristics, the

Weibull distribution for failures, and only applies to singe-disk fault-tolerant systems.

While the equation applies to a very specific case, it closely matches field data and sim-

ulation, providing some insight into deriving closed-form expressions for systems with

non-exponentially distributed failures and repairs.

Unfortunately, there has been little work on the reliability of codes beyond

single-disk fault tolerance in the systems community. Furthermore, the work that has

been done is restricted to specific codes and/or assumes exponentially distributed failure

and recovery rates [46, 52, 25, 16]. The difficulty in analyzing highly fault-tolerant

systems lies in the rarity of data loss events. In general, data loss events are usually

regarded as so-called rare events., since such events only occur an extremely small

percentage of the time in a storage system. Simulating rare events is straightforward

for single disk fault tolerant systems [14], but becomes progressively difficult as fault

tolerance increases; especially when dealing with irregular fault tolerance. While mostly

unheard of in the storage systems community, the operations research community has

put a great deal of effort into fast simulation models for rare events [41, 42]. A common

technique is called importance sampling. If the simulation is viewed as a Markovian

model, importance sampling adjusts the transition probabilities to increase the chances

of observing a rare event. Once the rare event is observed a likelihood ratio based on the

original and new distributions is used to transform the observation into a probability

based on the original distributions. While the techniques used to implement importance

sampling are straightforward, choosing the adjusted transition probabilities is difficult

and must be done with care.

As a whole, current failure studies motivate the need for robust reliability

mechanisms. Unfortunately, the existence of a generalized model for disk and sector

failures remains open. The most probable solution will contain a unique model for each
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distinct class of systems. Even if we assume that analytical models are good enough

for calculating reliability, unique models will most likely be necessary for each system.

Given the complications that arise as the state space of a model increases, such models

will be prone to human and numerical error. This observation along with the nuances

present in Markov models motivates the need for a generalized framework for evaluating

reliability in future storage systems.

2.3 Placement of Replicated Data

Many traditional erasure-coded placement policies focus on performance. Par-

ity declustering is a prime example of such placement. A set of stripes of size n are

placed onto N > n devices with the objective of reducing repair time and its impact on

performance [27, 2]. Thomasian and Blaum evaluate the reliability impact of various

declustering policies in a raid 1 organization [59]. Lian et al. compare the reliability

of random placement vs. chained declustering in an erasure-coded brick-based architec-

ture. They find that specific instances of random placement result in optimal reliability

and propose a stripe placement scheme that achieves near-optimal reliability.

Douceur et al. place distinct files and their replicas onto servers in a way that

maximizes the availability of the least available file [11]. They achieve this objective by

using a distributed hill-climbing algorithm to swap files between servers.

Yu et al. study the effect of replica placement on multi-object operations and

show that the availability of multi-object operations can be improved without affecting

individual object availability [70].

One major drawback of all of these studies is the assumed homogeneity of the

devices, placement of n replicas onto N > n devices, or both. To our knowledge, no

thorough reliability study of one-to-one replica to device placement in system containing

heterogeneous devices exists.

2.4 Reliable Power-Managed Systems

Researchers at Colorado coined the termMAID (Massive Array of Idle Disks) [9].

The MAID system attempts to keep most of the disks inactive by employing so-called
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cache disks to store active files. When the cache disks account for a small percentage of

the system, most of the disks can be placed in an inactive state, thus saving power. An

extension of the MAID project uses large stripe (96 strips) Tornado codes to provide

high-reliability and staggered striping to save power [63, 64]. Unfortunately, the authors

chose a handful of Tornado codes based on fault tolerance and did not elaborate upon

the various properties of these codes that can be exploited to save power.

Weddle et al. proposed PARAID, an interesting power-aware disk array archi-

tecture that switches between gears to account for increased or decreased load [61]. The

lowest gear represents either raid 1 or raid 5 on a subset of the disks. Each successive

gear involves activating additional disks whose blocks are replicated in the spare space

of other disks. When shifting to a lower gear, the data on the inactive disks is accessed

via the replicas stored on the active disks.

Hibernator relies on tiers of multi-speed disks to reduce energy, while meeting

performance requirements [72]. The authors propose an algorithm that dynamically

places disks into multiple tiers such that the placement minimizes energy subject to a

response time constraint. During times of high utilization, more disks may be placed

into high-speed mode to satisfy performance requirements. Data on a disk is organized

into fixed-sized blocks, which may be migrated based on recency or popularity.

There exist a wide variety of cache-based power management solutions. The

PA-LRU [71] and PB-LRU [73] algorithms attempt to increase the idle periods of in-

active disks. PA-LRU evicts blocks with the minimum energy penalty (i.e. evicting

it expected to result in few misses) from cache. The intuition behind the algorithm is

rooted in the distribution and interval of cache misses. The PA-LRU algorithm orga-

nizes the cache into two parts : LRU0 and LRU1. Blocks with a small percentage of cold

cache misses are placed into LRU1 and blocks with long access intervals are placed in

LRU0. Once the cache fills up, blocks are evicted from LRU0. If LRU1 becomes empty,

then blocks are evicted from LRU1 to LRU0. PA-LRU is workload dependent and must

be tuned for different workloads; PB-LRU was created to avoid these problems. Given

that storage workloads are not equally distributed among the disks, PB-LRU creates

cache partitions for each disk. Partitions are created in a way that minimizes total

energy consumption. In this case cache eviction is done on a per-disk basis, thus the
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cache miss sequence is easier to control.

The RIMAC [69],eRAID [60] and EERAID [34] projects are concerned with

saving energy without degrading performance and use so-called transformable reads to

save energy. In all cases, raid 1 and raid 5 are the only architectures considered. In the

case of raid 1, the disks with replicas can be spun-down and all requests are redirected

to the primary disks. In an n disk raid 5 array, a single disk can be spun down and its

contents are retrieved by using the other n − 1 disks. EERAID introduced introduced

the idea of transformed reads for raid 1 and raid 5 which allows the system to rebuild

the contents of an inactive disk from cache, other active disks, or both. EERAID also

presented power-aware cache eviction algorithms that evict blocks to active devices,

instead of inactive devices. RIMAC consists of a two-level collaborative cache, which

exploits redundancy during I/O requests. Read requests may be transformed into an

XOR operation among n−1 elements instead of accessing an inactive disk (or any disks

if all n− 1 elements are in cache).

Pinheiro et al. exploit redundancy in storage systems in an effort to reduce

power consumption [48]. The authors propose a technique called diverted access, which

segregates data and parity onto different disks. During periods of light or moderate

load, the parity disks are placed into an inactive state. Parity updates are staged in

non-volatile memory. The parity disks are activated during failures, high demand and

to flush the contents of non-volatile ram. The authors perform a detailed analysis of

their techniques and two existing data movement policies : MAID [9] and popular data

concentration (PDC) [47]. Pinheiro et al. show that diverted access is effective when

used in conjunction with existing data movement policies. Unfortunately, the cases with

substantial energy savings are rather unrealistic (i.e. codes involving 14 parity disks and

1 data disk).

Harnik et al. study a property of low-power cloud storage systems called full

coverage [26]. During idle periods, a subset of the disks in a large-scale storage system

can be deactivated to save power. The system has reached full coverage if a subset

of the devices are inactive and all of the user data is readily accessible. It is assumed

that the existing data placement function for the system remains intact; thus, finding

full coverage may be intractable or impossible. Auxiliary nodes are introduced to hold
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copies of uncovered user data as a means to reach full coverage. This work is extremely

related to the balanced property of power-aware coding (cf. Chapter 8). Unlike power-

aware coding, Harnik et al. find coverage solutions that are good enough and introduce

an architectural component (auxiliary nodes) to reach full coverage. In any case, the

techniques are complementary and can be used simultaneously in a cloud storage system.

Pergamum is a long-term, power-aware, reliable archival storage system [58].

The system is made up of self-contained storage bricks called tomes, which contain a

CPU, memory, flash and a disk. Pergamum implements product codes for reliability,

which enables localized repair of sector faults. In Pergamum, we showed that the use

of product codes effectively renders latent sector faults non-existent. On average 5%

of the disks remain active to serve writes. Each tome stores metadata and signatures

in flash, which enables file search and consistency checking without activating the disk.

A read request to an inactive disk results in activating the disk. In this proposal, we

extend the reliability analysis, power analysis and devise techniques to improve power

consumption in Pergamum.

The work we propose assumes an archival system similar to Pergamum [58].

Our energy-saving techniques are novel and are in the spirit of [48, 34, 60]. The tech-

niques in [34, 60] only focus on raid 1 and raid 5, which are extremely limited in the

amount of power savings achieved on read (i.e. in an n-disk array, n− 1 symbols need

to be available). The techniques in [48] only consider MDS codes and deactivation of

the disks holding parity. Our approach is general in that any erasure code may be used

and any device may be inactive. Our approach also allows the reconstruction of the-

oretically recoverable data from inactive devices. In addition, we expect our approach

to further improve the cache-based approaches [71, 73, 69] and the data migration ap-

proaches [9, 47].

13



Chapter 3

Preliminaries

Data reliability, regardless of medium, is achieved using some form of redun-

dancy. An error correcting code must be used if the presence of errors are not known

a priori (i.e. sending data across a network or reading a sector off a hard drive), while

erasure codes are typically used in situations where error locations are identified inde-

pendent of the code (i.e. disk array). The difference between erasure correcting and

error correcting codes is quite subtle. In fact, in many cases they are structurally the

same. At a high level, error correcting and erasure codes may use the same encoding

function, but have different methods of decoding.

There are four major topics that must be understood in order to fully under-

stand the bulk of this dissertation. First, the basics of error and erasure correction

are covered in Section 3.1. Galois fields and a popular MDS code code, called Reed-

Solomon, are discussed in Sections 3.2 and 3.3. Finally, non-MDS , xor-based codes

and the notation used for xor-based erasure codes is discussed in Section 3.4.

3.1 Coding for Reliability

At a high-level error correction provides the ability to both detect and correct

errors, which erasure correction has the ability to correct errors. For example, assume

16 packets are sent from machine A to machine B. If the packets are encoded such that

any two packet errors can be corrected, then any two packet errors can be detected and

corrected. That is, if any two packets are changed between machine A and machine B,
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the two packets in error can be identified and fixed. Now assume the packets are encoded

such that any two packet erasures can be corrected. Using the previous example, if two

packets are changed in transmission, they cannot be identified and corrected. In this

case, the packets in error must be identified through other means—usually using a

signature or identification of a dropped packet— in order to perform correction.

A code is made up of so-called codewords, where a codeword is a vector of

symbols. In most application, a symbol is a bit or byte-divisible block of data. A code is

called systematic if the symbols of the codewords are separated into data and parity. For

instance, RAID4 uses a systematic encoding and places each data symbol on a distinct

disk and the single parity symbol on a parity disk. Many important properties of a code

may be described by a few parameters : the number of data symbols per codeword, the

number of parity symbols per codeword and the minimum distance between codewords.

For simplicity, we will limit our discussion to linear systematic codes—the most common

type of erasure/error correcting codes in storage.

We say that a (n, k, d) code, denoted (k,n − k)-code, has codewords each

containing n total symbols. A codeword is made up of k data symbols and m = n− k

parity symbols. To encode a data block, the vector of k data symbols is mapped

from a k-dimensional vector space onto an n-dimensional space such that all codewords

generated from the mapping have a Hamming distance of d—meaning a codeword is at

least distance d from all other codewords. The distance of two codewords is determined

as the number of unequal corresponding elements. The Hamming distance between a

codeword and itself is zero; all of the entries are equal to each other. The codewords

(0, 0, 1, 0, 1, 1) and (1, 0, 0, 0, 1, 0) differ in 3 symbols, giving them a distance of 3.

The distance metric associated with a code describes the error detection and

correction capabilities of the code. This is often illustrated by envisioning a sphere

of radius d
2 around each codeword, which we call a decoding sphere. Imagine moving

around the vector space by changing the symbols of a codeword. If more than d
2 distinct

symbols of a codeword are changed, we move outside of the original codeword’s sphere.

In this case, the result either lands in another sphere or is no longer in a sphere. If

exactly d
2 distinct symbols of the original codeword are changed, the result may be on

the border of two spheres. In order to correctly decode an arbitrary modified codeword
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no more than ⌊d−1
2 ⌋ distinct symbols can be changed. If more symbols are modified,

the result may end up in another sphere, leading to an incorrect decode operation. By

definition, any d−1 unique symbol modifications to a codeword cannot result in another

codeword. Thus, a code with distance d can detect any d− 1 symbol modifications.

Consider a codeword C from an (n, k, d) code and a word C ′ that is formed by

changing at most d − 1 locations in C. C can definitely be recovered from C ′ because

every two codewords differ in at least d locations and only one codeword, C in this

case, will agree on the unchanged locations. We call the known changes erasures and

this form of correction erasure correction. When performing error correction the error

locations are not know a priori, thus the first part of decoding determines if an error

occurred and the locations of each error. Once the error locations are found, the word

can be decoded.

The Singleton bound states that for any (n, k, d) code d ≤ n − k + 1, which

gives an upper bound on the Hamming distance. While this bound may not provide

much intuition in practice, it is used to define a very powerful set of codes. Any code

that meets the Singleton bound (d = n−k+1) is called a Maximum Distance Separable

code, or MDS code. In short, a MDS code is an optimally fault tolerant code for values

n, k and d because it can handle any n − k erasures—no code exists that can tolerate

more than n− k erasures.

3.2 Galois Fields

The use of Galois fields of the form GF (2l), called binary extension fields, is

ubiquitous in a variety of area ranging from cryptography to storage system reliabil-

ity. In this work, we are primarily concerned with erasure codes, which are generally

encoded/decoded using Galois field operations. For completeness, we give a brief de-

scription such fields.

A Galois field GF (2l) is defined by a set of 2l ≥ 1 unique elements that is

closed under both addition and multiplication, in which every non-zero element has a

multiplicative inverse and every element has an additive inverse. As with any field,

addition and multiplication are associative, distributive and commutative [36]. The

Galois field GF (2l) may be represented by the set of all polynomials of degree at most l−
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1, with coefficients from the binary field GF (2)—the field defined over the set of elements

0 and 1. Thus, the 4-bit field element a = 0111 has the polynomial representation

a(x) = x2 + x+ 1.

In contrast to finite fields defined over an integer prime, the field GF (2l) is

defined over an irreducible polynomial of degree l with coefficients in GF (2). An irre-

ducible polynomial is analogous to a prime number in that it cannot be factored into two

non-trivial factors. Addition and subtraction in GF (2) is done with the bitwise XOR

operator, and multiplication is the bitwise AND operator. It follows that addition and

subtraction in GF (2l) are also carried out using the bitwise XOR operator; however,

multiplication is more complicated. In order to multiply two elements a, b ∈ GF (2l),

we perform polynomial multiplication of a(x) · b(x) and reduce the product modulo an

l-degree irreducible polynomial over GF (2). Division among field elements is computed

in a similar fashion using polynomial division. The order of a non-zero field element α,

ord(α), is the smallest positive i such that αi = 1. If the order of an element α ∈ GF (2l)

is 2l−1, then α is primitive. In this case, α generates GF (2l), i. e., all non-zero elements

of GF (2l) are powers of α.

For small Galois fields, it is possible to calculate all possible products between

the field elements and store the result in a (full) look-up table. However, this method

consumes large amounts of memory—O(n2) for fields of size n. Log/antilog tables make

up for storage inefficiency by requiring some computation and extra lookups in addition

to the single lookup required for a multiplication table. The method requires O(n) space

for fields of size n and is based on the existence of a primitive element α. Every non-zero

field element β ∈ GF (2l) is a power β = αi where the logarithm is uniquely determined

modulo 2l − 1. We write i = log(β) and β = antilog(i). The product of two non-zero

elements a, b ∈ GF (2l) is computed as a · b = antilog(log(a) + log(b)) mod 2l − 1.

For a more detailed description of Galois fields and their relative performance,

please refer to [18]. The general theory of finite fields is presented in [36].

3.3 Reed-Solomon Codes

Currently, Reed-Solomon is probably the most popular erasure correcting code.

Reed-Solomon is used as both an error correcting and erasure correcting code; we are pri-
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marily concerned with erasure correction, thus describe erasure correction using Reed-

Solomon. As we will see, Reed-Solomon meets the Singleton bound and is thus MDS .

A straightforward construction of Reed-Solomon involves Vandermode matri-

ces. Let α0, α1, ..., αn−1 be distinct elements of the field GF (2l), where 2l ≥ n. We define

the k × n Vandermonde matrix G, where the element gi,j is αj
i∀i ∈ [0, n), ∀j ∈ [0, k)

G =























1 1 ... 1

α0 α1 ... αn−1

α2
0 α2

1 ... α2
n−1

... ...

αk−1
0 αk−1

1 ... αk−1
n−1























The rank of G is k and any k× k submatrix of G is invertible—G−1 is unique.

Let d = 〈d0, d1, ..., dk〉
T be a vector of data symbols, which are encoded as a codeword

Gd = c. We obtain a k × k matrix G′ by deleting n − k rows of G and a vector c′

by deleting the corresponding elements of c giving us G′d = c′ ⇔ d = G′−1c′. Since

G−1 is unique, two distinct codewords can differ in at most k − 1 positions, otherwise

the codewords are not distinct. It follows that all codewords are at least distance

n− (k− 1) = n− k+1 from one another; thus, Reed-Solomon codes meet the Singleton

bound.

In storage systems, Reed-Solomon codes generally have systematic form. El-

ementary row operations are used to transform G into (Ik|P )T , where Ik is the k × k

identity matrix and P is called the parity submatrix. Elementary row operations will

preserve the rank of the matrix and Hamming distance of the underlying code. The

systematic encoding separates the data symbols and parity symbols and is computed as

(Ik|P )Td = (d|p)T , where d are the original data elements and p represent the calcu-

lated parity. Since any k× k submatrix of (Ik|P )T is invertible, we can survive the loss

of at most n−k symbols by removing n−k rows from (Ik|P )T and solving the resulting

system for d.

While Reed-Solomon codes are space-optimal for (n, k, d), encoding and decod-

ing is rather expensive. During encoding, each parity symbol requires at least k−1 XOR

operations and if (n−k) > 1, k Galois field multiplications per parity element beyond the
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first. Decoding begins by inverting a matrix and multiplying the k-element vector by the

inverted matrix (similar to encoding). Cauchy-based Reed-Solomon codes [31, 30] trade

the Galois field multiplies for additional XORs (XOR is cheaper than general Galois field

multiplication methods). Cauchy matrices have properties similar to Vandermonde ma-

trices (i.e. a sub-matrix of a Cauchy matrix is also Cauchy and every k × x submatrix

of a Cauchy matrix is invertible).

3.4 Tanner Graphs and XOR-based Codes

In general, XOR-based codes do not have the rigorous construction of Reed-

Solomon codes. Here, we cover systematic codes and consider systematic XOR-based

code and XOR-based code to be synonymous. As the name implies, all parity computa-

tions exclusively use the XOR operator. Given a set of k data symbols, we define each

of the n− k parity symbols as the XOR sum of some subset of the k data symbols. We

call the XOR sums for each parity symbol a parity equation. There exist
(

2k − 1
)n−k

(not necessarily unique) systematic XOR-based codes with k data symbols and n − k

parity symbols.

An XOR-based code is completely specified with a Tanner graph and/or gen-

erator matrix. Both of these objects describe how to generate n−k parity symbols from

k data symbols. A Tanner graph is a bipartite graph, where the left vertices represent

data symbols and the right vertices represent parity symbols. An edge joins a left node

vertex to a right node vertex and represents membership in a parity equation. A parity

symbol is computed by XORing the data from the associated data nodes adjacent to

the corresponding parity node in the graph. An example Tanner graph is shown in

Figure 3.1. The resulting parity equations are :

s5 = s0 ⊕ s1 ⊕ s2

s6 = s0 ⊕ s1 ⊕ s3

s7 = s0 ⊕ s2 ⊕ s3 ⊕ s4

If we associate disks with nodes in the graph, then the parity stored on disk 5

is the XOR sum of the corresponding data from disks 0, 1 and 2.
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Figure 3.1: Example Tanner graph for a (5,3)-flat code.

Unlike Reed-Solomon codes, XOR-based codes may exhibit irregular fault tol-

erance: they tolerate certain sets of losses up to the Hamming distance of the code. For

example, the example (5,3)-flat code in Figure 3.1 is irregular and can tolerate the

loss of symbols 0 and 1, but not 4 and 7.

An equivalent definition exists for generator matrices. Let s0 = d0, s1 =

d1, s2 = d2, s3 = d3, s4 = d4 be the data associated with disks 0, 1, 2, 3 and 4. The

Tanner graph in Figure 3.1 can be transformed into the matrix shown in Figure 3.2.

Each symbol has an associated column in the matrix. A data column is a unit vector

and a parity column is a linear combination of a subset of data columns. In this case,

the column for the i-th disk is a unit vector with a 1 in the i-th element. A parity

column is a linear combination of the columns that correspond to the data elements

involved in its parity equation. A codeword is generated by multiplying an k× 1 vector

of data to the k × n generator matrix.

Our definition of XOR-based codes covers two sub-classes of codes : flat XOR-

based codes and array codes. A flat code associates a storage device within a unique
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(d0, d1, d2, d3, d4)
T





















s0 s1 s2 s3 s4 s5 s6 s7

1 0 0 0 0 1 1 1

0 1 0 0 0 1 1 0

0 0 1 0 0 1 0 1

0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1





















Figure 3.2: Example encoding of a (5,3)-flat using a generator matrix.

code symbol, while an array code associates multiple code symbols with a single device.

3.4.1 Minimal Erasures List

Since most systems deploy MDS codes, Hamming distance is typically used to

determine fault tolerance. This makes sense because an MDS erasure code can tolerate

up to a fixed number of failures. As we have shown, certain XOR-based codes exhibit

irregular fault tolerance, therefore, they can tolerate failures beyond the Hamming dis-

tance of the underlying code. Wylie and Swaminathan [65] have developed the Minimal

Erasures (ME) Algorithm to efficiently analyze an XOR-based code and characterize its

fault tolerance. The Minimal Erasures Algorithm produces a Minimal Erasures List,

which is a compact representation of a code’s fault tolerance. We make extensive use

of the mel in our work.

In order to discuss the Minimal Erasures List (MEL), we must present a few

definitions. A set of erasures is a set of erased (i.e. lost) symbols. An erasure pattern is

a set of erasures that result in any irrecoverable data loss. Finally, an minimal erasure

is an erasure pattern in which every erasure is necessary and sufficient for it to be an

erasure pattern. The ME Algorithm generates an MEL, which is a list of all minimal

erasures for a particular code. The mel completely describes the fault-tolerance of

an XOR-based code. Wylie and Swaminathan also present another object called a

Minimal Erasures Vector (MEV), where the i-th element in the vector lists the number

of minimal erasures of size i in the MEL. Obviously, the first non-zero entry in the MEV

corresponds to the Hamming distance.
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3.4.2 Terminology

Here we detail the terminology used throughout this proposal. We refer to a

n symbol code with k data symbols and (n− k) = m parity symbols as (k, n)-NAME,

where name describes the class of code. The i-th symbol in the code is identified as si.

A parity bitmap provides a compact representation of a code’s parity equations, which

consists of an integer for each parity equation. For example, the parity bitmap for the

(5,3)-flat code can be derived from the generator matrix shown in Figure 3.2. Since

a k × k identity matrix is used to encode the data symbols, the bitmap for each data

symbol si is 2
i. The bitmap for a parity symbol is simply the sum of bitmaps in its parity

equation. For example, the first parity symbol, s5, has bitmap 710 = 1112 = 20+21+22.

In addition, we also rely on a compact form of the Tanner graph. The Tanner

graph may be described by a list of (data, parity) edges. For example, the Tanner graph

for the (5,3)-flat code is

{(s0, s5), (s0, s6), (s0, s7), (s1, s5), (s1, s6), (s2, s5), (s2, s7), (s3, s6), (s3, s7), (s4, s7)}.

As an example, the mel of the code described by the generator matrix in Figure 3.2 is

{(s4, s7), (s0, s1, s4), (s0, s1, s7), (s0, s2, s6), (s0, s3, s5), (s1, s2, s3), (s1, s5, s6), (s2, s4, s5),

(s2, s5, s7), (s3, s4, s6), (s3, s6, s7)}, the mev is (0, 1, 10), the Hamming distance is 2, and

all sets of erasures of size 4 lead to data loss.
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Chapter 4

Estimating the Reliability of

Erasure-coded Storage Systems

Erasure codes are the means by which storage systems are typically made

reliable. MDS codes, such as raid 5 and Reed-Solomon, are the most common codes

used in storage systems. Recently, a wide range of special-purpose and novel erasure

codes have been proposed to service the increased need for highly fault tolerant storage

schemes (e.g., [30, 21, 22, 65]). Such erasure codes offer benefits traditional erasure

codes cannot, such as reduced encode/decode cost, reduced small write costs, and/or

localized device rebuild.

MDS codes provide optimal fault tolerance. That is, in an MDS code, k data

symbols generate m parity symbols and can tolerate the loss of any m symbols. In

other words, MDS codes have a Hamming distance of d = m+1. Most of the proposed

novel erasure codes are non-MDS and exhibit irregular fault-tolerance. If k data symbols

generate m parity symbols, then a non-MDS code can tolerate many, but not all, erasure

patterns of size d, 3, . . .m, where d is the Hamming distance of the code.

Traditional reliability models were constructed with four simplifying assump-

tions: the only failures are whole-device failures, the use of single-disk fault-tolerant

codes, devices fail at a constant rate, devices repair at a constant rate.

Until recently, single-disk fault-tolerant codes were the standard in parity-

based disk arrays. At a high level, these codes were MDS codes with m = 1. Since only

whole-disk failures are considered, keeping track of failure patterns that lead to data
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loss is relatively straightforward: any failure pattern involving 2 disk failures is a data

loss event.

The inclusion of time dependence into reliability models increases complexity

and can prohibit analytic reliability estimates. Analytic estimates can obtained through

Markov models as long as failure and repair rates are constant in time. For this reason,

most reliability analysis assumes constant failure and repair rates.

The main objective of this chapter is to show that traditional modeling tech-

niques are not well-suited for accurate storage system reliability modeling. Traditional

reliability analysis in storage systems has relied on Markov models constructed around

single-disk fault-tolerant systems. While such models enable quick analytic reliability

estimates of single-disk fault-tolerant systems, they do not extend well to multi-disk

fault-tolerant systems, the inclusion of sector failures and they do not compensate for

time dependence in failure and repair.

This chapter provides two major contributions. First, we review traditional

Markov modeling techniques and show that they do not accommodate time dependency

or easily extend to multi-disk fault-tolerant MDS codes and non-MDS codes. Second,

prior models for sub-component (i.e. sector) failures are either too coarse-grained or

excessively complicate reliability models. We explore the tradeoffs between the various

sector failure models to show which models are best suited for a multi-disk fault-tolerant

system.

We begin by reviewing standard metrics for storage system reliability: relia-

bility, unreliability and mean time to data loss (mttdl). We argue that the aggregate

nature of the mttdl makes the metric only suitable for relative comparisons, while

reliability and unreliability are direct measures of system reliability. Next, we explore

the canonical, 1-disk fault-tolerant Markov model for erasure-coded systems and show

how these models have been extended to m-disk fault-tolerant systems. We argue that

extending the canonical model to multi-disk fault-tolerant systems leads to issues in

modeling rebuild, irregular codes and time dependence. Finally, we explore two domi-

nating methods for modeling sector failures: ber and latent sector errors. Both models

are typically built as extensions to the canonical Markov model. We show that each

model does not fully capture the effect of sector errors and propose a more accurate
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model.

4.1 Measuring Reliability in Fault-Tolerant Systems

We begin our discussion by defining some of the common reliability measures

in fault-tolerant systems. We assume that the system is new and operational at time

t = 0. Let TF be the time where the system first reaches a failure state. We assume

the system has n devices, D0, D1, . . . , Dn−1. Let c(Di, t), r(Di, t) and s(Di, t) be the

device Di’s life clock, repair clock and subcomponent failures at time t. The life clock

is 0 when the device is new and increases with t until the device fails. The repair clock

is undefined until the device fails and increases with t until the device is repaired (or

replaced with a new device). If a device is operational (not under repair) at time t, then

subcomponent failures (i.e. latent sector failures) are indexed by s(Di, t). For example,

if sectors 234 and 425 are in error at time t, then s(Di, t) = {(i, 234),(i, 425)} (if no

sector failures exist at time t, then s(Di, t) = ∅).

The concurrent failure of components may lead to a data loss event. Let

DL(FD(t), FS(t)) = {0, 1} be an indicator function for data loss at time t, where FD(t)

are the failed components at time t and FS(t) are the subcomponent failures at time t.

If DL(FD(t), FS(t)) evaluates to 1, then the system has reached a failed state, otherwise,

the system is still operational.

Definition 4.1.1. Reliability, R(TM ), is defined as the probability that DL(FD(t), FS(t))

is 0 for all t ≤ TM , where TM is the mission time of a system. In other words, it is the

probability that no data loss events occur during the mission time of a system. Unreli-

ability, U(TM ) = 1−R(TM ), is defined as the probability that a data loss event occurs

during the mission time of a system.

Mathematically, reliability is defined as R(TM ) = P (TF > TM ) = 1− P (TF ≤

TM ). That is, for a given mission time TM , the probability that the system does

not reach a failed state before time TM . It follows that he unreliability is U(TM ) =

1− P (TF ≤ TM ).

Traditional storage system reliability analysis uses a metric called the mean

time to data loss (mttdl). mttdl does not directly measure reliability; it is an ex-
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pectation based on reliability: mttdl =
∫∞
0 R(t)dt. This makes the mttdl useful for

relative comparisons, but awkward for absolute measurements. For example, an mttdl

measurement of 1000 years tells us very little about the probability of failure during a

realistic system mission time. A system designer may be interested in the probability of

failure every year for the first 10 years of a system. The aggregate nature of the mttdl

would give very little information on such a calculation.

4.2 Using Markov Models to Evaluate System Reliability

Markov models (continuous-time Markov chains) are typically used to evaluate

reliability in storage systems. On one hand, Markov models allow system designers easily

calculate transient measures, such as system unreliability, and steady-state measures,

such as mttdl. On the other hand, Markov models are memoryless and are only suited

for modeling simple systems. In this section, we show properties of the simple, 1-disk

fault-tolerant model and argue that extending this model to capture complex behavior is

problematic. Complexity is added in terms of increased fault-tolerance, time dependence

and irregular fault-tolerance.

4.2.1 Canonical Markov Model

The canonical Markov model used in storage systems is based on raid 4, which

can tolerate exactly one device failure. Figure 4.1 shows this model. There are a total

of three states: state 0 is the state with all devices operational, state 1 is the state of

one failed device and state 2 is the state where two devices have failed. Each state has

at least one in/out transition (edge) with an associated rate. The sum of the outgoing

transitions represent the holding time in a state. Since each transition is exponentially

distributed, the holding time is also exponential. The model in Figure 4.1 has two rate

parameters: failure rate (λ) and a repair rate (µ); thus, it is assumed that all devices

fail at the same rate and repair at the same rate.

Starting at t = 0, the system is good as new and is in state 0 and remains in

state 0 for an average of (n · λ)−1 hours (n device failures are exponentially distributed

with failure rate λ), where it transitions to state 1. The system is then in state 1 for

on average (((n− 1) · λ)) + µ)−1 hours. The system transitions out of state 1 to state 2
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(n)λ (n − 1)λ

µ

Figure 4.1: Traditional raid 4 Markov model.

with probability (n−1)·λ
((n−1)·λ))+µ , which is the failed state. Otherwise, the system transitions

back to state 0, where the system is fully operational and devoid of failures.

The memoryless assumption made in these models may affect reliability anal-

ysis of a real system. Every time the system transitions back to state 0, all of the

components are assumed to be good-as-new. Such a model is called regenerative, since

the state where all components are operational (state 0) represents a brand-new system.

In reality, only the recently repaired component is brand-new, while all others have a

non-zero age.

4.2.2 m-DFT Models

Now we generalize the model in Figure 4.1 to an m-disk fault tolerant system.

Figure 4.2 shows three common Markov models used to evaluate the reliability of m-

disk fault-tolerant storage systems [25, 8, 19]. As with the 1-disk fault-tolerant model,

the label of each state represents the current number of failures. Similarly, left-to-right

transitions correspond to device failures and right-to-left transitions are repairs. The

failure models within each of the three schemes are the same, while the rebuild models

differ. Each model assumes one of two possible rebuild models: serial or concurrent

(called parallel rebuild in [25]). The serial rebuild model assumes that at most one disk

within a array will be rebuilt at a time. Concurrent rebuild assumes that failed disks

may be rebuilt in parallel.

Figures 4.2-(a) and 4.2-(b) were proposed by Hafner and Rao [25] and represent

serial and concurrent rebuild, respectively. For single disk fault tolerant systems, the
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serial and concurrent rebuild models are identical, and are correct. For multi-disk fault

tolerant systems, both rebuild models are incorrect. The same modeling error leads

to the errors in each model: the rebuild transitions for states 2 through m model the

rebuild of the disk that failed most recently, whereas the reliability is dominated by the

rebuild of the disk that failed earliest. In essence, each Markov model resets the rebuild

time for all disks being rebuilt whenever another disk fails during rebuild. Thus, the

model of serial rebuild models a rebuild policy that rebuilds the most recently failed

disk, and resets the progress of any disks currently being rebuilt. And, the model of

concurrent rebuild models a rebuild policy that restarts the rebuild of all failed disks

each time a disk fails. This error highlights a systematic problem with such modeling

techniques: each transition forgets about progress that has been made in a previous

state.

The model shown in Figure 4.2-(c) ([8, 19]) has a concurrent rebuild policy,

where the rebuild transitions are very much like the failure transitions. If the system is

in state i, then there are i ongoing rebuilds and the total repair rate is i · µ.

Resetting rebuild progress exists in all three models and can be explained as

follows. Assume a repair has been ongoing for 30 hours, then the probability that the

repair will last another 10 hours is

P (T > 30 + 10|T > 30) =
1− P (T ≤ 40)

1− P (T ≤ 30)

=
−e(−40µ)

−e(−30µ)

= P (T > 10)

This means that the probability of a repair operation completing at time 10

and time 110 is essentially the same—the rebuild clock is totally ignored. It is known

that most disk rebuilds take at least 6-10 hours and will most likely not last more than

a factor of 2 or 3 beyond that. One could estimate the the remaining repair time at each

state by steadily increasing the rate of ongoing rebuild operations as more failures occur.

Unfortunately, as we have found, such approximations lead to unnecessary complications

in the model.
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µ
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(a)

(b)

(c)

Figure 4.2: Traditional m-disk fault-tolerant Markov model.
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4.2.3 Time Independence

In this section we reinforce the statements made in Section 4.2 for both failures

and repairs. In addition, we show that adding time dependency in an analytical model

is, in general, very difficult. We calculate the unreliability function of the analytic model

in Figure 4.2-(a) to illustrate inaccuracies and difficultly in modeling time dependence.

The state residence probabilities, at time instant t + dt, in a system modeled

by Figure 4.2-(a) are

p0(t+ dt) = p0(t) · (1− n · λdt)

+ p1(t) · µdt

+ 0

. . .

pi(t+ dt) = pi(t) · (1− (µ+ (n− i) · λ) dt)

+ pi+1(t) · µdt

+ pi−1(t) · (n− i+ 1) · λdt

. . .

pm(t+ dt) = pm(t) · (1− ((n−m) · λ+ µ) dt)

+ 0

+ pm−1(t) · (n−m+ 1) · λdt

pm+1(t+ dt) = pm(t) · (n−m) · λdt

+ pm+1(t)

+ 0

where dt is assumed to be an infinitesimally small time interval, λ is the device

failure rate and µ is the device repair rate. Each of these probabilities can be interpreted

as follows. The probability that the system is in state i at time t+ dt is the sum of:

• The conditional probability that the system does not transition out of state i in

the interval [t, t+ dt], given it was in state i at time t.
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• The conditional probability that the system transitions out of state i + 1 in the

interval [t, t+ dt], given it was in state i+ 1 at time t.

• The conditional probability that the system transitions out of state i − 1 in the

interval [t, t+ dt], given it was in state i− 1 at time t.

First observe the constant failure and repair rates: their contribution to state

residence probability does not change with time. Again, this generalization reinforces

the statements made in the last subsection. In short, the wear-out of a component or

the progress made by a device repair is not captured by this type of model.

The instantaneous probabilities are obtained by differentiating each pi(t)

p′i(t) = lim
dt→0

pi(t+ dt)− pi(t)

dt

which results in the Kolmogorov equations

p′0(t) = p1(t) · µ− p0(t) · nλ

. . .

p′i(t) = pi+1(t) · µ+ pi−1(t) · (n− i+ 1)λ− pi(t) · (µ+ (n− i)λ)

. . .

p′m(t) = pm−1(t) · (n−m+ 1)λ− pm(t) · (µ+ (n−m)λ)

p′m+1(t) = pm(t) · (n−m)λ

Using a Laplace transform or numerical methods, we solve the system of dif-

ferential equations and compute the system unreliability as

U(t) = pm+1(t).

Solving the Kolmogorov equations represents the standard method for evaluat-

ing the reliability of a fault-tolerant storage system. We use the same method through-

out our analysis to evaluate the unreliability function for Markov models.
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As illustrated in the derivation, all transition rates remain constant in time.

Again, this is the fundamental building block of these models. These models stay quite

simple as long as all rates are constant, even if the individual failure/repair rates are

different. Since the rates remain constant (independent of time), they can simply be

added together to obtain total state in/outgoing rates. In reality, these rates may be

time dependent, resulting in rates that vary with time. In this case, the summation of

rates becomes quite difficult. In addition, individual device lifetime clocks and repair

clocks makes a similar analytical solution extremely difficult.

To illustrate this difficulty, recall the life clock (c(Dj , t)) and repair clock

(r(Dj , t)) of device j. A device’s life clock begins at 0 when the device is added to

the system (via new installation or repair), increases with time and expires when the

device fails. A device’s repair clock begins at 0 when the device fails, increases with

time and expires when the repair is complete. When a clock expires, it evaluates to ∅.

Note that, while all of the clocks take the global system time, t, as a parameter, each

clock value may be different.

If we assume time-dependent failure and repair distributions, each device must

be considered individually in the state residence probabilities. Let λj(t) and µj(t) be

the hazard function of the j-th device’s failure and repair distributions, respectively.

Also, let λj(∅) = 0 and µj(∅) = 0. The failure rate and repair rate of device j at time t

is λj(c(Dj , t)) and µj(r(Dj , t)), respectively. In this case, the failure transition rate at

time t is
(

∑

a∈A
λa(c(Da, t))

)

where A indexes the current available devices. Similarly, the repair transition rate at

time t is




∑

f∈F
µf (r(Df , t))





where F indexes the current failed devices.

Correctly incorporating these time-dependent failure and repair transitions

into the state residence probabilities is quite difficult and in many cases may not be

possible. The difficulty lies in the distinction between absolute time and relative time.

We consider absolute time to be the time since the system was generated, while relative
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Figure 4.3: Markov model for irregular erasure code (cf. Figure 2 in [25]).

time applies to the individual device lifetime and repair clocks. Analytic models operate

in absolute time; therefore, there is no reasonable way to determine the values of each

individual clock. For this reason, we believe that the only way to effectively evaluate the

reliability of a system with time-dependent failures and repairs is through simulation.

4.2.4 Modeling Irregular Codes

One key aspect of this work involves understanding the fault tolerance and

reliability of irregular erasure codes. The concerns we have discussed thus far regarding

Markov models of disk rebuild and sector failures applies to erasure codes in general,

whether they be regular or irregular in nature. However, the nature of irregular erasure

codes exacerbates the difficulty in accurately modeling such storage systems.

Hafner and Rao have used Markov models to analyze the reliability of irregular

codes [25]. Although they include ber sector failures from a critical mode in their model,

to simplify discussion, we do not. We reproduce pertinent aspects of their Markov model

in Figure 4.3.

Like the other Markov models, the transition rates from left to right corre-

sponds to disk failures, and the ones from right to left correspond to disk rebuilds. This

Markov model is distinguished from the previous models in that two transitions leave

each disk failure state: a “normal” one that transitions to the next failure state, and

another that transitions directly to the data loss state m+ 1. In a Markov model for a

serial rebuild policy of a regular code, the transition rate σi is (n − i)λ (cf. Figure 4.2).

For an irregular code, the fault tolerance vector—or it’s complement, the fault tolerance
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matrix (explained in Section 5.3.2) —is used to assign a likelihood that the irregular

code tolerates a single disk failure. If fi is the ith entry of the fault tolerance vector,

then the transition rates in Figure 4.3 are σi = (1− fi)(n − i)λ and δi = fi(n − i)λ.

The Markov model shown in Figure 4.3 provides good intuition about how to

think about the reliability of irregular codes. Unfortunately, revising the Markov model

for irregular codes to accurately model rebuild policies, and to include sector failures

appears to be impractical and is prone to error.

Including either latent or ber sector failures in a Markov model of an irregular

erasure code is difficult. Irregularity does not seem to complicate the inclusion of latent

sector failures and scrubbing any more than an MDS code. Though recall that we

reached the conclusion that including latent sector failures and scrubbing in a Markov

model of a regular code was too complicated. Hafner and Rao included ber sector

failures in their Markov model [25]. As is the case for MDS erasure codes, the ber

failure probability must be a function of the portion of disk that is critically exposed,

and that is difficult to capture in a Markov model.

Many irregular erasure codes are HoVer codes [22]. This adds additional com-

plexity to the modeling of ber sector failures. In HoVer codes, the determination of

which sectors are critically exposed given a combination of other disk and sector failures

is complicated. We believe that the method that Hafner and Rao use to determine this

probability (cf. Equation 3.2 in [25]), which involves entries i and i + 1 in the fault

tolerance vector, only applies to flat irregular codes. To be more concrete, consider the

Weaver [21] codes that they analyze. Weaver codes have a symmetric structure and

have both data and parity elements in each strip. The loss of a specific additional disk

(strip) leads to data loss does not mean that the loss of any element in the strip leads

to data loss. For example, if one of the parity elements in the strip is necessary to

rebuild a given set of failed disks, but none of the data elements are, then the fault

tolerance vector does not provide sufficient information to estimate the likelihood of a

ber failure. The fact that only some elements in the strip are necessary needs to be

taken into account when determining the probability that a ber causes data loss. We

have developed a structure, called the fault tolerance matrix, which accounts for both

strip and partial strip errors. The fault tolerance matrix is discussed in section 5.3.2.
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4.3 Modeling Sector Failures

The storage community has not reached consensus on how best to model sector

failures. There are currently two distinct approaches to modeling sector failures in

storage systems. In the first approach, a bit error rate (ber) is assumed and is used

to model data loss when the system is performing a rebuild in critical mode. In a m

DFT system, the model enters critical mode upon the m-th disk failure. In the second

approach, latent sector failures are assumed to appear at some rate. The rate at which

latent sector failures are assumed to occur is based on time, usage, age, historical data,

and so on. Storage systems are assumed to have a scrubbing policy that finds and

recovers latent sector failures before a critical stage is entered.

We believe that a detailed model of storage system reliability may have to

account for both ber during the critical mode, and latent sector failures that develop

over time. Both types of sector failures are difficult to correctly model and accurately

include in traditional Markov models.

With the exception of Elerath and Pecht’s simulation [14], most sector failure

models are built as an extension of the canonical Markov model. That is, additional

failure transitions are added into a Markov model to account for sector failures. As we

will show, the critically exposed region cannot be fully captured when augmenting the

canonical Markov model with sector failure transitions. Elerath and Pecht [14] treat

sector failure and scrub transitions individually, which the increases complexity of aug-

mented Markov models and simulations. We propose a method for drawing sector errors

that can be applied to either a ber or latent sector error model.

4.3.1 BER Failures

Consider modeling the effect of sector failures during rebuild from critical stage.

The Markov model in Figure 4.4 is a traditional Markov model of a serial rebuild policy

augmented to include data loss due to ber. The figure is based on the one developed

by Hafner and Rao [25]. Remember that n = k +m, and so the term n −m + 1 in the

transition to state m can be written as k + 1. The parameter h is the ber multiplied

by the capacity of the device; i.e., the likelihood that a single disk exhibits a bit error if

read in its entirety. Multiplying the term h by k accounts for the number of disks that
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Figure 4.4: BER sector failure Markov model.

must be read to rebuild a disk from this state.

We find three simplifying assumptions in this model. First, regardless of

whether a sector failure is due to ber or developed latently, it only leads to data loss if

it occurs in the portion of the failed disk that is critically exposed. For example, in a

two disk fault tolerant system, if the first disk to fail is 90% rebuilt when a second disk

fails, only 10% of the disk is critically exposed. Traditional Markov models that use the

ber sector failure model do not accounted for the critically exposed region of a rebuild

process.

Beneath the Markov model is an illustration of the critically exposed portion

of a disk. Given a serial rebuild policy, some portion of the first disk to fail will be

rebuilt by the time the m − 1st disk fails. The rebuilt portion of the first failed disk can

be used if any of the remaining k disks have a sector failure in that block range. Thus,

only the portion of the first failed disk that has not yet been rebuilt is critically exposed

on the n −m = k other available disks.

The second problematic assumption is in the likelihood calculated using the
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Figure 4.5: Latent sector failure Markov model for a 1-DFT system. This model is
based on Elerath and Pecht’s approach.

ber approach. It is assumed that the likelihood is bound by 0 and 1: 0 ≤ h ≤ 1. In the

original calculation, it is possible for h to exceed 1. Suppose that the ber is 1× 10−12

and the device capacity is 8× 1012 bits. In this case the likelihood is 8.0, which is not

a valid probability. The actual calculation should be h = 1 − (1 − ber)C , where C is

the device capacity in bits. In the case of our example, the value of h will be 0.9996,

instead of 8.0. The h · k calculation suffers from the same problem. Instead of h · k, the

calculation should be Pber = 1− (1− h)k.

Finally, this approach does not compute the likelihood that 1, 2, . . . sector

errors exist. It simply computes the probability that one or more errors exist. Such a

calculation is especially important when considering the critically exposed region.

4.3.2 Latent sector failures

Some systems model latent sector failures and the scrubbing process that de-

tects and repairs them. There are two ways to model these processes: treat sector

failures (scrubs) as most models treat disk failures (repairs) [14] or model sector fail-

ure/scrubs as a separate random process [56, 29].

Elerath and Pecht [14] included latent sector errors and scrubbing as explicitly

separate rates into their model for a single-disk fault tolerant system. Elerath and Pecht

calculated a sector failure rate from the ber and an assumed workload. The scrub rate
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was chosen at a week (168 hours). Once the disk was scrubbed all latent sector errors

were assumed repaired as long as no disks were failed. Applying this approach to the

canonical 1-disk fault-tolerant Markov model results in the model shown in Figure 4.5.

As we see, adding latent sector faults—via sector failure and scrub transitions—to a

simple Markov model is quite complicated; the complexity quickly grows as the fault-

tolerance is increased.

Iliadis et al. proposed a model that combines the latent sector failure rate and

scrub rate into a single probability [29]. Schwarz et al. derived a similar model. Here, we

focus on a deterministic scrub schedule. Given a deterministic scrub period for a sector,

TS , load on a given sector, l, probability of a sector error due to a write operation,

Pw and the ratio of write requests in the total system load, rw, the probability of an

unrecoverable error on a given sector at an arbitrary time is [29]

PS =

(

1−
1− e−lTS

lTS

)

· Pw · rw.

This probability was derived for use in a Markov model, requiring it to be in-

dependent of the underlying device age. Even though there is not enough data available

to create a time-dependent sector failure distribution, a time-dependent probability can

be derived as follows. Iliadis et al. derived

PS(t) =
(

1− e−l(t mod TS)
)

Pe,

where Pe is the single sector failure probability. If we take t to be the current

device age, F (t) to be the cumulative probability distribution function and assume that

the device is scrubbed every TS hours, then

PS(t) =

(

F (t)− F

(

TS ·

⌊

t

TS

⌋))

· Pe

will give the time-dependent sector failure rate. Incorporating load into such a calcula-

tion and determining a proper sector failure model remains an open problem.

PS can be used to calculate the likelihood of a latent sector failure on a disk.

If a disk has C sectors, then the probability that one or more latent sector errors are

present at an arbitrary point in time is
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PLS = 1− Pr (no errors in C sectors) = 1− (1− PS)
C .

This probability may be used in place of Pber during the critical stage to

estimate the effect of latent sector errors on reliability. Unfortunately, when used in a

Markov model, such a calculation suffers the same problem as the ber method: it does

not account for the critically exposed region of the rebuild process or the number of

sector errors.

4.3.3 Critical Region Sector Error Model

There are three major issues with previous sector error models. First, none of

the models account for the critical region of the rebuild process. Second, Elerath and

Pecht’s model works quite well for the 1-disk fault tolerant case, but becomes extremely

complicated and does not account for the critical region in multi-disk fault-tolerant

systems. Finally, no model accounts for the number and location of sector errors. Here

we propose a model based on Iliadis et al. that accounts for all of these shortcomings.

Recall the probability of a latent sector error on a disk with C sectors:

PLS = 1− Pr (no errors in C sectors) = 1− (1− PS)
C .

An approximation to account for the portion of disk that is critically exposed

is calculated by assuming the subsequent disk failures are uniformly distributed during

rebuild time. Consider the multi-disk fault-tolerant model shown in Figure 4.2. The

transition from state with m − 1 disk failures to state with m disk failures has rate

(n −m + 1)λ(1− PLS2
−(m−1)). Another transition is added from the state with m − 1

disk failures to the data loss state: (n −m + 1)λ(PLS2
−(m−1)). Dividing by the term

2m−1 approximates the portion of the first failed disk that is critically exposed to ber

failure.

If simulation is used to estimate storage system reliability, then a more accurate

method of determining sector errors in the critical region may be used. For each failed

device, calculate the number sectors that have yet to be rebuilt, C ′. We approximate

the number of sector errors by first drawing to determine if there is at least one latent

sector error and draw again to determine exactly how many errors exist by computing
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the following conditional probabilities. The probability that there is exactly i > 0 latent

sector errors, given there is at least one latent sector error is

Pr (exactly i LS errors | at least one LS error) =
Pr (exactly i LS errors)

Pr (at least one LS error)

=

(

S

i

)

·
(PS)

i · (1− PS)
C′−i

1− (1− PS)
C′

The error locations may be drawn from distributions based on error locality,

or uniformly across the device. Once the error locations are drawn for each device, the

simulation can determine if a data loss event has occurred.

4.3.4 Modeling Sector Errors: Discussion

While explicitly including sector failures and scrubbing as separate rates works

quite well for 1-DFT systems, modeling sector failures at this granularity for multi-disk

fault-tolerant systems will over complicate an analytical model and consume unneces-

sary cycles in simulation. The only reason to do such fine-grained analysis is when the

probability of two or more sector errors in the same stripe is comparable to two con-

current disk failures when there are m − 1 ongoing repairs in an m-disk fault-tolerant

system. Assuming a stripe size of N and C sectors per disk, the (estimated) probability

of two or more sector errors in the same stripe is

PLS ·
(

1− (1− PS)
N−1

)

.

Note that this estimate is quite optimistic; it ignores the critical region of the

rebuild process. This is interpreted as the probability that a latent sector error is on

an arbitrary disk and there exist one or more errors in the same stripe as the initiating

error. For an array of eight 300 GB disks, when PS = 2.36 × 10−11, this probability is

2.27×10−12. In otherwords, highly unlikely. In fact, under most conditions in an 8 disk

array, this is larger than the probability of four concurrent disk failures (cf. Section 6.2).

Since sector errors are expected to occur much more often than disk failures,

explicitly keeping track of individual sector failures in multi-disk fault-tolerant simula-
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tions over complicate the simulation and consumes unnecessary cycles with very little

return. Additionally, outside of single-disk fault-tolerant systems, explicitly modeling

multiple sector errors in a single stripe will lead to a state-space explosion. To make

matters worse, most of the new paths added to the model will be extremely low proba-

bility paths.

The jury is still out on how the ber and latent sector models are related. It is

possible that the two models will be combined. In fact, without scrubbing, the model

presented by Iliadis et al. is the ber model. Until the probability of multiple sector

failures in a stripe approaches that of two concurrent disk failures, modeling sector

failures using PS during the critical stage appears to be the best option.

4.4 Reliability Modeling: Discussion

Here we have analyzed the traditional reliability techniques used to model

storage systems. In doing so, we have encountered the following issues with current

modeling techniques:

Memorylessness: The underlying assumption of Markov models assumes time-independence.

This makes accurate failure and rebuild modeling very difficult.

Critical Region: The sector failure aspect of current analytic models do not account

for the critical rebuild region when determining data loss events. The models

assume the entire device is the critical region, leading to an overestimate in system

unreliability.

Many Paths, Little Utility: The fine-grained latent sector model is sufficient for 1

DFT systems, but results in a state-space explosion as fault tolerance is increased.

The state residence probabilities of most of the newly added states are extremely

low, resulting in little utility for a great increase in complexity.

Aggregation of Irregularity: If an irregular code is to be modeled by a Markov

model, the data loss probabilities must be aggregated into a single vector (or

matrix). In the case of HoVer codes, such aggregation may lead to poor estimates.
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Another aspect not yet mentioned is the expected amount of data loss. No

current model has incorporated such a metric. While an accurate estimate on the

expected number of bytes lost during a data loss event remains open, we propose the

following approximation over N iterations of a simulator

Avg. Data Loss =

∑N
i=1 I(TF < TM ) · SE

N

where SE represents the critically exposed sectors during a data loss event. If

a data loss event was triggered by a double disk failure, then this value would equal the

capacity of an entire device. If the data loss event was triggered by a set of disk failures

plus a sector failure, the value is a single sector (512 bytes).

Modeling the reliability of irregular erasure codes is more complicated than

modeling the reliability of MDS erasure codes. Unfortunately, all of our concerns about

the accuracy of Markov models for multi-disk fault tolerant erasure codes and the inclu-

sion of sector failures are magnified by irregularity. For these reasons, we believe that

simulation is the best way to understand reliability tradeoffs between different erasure

codes. Unfortunately, such simulations do not yield elegant closed-form solutions from

which an intuitive understanding of the impact technology trends in storage capacity,

mttf, mttr, and so on will have on system reliability.
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Chapter 5

Reliability Simulation of Erasure-coded

Storage Systems

Chapter 4 was an exploration of traditional techniques for modeling reliable

storage systems. We found that Markov models are not do not sufficiently model systems

with time dependence, multi-disk fault tolerance, irregular fault-tolerance and sector

errors. As a result, the only general way to effectively model complex, erasure-coded

storage systems is simulation.

In this chapter, we review standard simulation techniques, which lends itself

to very flexible configurations. While standard simulation readily handles time depen-

dence, there are cases where effectively determining data loss events and obtaining a

result in a reasonable amount of time is non-trivial. We have developed novel bookkeep-

ing mechanisms to efficiently determine data loss events in the face of both disk and

sector failures. As the fault-tolerance of a storage system increases, the running time of

standard simulation increases at a rapid rate. We utilize fast simulation techniques to

drastically speed up simulation runs of highly-fault tolerant systems.

We begin this chapter by setting up relevant terminology and standard simu-

lation techniques. Next, we describe the main drawback of standard simulation: rare

events. A rare event is an event that is highly improbable and will most likely not be

observed in standard simulation. A data loss event in a highly fault-tolerant system is

an example of a rare event. We describe two fast simulation techniques that are used

to increase the probability of data loss events in simulation.
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Finally, we describe the architecture of the High-Fidelity Reliability (HFR)

Simulator. The bookkeeping methods and fast simulation techniques are implemented in

the HFR Simulator. Given an arbitrary linear erasure code and a system configuration,

the HFR Simulator has the ability to efficiently and accurately provide a reliability

estimate. The bookkeeping methods leverage prior work on minimal erasures [65] to

achieve high-fidelity simulation, which is necessary to simulate irregular erasure codes.

Minimal erasures concisely and precisely describe the fault tolerance of an irregular

erasure code. We use minimal erasures in the HFR Simulator to efficiently perform

the bookkeeping necessary to determine if some set of disk and sector failures leads to

data loss. The HFR Simulator may also use a coarse-grained method of bookkeeping

based on the fault tolerance matrix, a pre-computed table of failure probabilities given

the number of disk and sector failures; this approach is more efficient than minimal

erasures bookkeeping, but only appropriate for some irregular erasure codes.

5.1 Standard Simulation of Erasure-Coded Storage Sys-

tems

The objects in our simulation framework are storage devices. There are exactly

n devices, which may constitute an array: D0, D1, . . . , Dn−1. Each device has two clocks

that determine the device’s age and rebuild progress. Let c(Di, t) and r(Di, t) be device

Di’s life clock and repair clock at time t. The life clock is 0 when the device is new

and increases with t until the device fails. The repair clock is undefined until the device

fails and increases with t until the device is repaired (or replaced with a new device).

If a device is operational (not under repair) at time t, then subcomponent failures (i.e.

latent sector failures) are indexed by s(Di, t). For example, if sectors 234 and 425 are

in error at time t, then s(Di, t) = {(i, 234),(i, 425)} (if no sector failures exist at time t,

then s(Di, t) = ∅). Under this framework, any of the sector failure methods explained

in Section 4.3 may be used to determine s(Di, t).

Each device, Di, has a failure distribution with CDF Fi(t) and a repair distri-

bution with CDF Ri(t). The failure distribution has hazard function λi(t), while the

repair distribution has hazard function µi(t). We can draw random variates from each
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distribution using either the corresponding CDF or cumulative hazard function. Given

a random variate drawn from the uniform distribution on the unit interval (0, 1), U , we

can use inverse transform sampling [43] to draw a time, T , from the CDF Fi(t)

T = F−1
i (U).

The cumulative hazard function represents the accumulation of the hazard rate

over time and is calculated as Λi(t) =
t
∫

0

λi(x)dx. It turns out that

Fi(t) = 1− exp (−Λi(t)) ,

allowing us to use the inverse transform method to sample using the cumulative haz-

ard function. This is especially useful when sampling failure times from a truncated

distribution. If the current age of a device is a, then we can sample the failure time

from

1− exp



−

t
∫

0

λi(a+ x)dx



 .

The available and failed devices are indexed by the sets avail and failed.

The entries of avail and failed are simply the device indices; if device Di is currently

failed, then i ∈ failed. Additionally, sector failures are indexed by sectors. An entry

of sectors will contain the device index and the corresponding sector offset within the

device.

Since we are measuring reliability in a fault-tolerant data storage system, the

concurrent failure of components and sub-components may lead to a data loss event. Let

dl(failed, sectors) = {0, 1} be an indicator function for data loss given the current set

of failed devices and sectors. If dl(failed, sectors) evaluates to 1, then the system has

reached a failed state, otherwise, the system is still operational. The actual bookkeeping

methods used to implement the dl function are covered in Section 5.3.3.

5.1.1 Measuring System Reliability via Simulation

At a high level there are two ways to evaluate the reliability of an erasure-

coded system using simulation [38, 42, 14]. The first type of simulation estimates the
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system unreliability function at time t

U(t) = Pr (TF ≤ t) = E [I(TF ≤ t)] ,

where I(·) is an indicator function and TF is a failure time. The method of replications,

which we call iterations, is used to obtain the estimator, Û(t), of U(t). In each iteration,

the system is simulated until a failure event (i.e. data loss) or a pre-specified mission

time, T , is exceeded. Given N iterations, the estimator is computed as

Û(t) =
1

N

N
∑

i=1

I(TF ≤ t).

The second type of simulation obtains the mean time to data loss (mttdl).

We also use an iterative method to estimate the mttdl. At each iteration, the system

is simulated until a data loss event. Given N iterations, the mttdl is estimated by

mttdl =
1

N

N
∑

i=1

Ti,

where Ti is the stopping time of the i-th iteration. This is the method of simulation we

use in Chapter 7. In general, this particular method is fairly inefficient (even for 1-DFT

systems). The method was used to match the rme metric developed in Chapter 7.

The accuracy of a set of simulated measurements is determined by confidence

intervals and relative error [38, 42]. Assume iteration i returns the value xi and the

mean over all iterations is xM . We compute the standard deviation as

s =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − xM )2.

The standard deviation is then used to construct a 90 percent confidence in-

terval with endpoints xM − 1.645 s√
n
and xM + 1.645 s√

n
. The metric we report in our

results is the relative error, which is calculated as 1
xM

1.645 s√
n
.

As we will show in Section 5.1.2 both of the aforementioned simulation methods

are inefficient when evaluating highly fault-tolerant systems. Fortunately, the method of

computing system unreliability lends itself to efficient simulation of highly fault-tolerant

systems. In addition, under appropriate technical conditions, a similar method may also

be used to estimate mttdl [42].
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Algorithm 1 The outer loop of a reliability simulator

N ← number of iterations

S ← 0

i← 0

while i < N do

SUM ← SUM + iteration()

end while

return S
N

The outer loop of the simulator is shown in Algorithm 1, where the iteration

function returns either {0, 1} in the mission time simulation, a failure time in the mttdl

simulation or {0, L} in the methods presented in Section 5.2.

Algorithm 2 illustrates a single iteration of a mission-time simulator. An iter-

ation of this type of simulator runs until failure or the simulation clock value exceeds

a predefined value. An iteration of the simulator proceeds as follows. At time t = 0,

the system is brand new and we draw failure times for each device from Fi(t). The

failure times are sorted, stored along with device index in failtimes, and the first event

corresponds to the minimum failure time. After the first event is processed, an event

will either be a failure or repair. An event is triggered by determining the event located

temporally closer to t. If the triggered event time exceeds a mission time, then the

iteration evaluates to 0 and the iteration terminates. If a failure event is triggered, a

repair time is scheduled (drawn) and stored in repairtimes. Next, the simulator checks

to see if any sector failures have occurred on the available devices. The sector failure

process includes drawing to determine where the failures are and culling the sectors that

are not in a critical region (cf. Section 4.3). Finally, dl(failed, sectors) is evaluated

for a data loss event. The iteration evaluates to 1 if a data loss event has occurred. If

a repair event is triggered, then a new failure time is scheduled for the repaired device.

An iteration of a simulator unbounded in time is shown in Algorithm 3. The

mechanics of this type of simulator are very similar to a mission-time simulation. There

are two main differences. First, an iteration will run until failure, which in theory could

be on the order of days, weeks or years (real-time). Finally, instead of returning 1 or 0,

the actual failure time is returned.
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Algorithm 2 A single iteration a mission-based discrete-event simulation.
1: t← 0

2: T ← mission time

3: avail← {0, 1, . . . , n}

4: failed← ∅

5: failtimes← {(t1, i1), (t2, i2), . . . , (tn, in)}

6: repairtimes← ∅

7: while true do

8: (tF , iF )← {(t
′, i′) ∈ failtimes : t′ is the min time over all entries}

9: (tR, iR)← {(t
′, i′) ∈ repairtimes : t′ is the min time over all entries}

10: if min(tF , tR) > T then

11: return 0

12: end if

13: if tF < tR then

14: failed← failed
⋃

{iF }

15: avail← avail \ {iF }

16: sectors← get failed sectors(avail)

17: if dl(failed, sectors) == 1 then

18: return 1

19: end if

20: repairtimes← repairtimes
⋃

{

R−1
iF

(U) + tF , iF

}

21: else

22: failed← failed \ {iR}

23: avail← avail
⋃

{iR}

24: failtimes← failtimes
⋃

{

F−1
iR

(U) + tR, iR

}

25: end if

26: end while
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Algorithm 3 A single iteration of an unbounded discrete-event simulation.
1: t← 0

2: avail← {0, 1, . . . , n}

3: failed← ∅

4: failtimes← {(t1, i1), (t2, i2), . . . , (tn, in)}

5: repairtimes← ∅

6: while 1 do

7: (tF , iF )← {(t
′, i′) ∈ failtimes : t′ is the min time over all entries}

8: (tR, iR)← {(t
′, i′) ∈ repairtimes : t′ is the min time over all entries}

9: if tF < tR then

10: failed← failed
⋃

{iF }

11: avail← avail \ {iF }

12: sectors← get failed sectors(avail)

13: if dl(failed, sectors) == 1 then

14: return t

15: end if

16: repairtimes← repairtimes
⋃

{

R−1
iF

(U) + tf , iF

}

17: else

18: failed← failed \ {iR}

19: avail← avail
⋃

{iR}

20: failtimes← failtimes
⋃

{

F−1
iR

(U) + tR, iR

}

21: end if

22: end while
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With the exception of how we process sector failures and determine data loss

events, these algorithms represent standard discrete event simulation.

5.1.2 Rare Events

So far, we have discussed standard simulation methods for fault-tolerant sys-

tems. The major drawback to this type of simulation is the amount of time required to

get an accurate result when the probability of failure is extremely low. We assume that

the component failure rates are orders of magnitude higher than the repair rate. In a

system that is one disk fault-tolerant, standard simulation is sufficient [14]. Under the

usual conditions the probability of failure in 10 years is roughly of the order 10−4, thus

requiring roughly 104 iterations to reach a data loss event (cf. Table 6.6, Section 6.2).

As the fault-tolerance of the system increases, the probability of failure de-

creases by orders of magnitude and many more iterations are required to get an accurate

reliability measure. For instance, under the current failure/repair parameters, a 3 disk

fault-tolerant system has an unreliability of about 10−11 over 10 years, thus a single

data loss event is expected to occur after roughly 100 billion iterations of the simulator.

If an iteration in an extremely efficient simulator takes 1 ms, then we will expect a single

data loss event in 31 years. If we parallelize and saturate 1000 nodes, the calculation

will take 11 days. Note, that this is for a single data loss event; we need many such

observations to get statistically significant probabilities.

Figure 5.1 illustrates the idea of rare events in highly fault-tolerant systems.

We assume that a set of devices can tolerate the failure of any m devices before losing

data. As time increases, devices randomly fail according to some distribution and as a

result are repaired. In general, the repair times are orders of magnitude smaller than the

expected failure times. Since the system is m device fault tolerant, at least m+1 device

repair operations must overlap in order to have a data loss event. Given a timeline that

is, say 10 years, where a device may fail 1 or 2 times, observing multiple, overlapping

12 hour windows is quite rare.

As we will see, the probability of observing, say 2 overlapping device failure

events is tractable using standard simulation. Simulating systems with more fault tol-

erance becomes increasingly difficult as fault-tolerance increases.
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...

Device has failed 

and is in repair

Two concurrent

device failures

Time

Figure 5.1: A timeline of an array of devices that have large failure times and very small
repair lifetimes. When the time to repair is orders of magnitude smaller than the time
to fail, multiple concurrent devices failures represent a rare event.
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5.2 Increasing the Probability of Observing Rare Events

The current state-of-the-art for observing rare events in simulation is a tech-

nique called Importance Sampling (IS) [41, 40, 39]. Informally, IS simply accelerates the

failure of subsequent device failures after a pre-defined threshold. If the system is in a

non-failure state, then the simulation proceeds as a standard Monte-Carlo simulation:

the device failures and repairs are drawn from their original distributions. Once the

number of device failures is equal to the pre-defined threshold, subsequent failures are

“accelerated” until a data loss event, or the system reaches the non-failed state. The

threshold is typically chosen as a single device failure. Accelerating the additional de-

vice failures requires a change in measure in the device failure distribution. This change

in measure must be carefully chosen (usually empirically) to ensure accurate estimates.

It is important to note that IS techniques are variance reduction techniques.

That is, given a system simulated for k iterations under standard simulation and a

system simulated under IS for the same number of iterations, the system under IS

is expected to have a lower variance. While the variance is generally expected to be

lower, there are two subtleties associated with IS techniques: there are cases where IS

techniques may lead to higher variance or may not accurately model systems that have

extremely low reliabilities. The simulation community has not found general guidelines

for IS parameters; thus, the appropriate parameters for IS must be found empirically.

Chapter 6 includes an empirical evaluation of suitable IS parameters.

Without a correction factor, IS will result in a biased estimate. The estimate

is unbiased using a value called the likelihood ratio. Assume that f(x) is the probability

measure governing the dynamics of the system we are simulating and Ω is the set of all

possible paths (failures and repairs) between time 0 and min(TF , t). The unreliability

can be written as [42]
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U(t) =

∫

ω∈Ω

Iω(TF < t)df(ω)

=

∫

ω∈Ω

Iω(TF < t)
df(ω)

dg(ω)
dg(ω)

=

∫

ω∈Ω

Iω(TF < t)L(ω)dg(ω)

= Eg [I(TF < t)L] ,

where Iω(·) is the indicator function for the sample path ω and L(ω) = df(ω)
dg(ω) is

the likelihood ratio. An unbiased estimate of Û(t) is calculated using the new probability

measure g by simulating N samples, (I1, L1), (I2, L2), . . . , (IN , LN ) and computing

Û(t) =
1

N

N
∑

i=1

IiLi.

The confidence interval and relative error calculations are the same as standard simu-

lation.

The next subsection describes an IS technique called failure biasing [42, 40],

which we use to simulate rare events. While other IS techniques, (such as Splitting [17])

exist, we chose failure biasing for its simplicity and maturity.

5.2.1 Failure Biasing

To our knowledge, the most widely used form of IS is a technique called bal-

anced failure biasing. While there exist separate techniques for balanced failure biasing

under homogeneous [39] and non-homogeneous Poisson processes [42, 40, 41], we uti-

lize two techniques that are applicable under both. The first uses a simple sampling

method, called uniformization (or thinning [12]), to sample failure points from a non-

homogeneous Poisson process. All points are sampled from a homogeneous Poisson

process, which is “thinned” to match the target non-homogeneous process. The second

method samples directly from the non-homogeneous Poisson process. As we will show,

this method is only applicable under certain circumstances; we derive the sampling
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distribution for simulations with Weibull failure and repair distributions. As pointed

out by Lewis and Shedler, the direct sampling approach is only applicable under well-

behaved distributions [43]. The direct sampling approach requires a numerical solution

to a non-linear equation. We have found that there are cases where standard numerical

methods cannot properly solve the non-linear equation generated by directly sampling

from the failure and repair distributions.

5.2.1.1 Uniformization-based Failure Biasing

The concept of uniformization was first developed by Lewis and Shedler in the

late 1970’s [43]. It was extended to simulating highly fault-tolerant systems in [40].

Suppose λ(t) is the rate function (i.e. arrival rate) of a non-homogeneous Poisson

process {N(t), t ≥ 0}. If the available devices are indexed by avail, then λ(t) =
∑

a∈avail ha(c(Da, t)) is the system failure rate at time t, where ha is the hazard func-

tion with respect to device a’s failure distribution. Uniformization allows the simulation

of a non-homogenous Poisson process with a homogeneous Poisson process, making the

application of failure biasing much easier.

Consider the homogeneous Poisson process with rate β, Nβ(t). As long as

β ≥ λ(t) for all valid values of t under simulation, this homogeneous process can be

“thinned” to give us points in the non-homogeneous Poisson process with rate λ(t).

Event times in Nβ(t) are drawn from an exponential distribution with mean β. Suppose

the i-th event time is drawn at time Ti. Then, with probability λ(Ti)/β, the point is

accepted as an event in N(t). Otherwise, the point is rejected. The rejected points are

often called pseudo events.

We simulate a highly fault-tolerant system by drawing repair times from their

original distributions and by determining the device failures as follows. Assume the

current simulation time is Tn and the n-th event has just been processed. If the system

is in a non-failed state, then sample the next device failure from

{F1(c(D1, Tn)), F2(c(D2, Tn)), . . . , Fn(c(Dn, Tn))},

where Fi(c(Di, t)) is the failure distribution of device i with age c(Di, t) at time t. If

one or more devices are in a failed state, then we activate uniformization.
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Let r(t) denote the next device repair completion time on or after time t. We

draw an event time, TE from Exp(β). If r(Tn) < TE + Tn, then Tn+1 = r(Tn) and the

next event is a repair. If r(Tn) ≥ TE + Tn, then the next event is a device i failure with

probability
hi(c(DTn+1

, t))

β

or a pseudo-event with probability 1− λ(t)
β .

To accelerate failures under uniformization, we implement balanced failure

biasing as follows. Instead of accepting a point in the Poisson process as a failure with

probability λ(t)/β, we now accept a point as a failure event with probability Pfb. If the

point is accepted as a failure and there are A available devices, then a device is chosen

to fail with probability 1/A (this is the “balanced” aspect of balanced failure biasing).

Failure events are accelerated by choosing β to be a rate much closer to the average repair

rate and a Pfb that is not too close to 0 or 1. While no general guidelines exist for choice

of Pfb, some studies show that 0.5 ≤ Pfb ≤ 0.9 leads to good results [42]. We choose the

appropriate values for each parameter using empirical analysis (cf. Section 6.3). Since

we have changed the probability dynamics of the system, all estimates of unreliability

will be biased. We unbias the estimates using the likelihood ratio.

Let NF (t) be the number of accepted device failure events up to time t and

NP (t) be the number of pseudo-events up to time t. In addition, let Fn be the time

of the n-th accepted failure, F (n) be the index of the device that failed and Pn be the

time of the n-th pseudo-event. The likelihood ratio in a simulation with mission time t

is [40]





NF (t)
∏

n=1

λF (n)(fn)/β

Pfb/A









NP (t)
∏

n=1

1− λ(Pn)/β

1− Pfb



 .

The algorithm for processing failures in a non-degraded state is shown in Al-

gorithm 4. As expected, the process is very similar to that of standard simulation, with

two exceptions. First, the next failure event is drawn from a truncated distribution,

F−1
i′ (U, c(Di′ , t)), with respect to the current age of each device. Second, instead of

returning 1 at a data loss event, the current likelihood ratio (L) is returned. As we have

stated, L unbiases our estimate.
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Algorithm 4 Processing failure events in non-degraded mode when simulating under

balanced failure biasing.

1: (tF , iF )← {(t
′, i′) : min t′ where t′ = F−1

i′ (U, c(Di′ , t)), ∀i
′ ∈ avail}

2: if min(tF , tR) > T then

3: return 0

4: end if

5: failed← failed
⋃

{iF }

6: avail← avail \ {iF }

7: sectors← get failed sectors(avail)

8: if dl(failed, sectors) = 1 then

9: return L

10: end if

11: repairtimes← repairtimes
⋃

{

R−1
iF

(U) + tF , iF

}

Algorithm 5 illustrates processing failures and repairs in degraded mode. All

event times are drawn from an exponential distribution with scale parameter β. If the

next event time occurs after the next scheduled repair, then the repair is scheduled.

Otherwise, a random variate is drawn from the uniform distribution on the unit interval

(U(0, 1)). We use the failure biasing probability to determine if the event is a failure

or a pseudo-event. A pseudo-event simply updates the likelihood ratio and leaves the

system state intact. Failure processing is similar to that of standard simulation with

the exception of updating the likelihood ratio.

5.2.1.2 Direct Sampling Under Weibull Distributed Failures and Repairs

The most precise way to estimate the resulting unreliability of a non-homogeneous

Poisson process under IS is sampling event times from the actual failure and repair dis-

tributions. While the direct route is more intuitive and analogous to standard discrete

event simulation, we found that this type of sampling is highly dependent on the un-

derlying distributions and in some cases may not be possible. While we found that this

technique works quite well under certain conditions1, it is primarily used for verification

1In fact, this is the primary IS method used when all distributions are exponential

56



Algorithm 5 Processing failures and repairs in degraded mode when simulating under

balanced failure biasing with uniformization.

1: t← exponential(β) + t

2: (tR, iR)← {(t
′, i′) ∈ repairtimes : t′ is the min time over all entries}

3: // Next event is repair

4: if tR < t then

5: failed← failed \ {iR}

6: avail← avail
⋃

{iR}

7: if |failed| == 0 then

8: state← OK

9: end if

10: // Next event is pseudo-event

11: else if U(0, 1) < Pfb then

12: L← L× 1−λ(t)/β
1−Pfb

13: // Next event is failure

14: else

15: iF ← rand(avail)

16: L← L×
λiF

(t)/β

Pfb/|avail|
17: failed← failed

⋃

{iF }

18: avail← avail \ {iF }

19: sectors← get failed sectors(avail)

20: if dl(failed, sectors) = 1 then

21: return L

22: end if

23: repairtimes← repairtimes
⋃

{

R−1
iF

(U) + tF , iF

}

24: end if
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of the uniformization estimates.

As with uniformization, the failure rate at time t is

λ(t) =
∑

a∈avail
ha(c(Da, t))

, where avail indexes the available devices. Similarly, the repair rate at time t is

µ(t) =
∑

f∈failed ha(r(Df , t)), where failed indexes the failed devices. The total rate

at time t is λ(t) + µ(t). Let Λ(t) =
t
∫

0

(λ(x) + µ(x))dx be the integrated rate function

of the process. Under exponential and Weibull, this integral is very easy to calculate.

We use Λ(t) to generate the individual points between events. Assume x1, x2, . . . , xi are

the event times of our non-homogeneous Poisson process up time xi. The next event

time, Xi+1 − Xi, is independent of x1, x2, . . . , xi−1 and has the following cumulative

distribution function

F (x) = 1− exp (Λ(xi)− Λ(xi + x)) .

As we have described in Section 5.1, we can readily draw from this distribution

function by drawing a uniform random number, U , on the unit interval to compute

Xi+1 − Xi = F−1(U). While this method is much more direct than uniformization,

there are a few drawbacks. First, since the individual event rates change between

events, F (·) must be inverted every time we draw an event. Second, as Lewis and

Shedler have pointed out, there may be cases where Xi+1 −Xi is not a proper random

variable and may be infinite. We have found empirically that this method works very

well under exponentially distributed failure and repair rates and certain 2-parameter

Weibull distributions, but is, in general, quite inefficient.

The underlying algorithms for processing failure events are very similar to the

algorithms used for failure biasing under uniformization. There are two exceptions:

repair events are not directly scheduled and the likelihood ratio (and the event times)

is based on the actual instantaneous event rate λ(t) + µ(t) instead of β.

5.3 High-Fidelity Reliability (HFR) Simulator

We have designed and built High-Fidelity Reliability (HFR) Simulator, a

Monte Carlo reliability simulator, enabling “apples to apples” reliability comparisons
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of MDS codes, flat codes, Weaver codes, and simple product codes (SPC). The HFR

Simulator is high-fidelity in that it accurately simulates the reliability of erasure codes

with irregular fault tolerance that can tolerate two or more disk failures, with regard to

both disk and sector failures. The key to high-fidelity simulation is effective bookkeep-

ing : tracking which disk and sector failures have occurred, and efficiently determining

if the failures constitute a data loss event. It is distinguished from the simulator that

Elerath and Pecht recently described [14], by its ability to simulate the reliability of

arbitrary, linear multi-disk fault tolerant erasure codes. The inclusion of sector failure

and scrub rate models, and the accurate modeling of disk rebuilds, makes the HFR

Simulator a more accurate tool than the recent Markov models proposed for erasure

codes with irregular fault tolerance [25].

The HFR Simulator evaluates the reliability of a single array and calculates

system reliability using the techniques presented in Section 5.1. In this section we make

the details presented in Section 5.1 more concrete by describing simulation architecture,

which includes simulation input and supporting structures.

5.3.1 Architecture

A high-level architectural overview is shown in Figure 5.2. As shown, there

are three major configurations used as input to the simulator:

Statistical Distribution Specification This configuration provides failure and re-

pair information on the devices we are simulating. Each device may have its own

unique failure and repair characteristics. In the current implementation, each de-

vice has a specific failure distribution, repair distribution and sector failure model.

Symbol Layout Specification In order to provide high-fidelity simulation, a map-

ping of individual code symbols to sectors is necessary. The symbol layout specifi-

cation is a mapping from code symbols (data and parity) to strips. The individual

sectors can easily be computed from this mapping.

Fault Tolerance Specification In previous reliability models, the underlying erasure

code was assumed to be MDS, making the determination of data loss events trivial.

Since our architecture accommodates any linear erasure code, more information is
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Figure 5.2: Overview of the HFR Simulator.

needed to determine a data loss event. At a basic level, a code’s mel or generator

matrix is sufficient to fully describe the fault tolerance of the code. We include

the mel, generator matrix and a new structure, called the fault-tolerance matrix

for accurately and efficiently determining a data loss event.

While the statistical distribution specification and layout specifications are

fairly straightforward, the fault tolerance specification deserves further attention. We

detail how the structures are created in Section 5.3.2. In section 5.3.3 we show how

these structures are used to create the data loss function, dl(), referenced in Section 5.1.

Once the simulator is initialized with a specific configuration file, a simulation

mode is chosen. Currently, there are three modes of operation: regular, uniformization

with balanced failure biasing and direct sampling with balanced failure biasing. Each of

these techniques were described in Section 5.1. During the course of a single iteration,

the simulator keeps track of current device failures, current sector failures and the

life/rebuild clocks of each device. Depending on the mode of simulation, failure and
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repair schedules may also be indexed.

5.3.2 Fault Tolerance Matrix

Hafner and Rao constructed a vector of conditional probabilities in which the

ith entry indicates the probability that i erasures are tolerated [25]. They used the

conditional probabilities vector in a Markov model of the reliability of irregular erasure

codes. They construct the conditional probabilities vector by performing matrix oper-

ations [24] on every combination of strip failures of size i up to the Hamming distance

(or some other bound).

We construct the complement from the mel. First, the mel can be transformed

into the erasures list (el). The erasures list consists of every erasure pattern for a code.

The el is a super set of the mel, and every element in it is either a minimal erasure or

a super set of at least one minimal erasure. To transform a mel into the corresponding

el requires only set and bitmap operations. These operations are computationally more

efficient than using matrix methods to determine every erasure pattern as was done to

calculate the conditional probabilities vector. Second, the erasures vector (ev) is to the

el what the mev is to the mel, and is easily determined given the el. Finally, the

fault tolerance vector is determined directly from the ev. The fault tolerance vector

is the complement of the conditional probabilities vector; the ith entry indicates the

probability that data is lost given i failures. The ith entry of the ev, ei, is the number

of erasure patterns of size i. For a code with n symbols, the ith entry of the fault

tolerance vector, fi, is thus fi = ei/
(

n
i

)

.

The fault tolerance vector is sufficient for describing the reliability of flat codes,

but does not describe the reliability of irregular Vertical and HoVer codes. Irregular

codes such as Weaver codes store multiple data symbols and parity symbols in each

strip. Thus, sets of disk (strip) and sector (symbol) failures of some sizes may or may

not lead to data loss; it depends on which disks and which sectors fail.

We have generalized the fault tolerance vector. The fault tolerance matrix

describes the probability that a specific number of disk and sector failures leads to data

loss. The jth column of the ith row of the fault tolerance matrix gives the conditional

probability that j sector failures leads to data loss given i disks have failed. Indices for
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columns and rows begin at zero. Column zero of the fault tolerance matrix is effectively

the fault tolerance vector (prepended with a zero). Row zero of the fault tolerance

matrix is constructed in a similar manner to the fault tolerance vector, though the ftm

is based on symbol failures rather than strip failures. Subsequent rows are somewhat

more difficult to construct, because the el must be reevaluated for every set of possible

strip failures to determine how many combinations of additional symbol failures lead to

data loss. This becomes quite intensive as codesize increases.

5.3.3 Bookkeeping

As we have described in Section 5.1, the dl(d, s) function takes a set of disk

and sector failures as input and returns if a data loss event has occurred. There are

three ways to determine if a set of failure events lead to data loss: perform a matrix

rank test, compare the set of failures with the mel, and precompute the fault tolerance

matrix (ftm) to determine the probability that a certain number of disk and sector

failures leads to data loss. In all three cases, separate tests may have to be performed

for each distinct sector failure, since such failures are likely in distinct stripes. The HFR

Simulator currently implements ftm, mel and rank test processing.

5.3.3.1 Matrix rank bookkeeping

Disk (strip) and sector failures can be tested to determine if a data loss event

has occurred using matrix methods (e.g., a rank test or some variant [24]). This test is

effectively the same as attempting to rebuild failed data. A matrix rank test has to be

performed for each set of concurrent failures.

A matrix rank test can be an expensive operation since it requires O(k2) op-

erations. For small, flat codes matrix rank tests are not too expensive. However, HoVer

codes such as the evenodd parity-check array code has a very large k , because k is the

number of data symbols, not data disks. For example, a 12 disk evenodd code based

on prime p = 11 has k = 110 data symbols and m = 20 parity symbols. A rank test for

a matrix of this size is expensive.
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5.3.3.2 MEL bookkeeping

The HFR Simulator can use the mel of an erasure code to perform the book-

keeping necessary to determine if a combination of disk and sector failures leads to

data loss. A bookkeeping copy of the mel is maintained for each stripe containing an

outstanding sector failure. This is necessary, since independent sector failures in differ-

ent stripes may not affect one another. A bookkeeping copy is also maintained for all

outstanding disk failures. Only one copy is needed because a single disk failure affects

all stripes in a single array. We treat disk failures as correlated sector failures, thus

we can determine if a data loss event has occurred by evaluating the intersection of a

stripe’s copy of the mel against the bookkeeping mel that exists for the disks. Fresh

mel copies are created and manipulated whenever there is a period of interest : a time

period during which a sufficient number of failure events overlap for there to be risk of

data loss.

As an example of how a bookkeeping copy of the mel is updated by the

simulator, consider the mel for the (5,3)-flat listed in Section 3.4. Each time a failure

occurs, a bookkeeping copy of the mel is updated by removing the failed symbol from

each minimal erasure in which it is a member. An empty minimal erasure in the

bookkeeping copy means that data is lost. Consider the the bookkeeping mel if symbol

s7 fails and then symbol s4 fails: after symbol s7 fails, the bookkeeping mel is {(s4),

(s0, s1, s4), (s0, s1), (s0, s2, s6), (s0, s3, s5), (s1, s2, s3), (s1, s5, s6), (s2, s4, s5), (s2, s5),

(s3, s4, s6), (s3, s6)}; and, after symbol s4 fails, the bookkeeping mel is {(), (s0, s1),

(s0, s1), (s0, s2, s6), (s0, s3, s5), (s1, s2, s3), (s1, s5, s6), (s2, s5), (s2, s5), (s3, s6), (s3, s6)}.

The () entry in the final bookkeeping mel indicates that data loss has occurred.

As with Tanner graphs, minimal erasures are represented as bitmaps (i.e., as

an integer less than 2k+m). Using this data structure, deleting an element from a set

involves bitwise-xor, adding an element to a set is bitwise-OR and testing if an element

is in a set uses bitwise-AND. Each bookkeeping mel is stored as a dictionary keyed on

minimal erasures. Each entry in a bookkeeping mel is initialized to be the minimal

erasure (i.e., the initial value is the key). Another dictionary, the bookkeeping index,

keyed on code symbols, lists all minimal erasures for which the symbol is a member.

When some symbol is erased or recovered, the bookkeeping index is used to determine
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which entries in the pertinent bookkeeping mel to update. If a value in a bookkeeping

mel becomes zero, then a data loss event has occurred.

It is possible to reduce the size of the mel used for bookkeeping. The reliability

is dominated by the minimal erasures with lowest weight. For flat codes, a weight cutoff

distance above which minimal erasures are unnecessary for bookkeeping works. A cutoff

of two greater than the Hamming distance works for the parameters we have used. For

HoVer codes, care must be taken since every disk (strip) failure results in multiple

sector (symbol) failures. The Hamming distance needs to be multiplied by the number

of elements per strip for such codes. In general, this does not prune much of the mel.

Instead, processing of the mel similar to that which is necessary to determine the fault

tolerance matrix (cf. Section 5.3.3.3) can produce a pruned mel that is sufficiently

accurate.

5.3.3.3 FTM bookkeeping

The HFR Simulator can perform bookkeeping using the fault tolerance matrix

(ftm). This requires additional analysis of the code a priori to determine the ftm.

The fault tolerance matrix is used to determine if sector failures in conjunction with

strip failures leads to data loss.

Consider a traditional double disk fault tolerant parity check array code such as

evenodd. First, consider the fault tolerance vector that only accounts for disk failures.

For any evenodd code, the ftv is (0, 0, 1) because the code tolerates all one and two

disk failures, but no three disk failures.

Now, consider the fault tolerance matrix for an evenodd code. The first row of

the ftm begins (0, 0, 0, x, . . . ), indicating that with probability x, a triple symbol failure

leads to data loss. The second row begins (0, 0, y, . . . ), indicating that with probability

y, a two sector failures in conjunction with a single strip failure leads to data loss. The

third row begins (0, 1, 1, . . . ), indicating that with probability 1, any additional sector

failure in conjunction with a double strip failure leads to data loss. Finally, the fourth

row begins (1, 1, . . . ) and indicates that the loss of any three strips leads to data loss.

Similar to the prefix of the mel, only the first couple non-zero entries in each

row of the ftm are required for accuracy. Truncating the fault tolerance vector and
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matrix reduces the amount of preprocessing necessary before running a simulation.

The layout of an erasure code affects the construction of the ftv and the ftm.

If a code has a static layout, i.e., a fixed assignment of code symbols to disks, then the

construction methods described above are correct. However, if a code has a rotated

layout, i.e., the assignment of code symbols to disks is staggered from stripe to stripe

to ensure that load is balanced across all devices, and the ftv and ftm need to be

modified. Specifically, the likelihood that disk failures, exclusive of sector failures, leads

to data loss is modified. First, consider the ftv for a code with n = 10 symbols and

an mev of (0, 1, . . . ), i.e., with one minimal erasure of size two and so on. With a static

placement, the ftv is (0, 1
45 , . . . ). With a rotated placement, the fact that each stripe

is rotated leads to the minimal erasure repeating on 10 pairs of devices, and so the ftv

is (0, 1045 , . . . ). Similar reasoning is applied to correctly construct the ftm. Note that a

rotated placement of an irregular erasure code reduces its reliability. In some sense, the

code becomes “less” irregular because of the rotational symmetry across stripes.

The HFR Simulator uses the probabilities in the ftv and ftm to determine

the likelihood that a given set of disk and sector failures leads to data loss. The ftv

is used for regular codes and flat irregular codes, and the ftm is used for HoVer and

Vertical irregular codes (i.e. array codes).

5.4 Implementation

Currently, there are two versions of the HFR Simulator: HFRS v.1 and HFRS

v.2. The underlying framework of HFRS v.1 and HFRS v.2 are extremely similar.

Both versions implement the novel bookkeeping structures, have the ability to model

heterogeneous devices with varied failure and repair distributions, account for sector

errors and have the ability to keep track of the critically exposed region during rebuild.

The primary difference between the versions lies in the reliability metric and efficiency.

While HFRS v.1 is relatively inefficient and reports mttdl (or dle per pb-year), HFRS

v.2 is very efficient and reports the probability of data loss for a specified mission time.

Both HFRS v.1 and HFRS v.2 are written in Python and are each around

2500 lines of code (not including supporting modules such as the mel and bit-matrix

operations). HFRS v.1 relies on Python’s random library for all random number gener-
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ation and statistical distributions. HFRS v.2 uses the open source multi-precision math

library (mpmath) for random number generation and floating point calculations. Due

to the lack of flexibility in most statistical packages for Python, I created a statistical

distribution module that implements the Weibull distribution specifically for HFRS v.2.

5.4.1 HFRS v.1

The original implementation of the HFR Simulator, called HFRS v.1, was

created in 2007 and relies on unbound discrete-event simulation. The basic simulation

loop resembles Algorithm 3. Instead of drawing sector failures during a critical mode,

sector failures are drawn individually, similar to Elerath and Pecht’s simulator [14].

HFRS v.1 has the ability to report reliability in terms of mttdl and data loss events

per petabyte year dle per pb-year. A sensitivity analysis was performed using codes

with a Hamming distance of at most 3.

The fundamental limitation of HFRS v.1 was efficiency. HFRS v.1 had two

major inefficiencies. First, as stated in Section 5.1, standard simulation of highly fault-

tolerant codes is extremely inefficient. This limitation is overcome by the creation of

HFRS v.2, which incorporates importance sampling techniques to efficiently simulate

highly fault tolerant systems. Where HFRS v.1 only has the ability to simulate 2 disk-

fault tolerant codes, HFRS v.2 can efficiently simulate up to 4 disk fault tolerant codes.

Second, treating both disk failures and sector failures as first class events can be quite

inefficient, since a great deal of sector failures are drawn between disk failures. Most

of the sector failure events do not make a significant contribution to reliability. As we

have argued, the current disk and sector failure models are most efficiently modeled by

drawing sector failures in the critical mode. In the event that multiple, concurrent sector

failures is a dominant failure mode, simulations must use the sector failure mechanism

of HFRS v.1.

5.4.2 HFRS v.2

HFRS v.2 was created to overcome the inefficiencies of HFRS v.1. There are

three major differences between the implementations: the outer simulation loop, ability

to efficiently simulate rare events and the use of a different, but comparable sector failure
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framework. First, HFRS v.2 is a mission time-based simulator; thus, all reliability

estimates are reported in probability of data loss over a time horizon. Second, under a

mission time-based simulation, importance sampling techniques are used to efficiently

simulate highly fault-tolerant codes. Both HFRS v.1 and HFRS v.2 have comparable

performance for single disk fault tolerant systems; HFRS v.2 tends to be more efficient

for double disk fault tolerant and beyond. Finally, to further increase efficiency and

maintain balanced failure rates, sector failures are treated as second-class events in

HFRS v.2 and the scrubbing interval is incorporated into the sector failure probability.

That is, sector failures are only drawn directly after a first-class event (i.e. disk failure)

and the sector failure probability distribution incorporates both latent sector errors and

the corresponding scrubbing interval. Note, that this sector failure model can effectively

perform the same analysis as HFRS v.1 by drawing for sector failures after each disk

failure event. In the current implementation, sector failures are only drawn during the

critical mode.

5.4.3 Supporting Modules

I created a library to implement analytical calculations, called markov model.

The library has the ability to simulate and analytically solve arbitrary Markov models.

I have implemented a special purpose modeling language that allows the evaluation of

arbitrary models. Additionally, the library implements balanced failure biasing in a

Markov chain. The library solves steady state measures (i.e. mttdl) using the linear

algebra package in NumPy and transient measures (i.e. probability of data loss) using

the Runge-Kutta numerical methods implemented in SciPy. We use markov model to

verify the accuracy of the simulator.

5.4.4 Use of HFRS v.1 and HFRS v.2

The techniques used to create HFRS v.1 and HFRS v.2 have been used in a

variety of projects outside of this work. The sensitivity analysis performed using HFRS

v.1 highlighted the power of simple product codes in the face of sector errors, which led

to the adoption of such codes in the Pergamum system [58]. The reliability calculations

used to verify the encoding strategy in Pergamum used an updated codepath of HFRS
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v.1. In addition, recent work in large-stripe erasure codes also relies on HFRS v.1 [62].

The study performed in Chapter 7 relied heavily on HFRS v.1 [20]. The work in power-

aware coding (cf. Chapter 8) relies on HFRS v.2.

Some of the supporting modules have been used outside of the HFR Simulator

work. The markov model package was used to estimate reliability in two other UCSC

projects [6, 19].

5.5 Summary

In this chapter we have described methods used to perform standard simulation

of erasure-coded storage systems. We have combined simulation, importance sampling

techniques and novel bookkeeping structures into a single simulation framework for

evaluating the reliability of erasure-coded storage systems: the High-Fidelity Reliability

(HFR) Simulator. We have described the implementation of two versions of the HFR

Simulator. Both versions represent the most advanced simulation environments for

erasure-coded storage systems. The focus of the next chapter is a detailed, empirical

study based on HFRS v.1 and HFRS v.2.
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Chapter 6

Evaluation of the High-Fidelity

Reliability (HFR) Simulator

In this chapter, we evaluate the HFR Simulator. The evaluation is split into

seven parts that rely on both versions of the HFR Simulator: HFRS v.2 and HFRS

v.1. While, HFRS v.2 is much more efficient that HFRS v.1, a sensitivity analysis was

performed using HFRS v.1, which is interesting and worth mentioning.

We begin by describing the parameters used in all of the simulations. Pa-

rameters include device failure distributions, device repair distributions, sector error

distributions and erasure codes. This evaluation is mostly exploratory and consists of a

detailed validation, sensitivity analysis and reliability comparison of 17 distinct erasure

codes. The seven parts of this evaluation are as follows:

Validation of HFRS v.1 and HFRS v.2. We validate the HFRS v.1 simulator against

the Elerath and Pecht’s simulator [14] and the Markov model shown in Figure 4.5.

Since HFRS v.2 is more sophisticated than any previous reliability simulator, we

must validate simple HFRS v.2 configurations against comparable Markov models.

Sensitivity of IS parameters. As mentioned in Chapter 5, the parameters used for

importance sampling must be found empirically. We explore a spectrum of IS pa-

rameters under varied fault tolerance and constant failure/repair distributions to

determine both parameter sensitivity and appropriate parameters for simulation.

Sensitivity of failure and repair distributions. One of the main arguments against
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the use of Markov models is that exponential distributions do not fully capture

actual failure and repair distributions. Current data suggests that disk failure and

repair can be modeled by Weibull distributions. We compare the reliabilities of

Weibull distributed and exponentially distributed failures and repairs. The com-

parison is as follows. We choose a Weibull failure or repair distribution with mean

λ. We compare the reliability of this distribution under simulation with an expo-

nential distribution with mean λ. This allows us to determine if time dependence

has an effect on reliability.

Code sensitivity under varied rebuild rate, scrub rate and sector failure rate.

We compare the relative reliability of four structurally different codes as a func-

tion of rebuild rate, scrub rate and sector failure rate. This comparison allows

us to determine sensitivity of code structure to specific failure and repair char-

acteristics. We also study the reliability of SPC codes, which if used correctly,

masksector errors.

Comparison of sector failure models. The relative accuracy of the sector error mod-

els discussed in Section 4.3 are compared. We compare the reliability approxima-

tions given by Markov models to that of simulation. Such a comparison allows us

to determine the difference between a model that includes the critical region of

the rebuild process and a model that ignores the critical region.

Sensitivity of bookkeeping structures. The HFR Simulator has novel structures

for identifying of data loss events. These bookkeeping structures, described in

Section 5.3.3, result in different running times. We compare the resulting reli-

ability calculation of each structure to determine the relative accuracy of each

technique.

Apples-to-apples reliability comparison. Finally, we perform the first apples-to-

apples, high-fidelity comparison of a variety of erasure codes. The results are

apples-to-apples because each code is evaluated under the same framework, op-

posed to traditional modeling, which may require a different model for each system

instance. In the analysis, we compare the relative reliabilities of MDS codes, flat

xor-based codes and xor-based array codes.
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distr. scale shape location

Disk Failure 461, 386 1.12 0.0

Disk Repair 12.0 2.0 6.0

Table 6.1: Parameters for the Weibull distributions used to model disk failures and
repairs.

All measurements are taken from HFRS v.1, HFRS v.2 and our markov model

module. The HFRS v.1 measurements represent a study that was conducted roughly

two years prior to the development of HFRS v.2. The HFRS v.1 numbers represent

mttdl and are presented to validate the design of the simulator and present a few key

results found using HFRS v.1. Most of the analysis is carried out using HFRS v.2, which

is much more efficient than HFRS v.1. HFRS v.2 reports reliability as the probability

of data loss within a specified mission time (unreliability).

6.1 Simulation Parameters

We use the same disk failure and repair parameters for simulations with the

HFR Simulator as Elerath and Pecht (cf. Table 2 in [14]). The disk failure distribution

is based on failure data and is modeled as a Weibull with a scale of 461, 386, a shape

of 1.12 and location 0. The disk repair distribution is also Weibull with scale 12, shape

2.0 and location 6. Elerath and Pecht use this repair distribution to enforce a 6 hour

minimum on rebuilds. The high shape parameter ensures that rebuilds will not take

too long. We rely on the scale parameters of these distributions where exponential

distributions are used.

A reasonable failure distribution for sector failures has yet to surface. The

current state-of-the-art derives sector failure rates from the ber and a given workload.

All current models assume the rates are exponentially distributed [29, 56, 14].

HFRS v.1 uses the same sector error and scrub model as Elerath and Pecht [14].

Latent sector errors are exponentially distributed with scale parameter 9259 and scrubs

are Weibull distributed with location 6, scale 168 and shape 3.

For HFRS v.2, we use the model presented by Iliadis et al. for three reasons.
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First, the effect of scrubbing on sector failures is included into a single probability, PS

(cf. Section 4.3.2), which makes the model easy to incorporate into simulations that use

failure biasing. Second, the model is extensible: we have shown in Section 4.3.2 how

time dependence could be added into the model. Finally, it enforces a more strict bound

on the scrubbing interval than the model developed by Elerath and Pecht. Elerath and

Pecht attempt to enforce bounds on the scrubbing interval by adjusting the shape and

location of a Weibull distribution.

The parameters of the latent sector error and scrub model for HFRS v.2 are as

follows. We base our sector failure model on the probability proposed by Iliadis et al.:

PS(t) =
(

1− e−h(t mod TS)
)

Pe.

Instead of performing calculations in years, our calculations are in hours. We use this

model with a load (h) of 0.0047, a scrub interval (TS) of 168 hours and a sector error

probability (Pe) of 4.096× 10−11. These parameters are consistent with the parameters

used in [14].

The parameters used for balanced failure biasing in HFRS v.2 are as follows.

The β parameter used for sampling from an exponential distribution under uniformiza-

tion is chosen as max{h(t)} ·2, 0 ≤ t ≤ 3/µ, where h(·) is the hazard function with scale

µ (µ is the scale of the repair distribution) and 3/µ is an upper bound on the repair

time. This particular parameter was chosen experientially, since it appears to give good

estimates under the systems we analyze. Similar parameters were used in other studies

that use uniformization [40]. Our failure biasing parameter range of 0.2 to 0.5 are also

in accordance with previous studies. We found that under both direct sampling and

uniformization this range yields good estimates.

We model 300GB disks with 512B sectors, i.e., there are s = 585937500 sectors

per disk. We use a concurrent rebuild policy for all multi-disk fault tolerant codes. The

HFR Simulator uses the ftv and/or ftm for bookkeeping in most experiments. The

experiments which use the mel for bookkeeping list this explicitly.

6.1.1 Erasure Codes used in the Analysis

The fault tolerance, rate, and reliability are listed for each code under evalua-

tion. Fault tolerance is measured in terms of the Hamming distance, mev, ftv, and/or
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code Hamming distance rate number of disks

(16,4)-mds 5 0.80 20

(17,3)-mds 4 0.85 20

(15,5)-flat 3 0.75 20

(16,4)-flat 2 0.80 20

(5,3)-mds 4 0.63 8

(6,2)-mds 3 0.75 8

(7,1)-mds 2 0.88 8

(36,12)-evenodd 3 0.75 8

(36,12)-rdp 3 0.75 8

(42,12)-spc 4/2 0.75 8

(4,4)-flat 4 0.50 8

(5,3)-flat 2 0.63 8

(6,2)-flat 2 0.75 8

(8,8,1)-weaver 2 0.50 8

(8,8,2)-weaver 3 0.50 8

(8,8,3)-weaver 4 0.50 8

(35,14)-xcode 3 0.71 7

Table 6.2: List of evaluated erasure codes.

ftm. Hamming distance d is a coarse-grained fault tolerance measure for irregular

codes and the primary measure for MDS codes. We sometimes list two numbers for the

Hamming distance, e.g., a/b. The first number a corresponds to the traditional Ham-

ming distance with regard to symbol failures, and the second number, b, corresponds

to the “disk” Hamming distance with regard to strip/disk failures. For some Vertical

and HoVer codes, the value of b can be less than that of a. Rate characterizes the space

efficiency of the code; it is the fraction of symbols in the code that are data symbols

(rate cannot exceed k/(k +m)).

Table 6.2 lists the codes evaluated in the reliability comparison. The Hamming

distance, rate and number of disks are given for each code.

Five MDS codes are used in the evaluation: (16,4)-mds, (17,3)-mds, (5,3)-mds,

(6,2)-mds and (7,1)-mds. These are flat codes, i.e., each strip consists of a single symbol.

(7,1)-mds is the same as an 8 disk raid 4 code.
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code fault tolerance matrix (ftm)

(36,12)-evenodd 0.0000, 0.0000, 0.0000, 0.0018, . . .

0.0000, 0.0000, 0.0469, 0.1344, . . .

0.0000, 1.0000, 1.0000, 1.0000, . . .

1.0000, 1.0000, 1.0000, 1.0000, . . .

(36,12)-rdp 0.0000, 0.0000, 0.0000, 0.0021, . . .

0.0000, 0.0000, 0.0440, 0.1500, . . .

0.0000, 1.0000, 1.0000, 1.0000, . . .

1.0000, 1.0000, 1.0000, 1.0000, . . .

(35,14)-xcode 0.0000, 0.0000, 0.0000, 0.0019, . . .

0.0000, 0.0000, 0.0383, 0.1314, . . .

0.0000, 1.0000, 1.0000, 1.0000, . . .

1.0000, 1.0000, 1.0000, 1.0000, . . .

(42,12)-spc 0.0000, 0.0000, 0.0000, 0.0000, 0.0016, . . .

0.0000, 0.0000, 0.1250, 0.3484, 0.6034, . . .

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, . . .

Table 6.3: Fault tolerance matrix for parity-check array codes. Each row corresponds
to a disk failure starting from 0 and each column corresponds to a correlated sector
failures starting from 0.

Four parity-check array codes are used in the evaluation: (36,12)-evenodd,

(36,12)-rdp, (42,12)-spc, and (48,16)-xcode. The evenodd and rdp code are both

constructed for prime number 7. The evenodd code is shortened by one column so

as to only use 8 disks rather than 9. The X-code is constructed with 7 disks, each of

which has 5 data symbols and 2 parity symbols per strip. Note, that the X-code has

a slightly lower rate than the other parity-check array codes. We used n = 7 disks for

the X-code to make its rate as similar to the other parity-check array codes as possible.

The (42,14)-spc has 6 symbols in each strip; the first 7 disks each have 5 data symbols

and one parity symbol, and the last disk has 6 parity symbols. This spc construction

was chosen so that it has the same rate as the evenodd and rdp codes.

The Hamming distance of the spc code at the symbol level is 4. However

because of the parity symbol at the end of each data strip, the “disk Hamming distance”

is only 2. The ftm for each parity-check array code is given in Table 6.3.

A few Weaver codes are included in the comparison [25]. These codes are
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code fault tolerance matrix (ftm)

(8,8,1)-weaver 0.0000, 0.0000, 0.0667, 0.2000, . . .

0.0000, 0.1428, 0.3406, 0.5604, . . .

0.2857, 0.5238, 0.7402, 0.8961, . . .

0.7142, 0.8857, 0.9746, 1.0000, . . .

. . .

(8,8,2)-weaver 0.0000, 0.0000, 0.0000, 0.0143, . . .

0.0000, 0.0000, 0.0440, 0.1483, . . .

0.0000, 0.1190, 0.3073, 0.5584, . . .

0.2857, 0.5428, 0.8158, 1.0000, . . .

. . .

(8,8,3)-weaver 0.0000, 0.0000, 0.0000, 0.0000, 0.0044, . . .

0.0000, 0.0000, 0.0000, 0.0110, 0.0579, . . .

0.0000, 0.0000, 0.0346, 0.1662, 0.4949, . . .

0.0000, 0.1143, 0.4413, 0.9833, 1.000, . . .

. . .

Table 6.4: Fault tolerance matrix for Weaver codes. Each row corresponds to a disk
failure starting from 0 and each column corresponds to a correlated sector failures
starting from 0.

labeled as (k ,k ,t)-weaver codes. They consist of k data symbols, m = k parity symbols,

and are based on the Weaver construction for t of 1, 2 and 3, which represents the disk

fault-tolerance of each code [25]. Each of the Weaver codes has a rate of 0.5. The ftm

for each Weaver code evaluated in the comparison is given in Table 6.4.

Five irregular xor-based erasure codes are used in the evaluation: (4,4)-flat,

(5,3)-flat, (6,2)-flat, (15,5)-flat and (16,4)-flat. The raid 10 code is often referred

to as “replicated striping”. The flat codes were found via prior work by Wylie and

Swaminathan [65]. Table 6.12 lists the parity bitmaps (cf. Section 3.4.2) and ftv of

these codes. In Table 6.2 the Hamming distance listed corresponds to the first non-zero

entry in the ftv. All of the flat codes are static (i.e., the codes are not rotated to

balance load), though the HFR Simulator has the ability to handle such layouts.
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code parity bitmaps fault tolerance vector (ftv)

(4,4)-flat 7, 11, 13, 14 (0.000, 0.000, 0.000, 0.200, 1.000)

(15,5)-flat 255, 3855, 13107, 23756, 25941 (0.000, 0.000, 0.028, 0.151, 0.479, 1.000)

(16,4)-flat 511, 7711, 26215, 43691 (0.000, 0.026, 0.149, 0.479, 1.000)

(5,3)-flat 7, 11, 29 (0.000, 0.036, 0.286, 1.000)

(6,2)-flat 15, 51 (0.000, 0.250, 1.000)

Table 6.5: Fault tolerance vector for flat codes.

6.2 Validating Simulation via Markov Models

Here we validate both versions of the HFR Simulator using comparable Markov

models. In Chapter 4 we argued that Markov models are not appropriate for accu-

rate, high-fidelity reliability analysis. Our validation tests the main paths of the HFR

Simulator by simulating simple systems: systems with exponential failure and repair

distributions, no critical mode sector errors and MDS codes. The validation provides

confidence in the results presented in this section.

6.2.1 Validation of HFRS v.1

To validate the correctness of the implementation of the HFRS v.1, we re-

produce results from another simulator and reproduce results of some Markov models.

Elerath and Pecht’s results in Table 3 of [14] were reproduced with HFRS v.1, which

are for a single disk fault tolerant MDS code, includes latent latent sector failures and

scrubbing, and are the result of Monte Carlo simulation. This is significant validation

because the Markov model validation described below only validates the correctness of

the simulator using exponential distributions for limited scenarios.

We validated the single-disk fault tolerant case without sector failures and

scrubbing with a traditional Markov model (cf. Figure 4.1 in Chapter 4). The HFR

Simulator produces numbers that are ≈ 10% less than the analytic results due to the

Markov model. We used the following parameters for the Markov model : n = 8,

λ = 1/461386 (disk failure rate), µ = 1/12 (disk repair rate). The simulator produced

an mttdl of 2.95 × 108 ± 1.83 × 107, while the Markov model produced an mttdl of
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3.17× 108.

The single-disk fault tolerant case with sector failures was validated against

a Markov model. Figure 4.5 in Chapter 4 illustrates the Markov model. The Markov

model was validated with the following parameters: n = 8 (number of disks), λd =

1/461386 (disk failure rate), µd = 1/12 (disk rebuild ratE), λs = 1/9259 (sector failure

rate, per disk), µs = 1/168 (failed sector scrub rate), and s = 585937500 (number

of sectors per disk). The parameter ρ distributes the likelihood of a sector failure

occurring during rebuild between the data loss state and the latent sector failed state.

The simulator produced an mttdl of 4.944×105±5.54×104, while the Markov models

produced an MTTDL of 5.201× 105.

6.2.2 Validation of HFRS v.2

In order to validate the accuracy of the HFRS v.2, the reliability of five systems

are evaluated under simulation and analytically. In order to get accurate measurements

from the analytical models, systems with MDS codes are evaluated and do not account

for the critical region in the rebuild process. Throughout this subsection, we assume

that all disk failures and repairs are exponentially distributed.

Two types of models are evaluated in this section. First, the reliability under

a process where the state transitions are disk rebuilds and repairs is considered (cf.

Figure 4.2-(c) in Chapter 4). Second, sector failures are incorporated into the process (cf.

Figure 4.4 in Chapter 4). The resulting reliabilities of standard simulation (simreg),

balanced failure biasing under uniformization (bfbunif), balanced failure biasing with

direct sampling of the processes inverted rate function (bfbinv) and solving via the

Kolmogorov equations are compared. These are the techniques covered in Chapter 5.

The results presented in this section serve three purposes. First, the modes

of simulation are validated by comparing to a comparable analytic model. Second, the

relative accuracy of each simulation technique is compared. Finally, the performance

boost gained by simulating under importance sampling is illustrated.
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code sim. failure rel. err. run time analytical

type prob. (%) (s) prob.

(16,4)-mds

bfbunif 7.06× 10−15 49.18 3.08× 102

6.49× 10−15
bfbinv 6.87× 10−15 12.18 8.00× 102

simreg — — —

(17,3)-mds

bfbunif 6.69× 10−11 12.28 2.85× 102

6.46× 10−11
bfbinv 6.40× 10−11 5.51 7.68× 102

simreg — — —

(5,3)-mds

bfbunif 8.96× 10−13 11.35 5.88× 101

9.35× 10−13
bfbinv 9.43× 10−13 4.19 1.70× 102

simreg — — —

(6,2)-mds

bfbunif 2.10× 10−8 4.33 5.19× 101

2.17× 10−8
bfbinv 2.17× 10−8 2.23 1.36× 102

simreg 1.00× 10−7 164.50 2.25× 103

(7,1)-mds

bfbunif 2.83× 10−4 7.28 —

2.76× 10−4
bfbinv 2.76× 10−4 1.06 7.89× 101

simreg 2.58× 10−4 14.48 2.26× 103

Table 6.6: Simulator validation against an analytical model without sector failures (cf.
Figure 4.2-(c) in Chapter 4).

Table 6.6 provides a comparison of the reliability and performance of the sim-

ulator for 5 MDS codes. We run the failure biasing simulations for 100K iterations and

the standard simulations for 10M iterations. If the relative error exceeds 20%, then the

simulation is re-run, otherwise, we report the estimated reliability. For validation, the

simulated estimates are compared to the corresponding analytical estimates. Addition-

ally, we provide the running times of any simulation that yields a non-zero estimate.

It is obvious from the running times that the importance sampling techniques provide

a great deal of efficiency compared to standard simulation. As an example, the HFR

Simulator can simulate a 2 disk fault tolerant system and obtain a much more accurate

number in 2% of the time required under standard simulation. Additionally, we can get

reasonable estimates for systems that cannot be simulated via standard simulation in a

matter of minutes.

As shown in Table 6.6 the fast simulation techniques leads to quite accurate
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reliability estimates, even when the underlying system is highly fault tolerant. Ad-

ditionally, these estimates are obtainable in a reasonable amount of time. Obviously,

bfbinv gives the most accurate results for 3 and 4 disk fault-tolerant systems. This is

because the waiting times are sampled directly from an exponential distribution. The

higher variance and slightly less accurate measurements seen in the bfbunif simulations

are due to the fact that the process first samples from a thinned homogeneous process

instead of direct sampling. In the case of 1, 2 and 3 disk fault-tolerant systems, the

thinned process typically returns estimates with a low relative error. In the case of a 4

disk fault-tolerant system, many trials may be required to get a reasonable estimate.

The high relative error is most likely due to the excessive number of transitions

in a single iteration of a 4 disk fault tolerant system. This limitation is quite intuitive. At

every failure transition, the likelihood ratio is updated. As the fault tolerance increases,

the path lengths to the failure state increase (i.e. more failure and repair transitions).

These excessive state transitions may negatively impact the likelihood ratio, leading to

an estimate with high variance. This limitation is well known and methods for dealing

with it in Markovian processes generally “cancel” terms in the likelihood ratio. We do

not know of any methods for dealing with this issue in non-Markovian processes; thus,

we re-run must the 4 disk fault tolerant reliability simulations until we get a reasonable

estimates.

We believe that a 4 disk fault tolerant system may be the limit for the failure

biasing techniques and more advanced techniques will be required to accurately estimate

the reliability of systems with higher fault tolerance. One option is to augment the

failure biasing techniques with multi-level splitting techniques.

Table 6.7 contains the same simulations as Table 6.6 with latent sector failures.

As with the data shown in Table 6.6 the estimates are quite close to the analytical

estimates. We find an interesting performance consequence of including sector failures

in standard simulation. The running time of 10M iterations of the (7,1)-mds code takes

more than twice the amount of time as the simulation that does not include sector

failures. This is due to the additional bookkeeping required when checking for sector

errors. When there are one or more concurrent disk failures, all other disks participating
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code sim. failure rel. err. run time analytical

type prob. (%) (s) prob.

(16,4)-mds

bfbunif 6.48× 10−12 23.43 3.10× 102

7.00× 10−12
bfbinv 7.20× 10−12 16.08 8.00× 102

simreg — — —

(17,3)-mds

bfbunif 4.44× 10−8 10.24 2.99× 102

5.03× 10−8
bfbinv 4.99× 10−8 7.06 7.65× 102

simreg — — —

(5,3)-mds

bfbunif 5.85× 10−10 19.53 6.20× 101

7.59× 10−10
bfbinv 7.42× 10−10 12.61 1.69× 102

simreg — — —

(6,2)-mds

bfbunif 1.23× 10−5 10.67 5.99× 102

1.16× 10−5
bfbinv 1.14× 10−5 6.42 1.41× 102

simreg 1.19× 10−5 15.08 1866.05

(7,1)-mds

bfbunif 7.23× 10−2 4.65 5.41× 101

7.18× 10−2
bfbinv 7.19× 10−2 3.14 9.88× 101

simreg 7.18× 10−2 0.19 5804.12

Table 6.7: Simulator validation against an analytical model with sector failures (cf.
Figure 4.4 in Chapter 4).
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in the rebuild operation are checked for a sector error. Since the primary failure mode of

(7,1)-mds is a single disk failure with a latent sector failure, these sector failure checks

dominate the running time of each iteration.

This validation gives confidence that the HFR Simulator reports accurate reli-

ability estimates for systems having at most 4 disk fault tolerance. Beyond 4-disk fault

tolerance, additional techniques, such as multi-level splitting, will be necessary.

6.3 Sensitivity of IS Techniques

There are no general guidelines for determining the failure biasing parameters

for simulations using importance sampling. The two main parameters we need to find

are the uniformization rate parameter (β) and the failure biasing probability (Pfb).

Both parameters are used in Algorithm 5 in Chapter 5, which represents the core of the

uniformization-based importance sampling simulations presented in this chapter.

In this section, we determine the sensitivity of the Pfb parameter under the

failure distributions, repair distributions and rate parameter (β) described in Section 6.1.

We determine the stability of Pfb with probabilities ranging from 0.1 to 0.9. This

analysis not only assures the stability of our techniques, it also provides us with stable

Pfb to be used throughout this chapter.

6.3.1 Failure Biasing Probability Sensitivity

Each point in the following graphs represents 50000 simulation runs with mis-

sion time of 10 years. Error bars represent the relative error of each estimate. The disk

failure distribution is exponential with rate 1/461386 and repairs are also exponential

with rate 1/12. Here we explore the effect of the failure biasing probability on the re-

sulting reliability estimate. Code Hamming distance, irregularity and size are varied to

determine factors that may affect a reliability estimate.

Figures 6.1-(a) and 6.1-(b) represent simulations that utilize failure biasing in

a thinned (uniformization) process. Figure 6.1-(a) shows the probability of data loss in

10 years for a variety of flatxor-based codes across a failure biasing spectra from 0.1

to 0.9. Figure 6.1-(b) is the same, except for MDS codes. We find that, when compared

81



to analytical estimates a failure biasing parameter between 0.2 and 0.4 appears to give

accurate reliability estimates across all codes.

It is also quite clear that under uniformization, the reliability estimates of

flatxor-based codes tend to be much more sensitive to the failure biasing parameter

than the MDS codes. This is most likely due to the additional “coin flips” required

when determining if a data loss event has occurred. As a consequence, evaluating a

system with irregular fault tolerance under uniformization may require more iterations

of the simulator before arriving at an accurate estimate.

Figures 6.2-(a) and 6.2-(b) show the sensitivity of simulations under the direct

sampling method. We find that the estimates in this case are much more stable than

uniformization. This is because the holding times in each state are essentially drawn

from the actual failure and repair distributions. While this type of simulation provides

extremely accurate estimates under exponential failures and repairs, it may not work

in general. In fact, the numerical methods package we used could not consistently

invert the cumulative hazard function when simulating with the distributions published

by Elerath and Pecht, thus the remainder of this evaluation relies solely on standard

simulation and the uniformization-based balanced failure biasing.

Figures 6.3-(a) and 6.3-(b) show the sensitivity of a uniformization-based sim-

ulation under Elerath and Pecht’s failure and repair distributions. Notice that changing

the failure and repair distributions from exponential to the associated Weibull distri-

butions results in a process that is very sensitive to the failure biasing parameter. As

the figures show, all estimates are stable for parameters in the range 0.2 to 0.4. As

the failure biasing parameter approaches 1, the resulting estimates slowly decrease in

value. As with the estimates shown in Figure 6.3 irregular codes appear to be much

more sensitive to the failure biasing parameter than the MDS codes. Additionally, the

same behavior is apparent in highly fault-tolerant codes.

Unfortunately, unlike the simulations that rely on exponential distributions,

we cannot verify the accuracy of each estimate using an analytical model. In the case of

the simulations using non-exponential distributions, we use a failure biasing parameter

in the range 0.2 to 0.4 and report the estimate with the lowest relative error. In addition

to this heuristic, we can also verify certain estimates against standard simulation.
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Figure 6.1: Sensitivity of failure biasing probabilities under uniformization with expo-
nential failure and repair distributions.
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Figure 6.2: Sensitivity of failure biasing probabilities under inverse transform with
exponential failure and repair distributions.
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Figure 6.3: Sensitivity of failure biasing probabilities with Elerath and Pecht’s failure
and repair distributions.
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6.4 Analysis of Failure and Repair Models

As we saw in Section 6.2, the efficiency of the HFR Simulator gives a system

designer the ability to perform detailed trending and sensitivity analysis. In this section

we explore the effect of various failure and rebuild models on system reliability. First,

shape parameter of a Weibull distribution is varied to determine the effect of increasing

(and decreasing) failure and repair rates on reliability. Second, the reliability estimates

of Weibull distributed failure and repair times are compared to reliability estimates from

an exponential distribution with the same mean to show the expected inaccuracy when

the failure or repair rate is held constant.

The first part of this analysis is straightforward: we compare the relative reli-

ability of systems having failure and repair characteristics drawn from different Weibull

distributions. In short, determine the sensitivity of the Weilbull shape parameter for

failures and repairs. The second part of this section is more subtle. Here we want to

determine if the exclusion of time dependence in a model makes a difference. This is

done by choosing a Weibull distribution with mean λ and using it as the failure or repair

distribution in simulation. A system is also modeled as a Markov model with failures or

repairs being exponentially distributed with mean λ. The output of each computation

is compared. The difference between the reliability estimate will provide an approxima-

tion on how the constant failure or repair rate of an exponential distribution (Markov

model) affects the reliability estimate.

6.4.1 Failure and Repair Distribution Sensitivity Analysis

As pointed out earlier in Chapter 4, a primary concern with analytical models

is their inability to handle time dependence. In this section, we explore the sensitivity of

failure and repair distributions on reliability estimates. The spectrum of parameters is

motivated by Elerath and Pecht’s failure and repair distributions. The scale parameter

is held constant (461386 for failures and 12 for repairs) and shape parameter is varied

(0.90 to 1.30 for failures and 1.0 to 2.0 for repairs). Additionally, the location parameter

is varied from 0.0 to 12.0 to better understand the impact of the location parameter on

repairs.

Figure 6.4-(a) shows the effect of increasing failure shape on reliability of
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Figure 6.4: Effect of device failure distribution shape on system reliability.
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(16,4)-mds, (17,3)-mds, (5,3)-mds, (6,2)-mds and (7,1)-mds. We hold the scale at

461386 constant, the repair distribution constant with a repair scale of 12 and evalu-

ate the reliability of each code with the following two-parameter Weibull distributions:

Weibull(461386, 0.9), Weibull(461386, 1.0), Weibull(461386, 1.1), Weibull(461386, 1.2)

and Weibull(461386, 1.3). The respective means of each failure distribution are: 485462,

461386, 445197, 434005 and 426125.

Figure 6.4-(b) shows the instantaneous failure rate as a function of time for

each of the failure distributions. For distributions with a shape parameter less than

1, the failure rate starts high and decreases with time. The distribution with a shape

parameter of 1 is an exponential distribution and has a constant failure rate. The failure

rate for distributions with a shape parameter greater than 1 starts out low and increases

with time. Note that for all distributions with a shape parameter not equal to 1, the

failure rate will never reach that of the exponential distribution for the mission time

of 10 years; thus, the shape parameter alone does not necessarily capture the effect of

failure distribution on reliability.

As shown in Figure 6.4-(a) the underlying failure distribution can have a dra-

matic effect on system reliability. Looking across the spectrum of shapes, the estimated

reliability can varies in some cases by more than an order of magnitude.

While Figure 6.4-(a) shows that the underlying failure distribution can have

a dramatic effect on reliability, one may question the validity of a Markov model that

aggregates the details of a complex failure distribution into a single mean (i.e. the

shape parameter). Figures 6.5-(a) and 6.5-(b) show the reliability estimates taken from

simulation of the actual Weibull failure distributions and a Markov model that assumes

a constant failure rate taken as the mean of the Weibull distribution. Figure 6.5-(a)

corresponds to the (7,1)-mds code and Figure 6.5-(b) corresponds to the (16,4)-mds

code. As expected, the estimates for the failure distribution with a shape of 1 are close

to equal, since the failure rate also remains constant in simulation. Time dependence

matters when the shape parameter is not equal to 1 and we find that the estimates

provided by the Markov model may be off by a factor of 2 or more depending on the

failure distribution. This shows that in many cases, a time dependent failure distribution

cannot be estimated simply by its mean. This is especially true when the mission time
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Figure 6.5: Sensitivity of varied failure shape under simulation compared to an expo-
nential with the same mean in a comparable Markov model.
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of the simulation will not cover the entirety of the failure distribution.

A similar analysis was performed for repair distributions. The failure distri-

bution is a Weibull distribution with scale parameter 461386 and shape parameter 1.

The scale of the repair distribution is held at 12 and the shape parameter is varied

from 1.0 to 2.0. As Figure 6.6-(a) shows, a comparable Markov model may accurately

estimate reliability of a 1 disk fault-tolerant system simply using the mean of the actual

failure distribution. As the fault tolerance increases, the shape parameter may have a

larger effect on the estimated reliability, resulting in an inaccurate estimate provided by

a Markov model. This behavior is shown in Figure 6.6-(b), where the reliability taken

from a Markov model results in an estimate that can be a factor of two or more away

from the actual (simulated) reliability.

6.5 Erasure Code Sensitivity Analysis

Prior to the design and implementation of HFRS v.2, we performed a code-

based sensitivity analysis. The HFRS v.1 simulator is used to perform an analysis of

the sensitivity of four representative codes to varying disk rebuild rates, sector fail-

ure rates and sector scrub rates. The four codes we analyze are (36,12)-evenodd,

(8,8,2)-weaver, (42,12)-spc, and (5,3)-flat. The goal of this sensitivity analysis is to

determine which codes are most sensitive to disk rebuild time, sector failure rate, and

scrub interval. The take away from this analysis is how different code constructions lead

to sensitivities to different system parameters.

Here we use a normalized metric, called data-loss events per petabyte-year

(dle per pb-year). dle per pb-year is measured as the inverse of the product of the

capacity of the array (in petabytes) and the mttdl (in years).

To speedup the analysis, we use a disk failure rate of λd = 1/100, 000 hours.

This rate is much higher than the disk failure rate used to generate the results in

Table 6.2. Decreasing the rate drastically lowers the running time of the simulator,

allowing us to quickly measure reliability across more configurations.

The disk failure rate remains constant throughout the analysis. A sensitivity

analysis is performed for each of the sector failure, disk rebuild, and sector scrub rates.

For each sensitivity analysis, all parameters are held constant except the one being
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Figure 6.6: Sensitivity of varied repair shape under simulation compared to an expo-
nential with the same mean in a comparable Markov model.
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analyzed.

Figures 6.7, 6.8, and 6.9 show the results of these experiments. The left most

data points in each figure is based the default parameters. In other words, the leftmost

point is the same data point across all three graphs. The other data points are nor-

malized with regard to the first data point. This is why the y-axis is unitless in each

of these graphs. Given a rate or time period (x-axis), the reliability of a code can be

calculated by multiplying the value for the initial data point by the corresponding y-

value. The dle per pb-year values for the left most data points are listed in Table 6.9.

Figures 6.7, 6.8, and 6.9 illustrate how all the codes exhibit linear sensitivity to each

parameter, but that each code exhibits a different rate of change. Note that the linear

increase corresponds to increased unreliability.

Figure 6.7 shows the effect of increasing disk rebuild time from 12 to 96 hours.

The reliability of (5,3)-flat is essentially unaffected by change in rebuild time. This

is because single-disk single-sector failures dominate the reliability of the code (there

exists a minimal erasure of size 2). The reliability of all of the other codes is dominated

by failure patterns involving double-disk failures and a single sector failure, and all are

similarly affected by disk rebuild time.

Figure 6.8 illustrates the effect of increasing sector failure rate from 1/9259

to 1/925, while holding all other rates constant at their default values. As we see the

spc code maintains roughly the same level of reliability as sector failure rate increases.

This is largely due to data loss being dominated by double-disk failures; the vertical

parity protects against single-disk single-sector failures. We were surprised that the

WEAVER code is more sensitive to increased sector failure rate than the evenodd

code. We expect this is because it is more likely that multiple sector failures exist at

the time of a double-disk failure. This would affect the WEAVER code more because

any sector failure causes data loss for the evenodd code, whereas only specific sector

failures cause data loss for the WEAVER code. Finally, Figure 6.9 shows the sensitivity

to scrub interval. As expected, Figure 6.9 is heavily correlated with the results in

Figure 6.8.

Overall, we find that rebuild rate has a smaller impact on reliability than

factors affecting sector failures, such as the actual failure rates and scrub times.
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code dle per pb-year

(36,12)-evenodd 0.0292

(42,12)-spc 0.0510

(5,3)-flat 1.50

(8,8,2)-weaver 0.00313

Table 6.8: Base dle per pb-year of codes in sensitivity analysis.

code dle per pb-year

(36,12)-evenodd 0.0292

(42,12)-spc 0.0510

(5,3)-flat 1.50

(8,8,2)-weaver 0.00313

Table 6.9: Base dle per pb-year of codes in sensitivity analysis.

94



rows rate spc spc-nc

6 0.750 0.022 0.748

9 0.788 0.021 0.796

12 0.808 0.022 0.806

15 0.820 0.022 0.851

18 0.830 0.022 0.817

Table 6.10: dle per pb-year

6.5.1 SPC codes

We evaluated the impact of adding rows to the 8 disk SPC code. Increasing

the number of rows increases the rate of the code. With a sufficiently large number

of rows, the rate of an 8 disk SPC code would approach 0.875 (that of a comparable

(7,1)-mds setup). The results of our analysis are listed in Table 6.10. As the number of

rows increases, the reliability remains almost constant. This is because the reliability

is dominated by single disk single sector failures, regardless of the number of rows in

the code. Amortizing the vertical parity over many rows, offers much greater relia-

bility than (7,1)-mds for a similar space efficiency. The reliability is premised on the

independence of sector failures. Recent results suggest that this may be a poor assump-

tion [3, 44]; others, however, have proposed extensions to SPC for tolerating bursts of

sector failures [10].

In addition, we find that as we increase the amount of vertical parity in a SPC

code, latent sector failures become extremely improbable. We compared simulation of

an SPC code to a Markov model without sector failures in [58]. We found that as the

amount of vertical parity is increased, the simulated mttdl estimates approach the

model with no sector failures. This observation is compelling in that scrub intervals can

be widened substantially if a sufficient amount of vertical parity is used. These tradeoffs

are left to future work.
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code approx. sim. trad. MM sim. trad. sim.

MM approx actual

latent sector errors

(16,4)-mds 9.23× 10−13 7.93× 10−13 7.00× 10−12 6.56× 10−12 3.03× 10−12

(17,3)-mds 1.31× 10−8 1.36× 10−8 5.03× 10−8 4.61× 10−8 2.31× 10−8

(5,3)-mds 1.92× 10−10 2.31× 10−10 7.59× 10−10 6.74× 10−10 3.48× 10−10

(6,2)-mds 5.88× 10−6 5.49× 10−6 1.16× 10−5 1.06× 10−5 7.79× 10−6

(7,1)-mds 7.18× 10−2 7.36× 10−2 7.18× 10−2 7.31× 10−2 7.51× 10−2

ber errors

(16,4)-mds 3.00× 10−12 2.76× 10−12 2.06× 10−11 1.64× 10−11 1.07× 10−11

(17,3)-mds 4.22× 10−8 3.98× 10−8 1.47× 10−7 1.43× 10−7 7.42× 10−8

(5,3)-mds 6.32× 10−10 7.62× 10−10 2.43× 10−9 2.36× 10−9 1.25× 10−9

(6,2)-mds 1.91× 10−5 2.03× 10−5 3.71× 10−5 3.87× 10−5 2.62× 10−5

(7,1)-mds 2.09× 10−1 2.10× 10−1 2.09× 10−1 2.11× 10−1 2.09× 10−1

Table 6.11: A comparison of sector failure models.

6.6 Comparison of BER and Latent Sector Error Models

In Section 4.3, we presented the two dominating models for sector failures in

storage systems. The first, called the ber model, derives the probability of a sector

error on each disk from the device capacity and the bit-error rate. This models the

occurrence of sector errors during the rebuild process. The second model, called the

latent sector error model, assumes that sector errors may occur outside of the rebuild

process and can be fixed by periodically scrubbing each disk and fixing the errors as

they occur. Similar to the ber model, a probability is derived based on the underlying

workload, the bit-error rate and the scrubbing frequency. The probability is used to

determine if latent sector errors exist on any of the drives during the rebuild process.

In Section 4.3, we argued that current sector failure models do not account

for the critical region when determining if a data loss event has occurred. The cur-

rent models assume that the critical region encompasses the entire capacity of a device.

We proposed two possible ways to accurately estimate the impact of sector errors on
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reliability by approximating the critical region. The first, assumes that at each suc-

cessive failure, all on-going rebuilds have repaired half of their to-be-rebuilt capacity

remaining since the last failure. The advantage of this approximation is the ability to

incorporate it into Markov models. The resulting reliability is called the approximate

estimate. The second and more robust estimate can only be done in simulation. The

robust estimate keeps track of the rebuild time of the repair that is first to finish in the

rebuild chain. This rebuild time is used to estimate the critically exposed sectors. The

resulting reliability is called the actual estimate.

Table 6.11 shows the estimated reliabilities of each sector failure model for 5

MDS codes. We call the estimates based on processes that do not keep track of the

critically exposed region traditional. Three main conclusions can be drawn from this

table. First, the reliabilities estimates by the ber model and latent sector model can

vary anywhere from a factor of 2 to an order of magnitude. In every case, the ber model

estimates are always larger than the latent sector error model. Second, the traditional

model may overestimate the probability of failure by an order of magnitude, as illustrates

by the approximated critical region during the rebuild process of a 4 disk fault-tolerant

code. Finally, as shown in the table, the expected “actual” probability of data loss

falls somewhere between the traditional approach and the approximate estimate. The

traditional estimate is roughly a factor of 2 from the expected “actual” probability.

The storage community has no yet reached a consensus on how to correctly

model sector errors. We believe the actual data loss probability will be between the

latent sector error estimates and the ber estimates, given the critical region is approx-

imated by the “actual” estimate.

6.7 Sensitivity of Bookkeeping Structures

The HFR Simulator supports three bookkeeping structures that are used to

determine if a data loss event has occurred. The structures, covered in Section 5.3.3,

are matrix rank, mel and ftm (or ftv). In this section, we evaluate the sensitivity of

these structures to both simulation performance and estimated reliability.

Table 6.12 shows the sensitivity of each structure on the estimated probability

of data loss across 5 flat XOR-based codes. The mel and a rank test are essentially
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ftv mel

code failure prob. rel. err. failure prob. rel. err. analytical

(4,4)-flat 2.07× 10−13 9.32 1.93× 10−13 9.60 1.87× 10−13

(15,5)-flat 1.21× 10−8 11.03 1.09× 10−8 11.77 1.23× 10−8

(16,4)-flat 5.15× 10−5 6.60 4.47× 10−5 7.69 4.94× 10−5

(5,3)-flat 9.74× 10−6 6.78 9.17× 10−6 22.23 9.88× 10−6

(6,2)-flat 6.87× 10−5 2.48 7.05× 10−5 2.49 6.91× 10−5

Table 6.12: Reliability comparison of ftv and mel

equivalent methods of determining data loss; thus, we only evaluate the mel. We built

an analytic model based on the ftv for each code (similar to Hafner and Rao), which

serves as a comparison point. All of the estimates given by the ftv and mel are in

agreement, which suggests that they can be used interchangeably.

Figure 6.10 compares the performance of each bookkeeping structure for two

flat XOR-based codes: (15,5)-flat and (5,3)-flat. The (5,3)-flat code has a 5 × 8

generator matrix and an mel of length 22. The (15,5)-flat code has a 15×20 generator

matrix and an mel of length 1540. At each failure event a data loss event is detected

by either transforming an updated generator matrix into reduced row echelon form (via

elementary operations), performing a brute force search of the mel or looking up the

appropriate probability in the ftv and drawing a uniform random number.

Figure 6.10 illustrates the effect of bookkeeping structure on performance. In

general, the rank check will result in the worst performance for a given code. When

the mel for a code is relatively large, bookkeeping using the mel can lead to very poor

performance. In general, bookkeeping using the ftv will result in the best performance

regardless of code size.

6.8 Apples-to-Apples Comparison of Erasure Codes

In this section we perform an apples-to-apples comparison of the erasure codes

listed in Table 6.2. The resulting failure probabilities cover a range that is roughly

10 orders of magnitude. A comprehensive comparison of different codes would include
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Figure 6.10: Performance comparison of ftv, mel and matrix rank for (15,5)-flat and
(5,3)-flat. Num checks represents the number of lookups (for ftv and mel) or matrix
canonical form transformations (for rank check) run to check for data loss.
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dimensions other than reliability, such as performance and cost. Since we are mainly

interested in reliability, we cannot draw sweeping conclusions about erasure codes from

this analysis. The main take-away in this analysis is the fact that we can evaluate

the reliability of different erasure codes under the same framework. Previous reliability

simulators and models do not have the ability to such analysis.

The analysis is split into two parts: accuracy/performance and reliability.

First, the relative accuracy and performance of each simulation technique is compared

across the codes. Finally, we compare the reliability of different codes in similar classes:

codes with the same Hamming distance.

6.8.1 Accuracy and Performance

The data loss probabilities shown in Table 6.13 represent the most accurate

estimates where the simulations under importance sampling were run for 250K iterations

and the standard simulations were run for 10M iterations. It turns out that in most

cases the relative error of each simulation is around or below 20%. A relative error of

100% represents a factor of 2 from the estimate; thus, the resulting confidence interval

is well below a factor of two on either side. One interesting exception is the (5,3)-flat

code, which after 250K iterations has a relative error of almost 50% when using balanced

failure biasing. In this case, an accurate reliability estimate can be obtained much faster

through standard simulation.

Overall, any code with a Hamming distance of 2 can be efficiently and ac-

curately estimated using standard simulation. Under importance sampling, the 8 disk

configurations take roughly 1000 seconds, while the 20 disk configurations take anywhere

from roughly 6000 to 8000 seconds. We find that at or beyond 2 disk fault tolerance, it

is most likely more efficient to use importance sampling, though the estimates may not

be as accurate as standard simulation.

6.8.2 Reliability

Consider all of the codes with a Hamming distance of 2: (7,1)-mds, (5,3)-

flat, (6,2)-flat, (16,4)-flat and (8,8,1)-weaver. In most cases, we find that as
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code sim. prob. rel. err. num run time

type prob. (%) iter. (s)

(16,4)-mds
bfbunif 1.19× 10−12 19.85 250K 2692.57

simreg — — —

(17,3)-mds
bfbunif 1.16× 10−8 17.76 250K 1751.64

simreg — — —

(5,3)-mds
bfbunif 1.92× 10−10 12.88 250K 490.13

simreg — — —

(6,2)-mds
bfbunif 8.26× 10−6 12.70 250K 957.24

simreg 5.90× 10−6 21.42 10M 3517.30

(7,1)-mds
bfbunif 4.46× 10−2 7.57 100K 192.01

simreg 5.85× 10−2 2.09 100K 137.89

(36,12)-evenodd
bfbunif 8.51× 10−6 13.11 250K 977.35

simreg 4.20× 10−6 25.38 10M 3603.11

(36,12)-rdp
bfbunif 8.32× 10−6 11.00 250K 991.90

simreg 6.40× 10−6 20.56 10M 3585.73

(35,14)-xcode
bfbunif 5.39× 10−6 13.85 250K 791.21

simreg 5.30× 10−6 22.60 10M 3054.41

(8,8,1)-weaver
bfbunif 6.90× 10−3 11.56 250K 825.21

simreg 8.54× 10−3 5.61 100K 70.72

(8,8,2)-weaver
bfbunif 8.87× 10−7 23.21 250K 1214.07

simreg 8.00× 10−7 58.16 10M 3528.44

(8,8,3)-weaver
bfbunif 6.27× 10−11 21.66 250K 1441.06

simreg — — —

(42,12)-spc
bfbunif 2.25× 10−4 11.40 100K 205.10

simreg 2.56× 10−4 3.25 10M 7019.48

(6,2)-flat
bfbunif 1.27× 10−2 18.65 100K 304.56

simreg 1.53× 10−2 4.17 100K 71.28

(5,3)-flat
bfbunif 2.54× 10−3 47.80 250K 1324.07

simreg 2.44× 10−3 10.52 100K 71.84

(4,4)-flat
bfbunif 1.15× 10−10 24.30 250K 1897.87

simreg — — —

(15,5)-flat
bfbunif 2.60× 10−6 28.62 250K 8185.62

simreg 2.80× 10−6 31.09 10M 10875.06

(16,4)-flat
bfbunif 6.65× 10−3 32.20 250K 5694.39

simreg 1.08× 10−2 4.97 100K 339.79

Table 6.13: Apples-to-apples comparison of erasure codes.
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the coding rate increases, probability of data loss decreases. For example, this holds

true for (7,1)-mds, (5,3)-flat, (6,2)-flat and (16,4)-flat. This does not hold true

when comparing the reliability of (8,8,1)-weaver and (5,3)-flat. Even though the

rate of (8,8,1)-weaver is lower than (5,3)-flat, it does not provide better reliability.

The (8,8,1)-weaver is constructed to offer regularity and symmetry for the sake of

performance and manageability, which reduces reliability.

The (42,12)-spc has a “disk” Hamming distance of 2 (i.e. can tolerate any

single, whole-disk failure). Its reliability is significantly better than the other codes with

Hamming distance 2. This is mostly due to the fact that the symbol-wise Hamming

distance is 4, which protects against sector errors. This is consistent with the HFRS

v.1 code sensitivity analysis performed in Section 6.5.

Consider the codes with a Hamming distance of 3: (6,2)-mds, (36,12)-evenodd,

(36,12)-rdp, (35,14)-xcode, (8,8,2)-weaver and (15,5)-flat. The (6,2)-mds, (36,12)-

evenodd and (36,12)-rdp have the same rate and similar reliability. This is expected

because the codes only differ in the tolerance of multiple sector failures in the same strip.

It turns out that the most probable path to failure is double-disk with a single sector,

which accounts for the most probable data loss events for these codes. (15,5)-flat has

the same rate as (6,2)-mds and a much better reliability in spite of covering 20 disks.

As a rule of thumb, we believe that an irregular code with the same Hamming distance

and rate as the comparable MDS code will most likely lead to a higher reliability, given

it the code does not cover too many disks. (35,14)-xcode has a slightly lower rate than

the (6,2)-mds code, and is slightly more reliable.

The (8,8,2)-weaver code is roughly a full order of magnitude more reliable

than most of the other codes with a Hamming distance of 3. The dominant cause of data

loss for these codes is a double disk in conjunction with a single sector failure. WEAVER

codes offer better reliability because only one subset of double disk failures put it into

a critical state, where an additional sector failure leads to data loss. For MDS codes,

parity-check array codes, every double-disk single-sector failure combination leads to

data loss.

Now, consider the codes with a Hamming distance of 4: (17,3)-mds, (5,3)-mds,

(8,8,3)-weaver and (4,4)-flat. It is apparent that the lower rate codes have a higher
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reliability. The fact that (17,3)-mds covers 20 disks and requires at least 17 disks for

recovery leads to a reliability that is almost 2 orders of magnitude worse than (5,3)-mds.

This is most likely due to the higher probability of finding a sector failure in the critical

mode when 17 disks are involved in the rebuild operation. Both the (4,4)-flat and the

(8,8,3)-weaver result in reliabilities that are better than the MDS codes. Again, this

is in agreement with the argument that lower rate tends to result in higher reliability.

There is a single code with Hamming distance 5: (16,4)-mds. This code was

mainly chosen for use in the sensitivity analysis earlier in this chapter and as expected

provides the lowest probability of failure. Looking at the differences between the MDS

codes with the same number of disks, we find that adding an additional parity disk

leads to an increase in reliability by roughly 4 orders of magnitude.

We are hesitant to draw sweeping conclusions from the reliability results in

Table 6.13. We believe that this “apples-to-apples” comparison of reliability of different

erasure codes is the most extensive to date, and is a significant contribution. Even

though we believe that Elerath and Pecht’s model for failures and recoveries is the most

compelling published model, many recent results suggest that a better model of disk

failure and recovery is needed [4, 55, 49, 3, 44, 14]. Once such models become available

we are confident that we can use them to refine the analysis we have done thus far.

6.9 Summary

The primary focus of this chapter was to validate the HFR Simulator and

show that it can be used to perform a wide range of reliability analysis on erasure-

coded storage systems. In the process, we have evaluated the sensitivity of importance

sampling parameters under real-world failure characteristics, sensitivity of failure (or re-

pair) distribution choice, erasure code sensitivity, the sensitivity of sector failure models,

performance of the HFR Simulator bookkeeping structures and a wide-range of erasure

codes in an apples-to-apples fashion.

A summary of the major findings of this evaluation is given in itemized form

below.

• Importance sampling is very accurate for 1-4 disk fault-tolerant codes modeled by
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a Markovian process.

• Importance sampling is possible and reasonably accurate for 1-4 disk fault-tolerant

codes modeled by a non-Markovian process. We found that importance sampling

starts to break down around 4-disk fault tolerant systems. It was possible to

achieve good estimates at 4-disk fault tolerance, but it took many trials.

• Given the device failure (or repair) distribution is non-Exponential, assuming a

constant failure (or repair) rate derived from the mean can lead to inaccurate

estimates. This implies that the use of Markov models may lead to inaccurate

results.

• Current sector error models do not provide accurate reliability estimates. This is

mostly due to not keeping track of the critical region during rebuild. Additionally,

it is unclear which sector failure model is correct. The ber and latent sector error

models result in different reliabilities; combining the two will most likely lead to

a more accurate model.

• In general, the fault-tolerance vector (ftv) provides accurate and efficient book-

keeping of XOR-based codes.

• The HFR Simulator is the only existing framework that can be used to compare

the reliability of different codes in an apples-to-apples fashion.

• Typically, lower rate codes lead to better reliability. While this is true in most

cases, structural differences between codes can provide a counterexample. For

instance, a (6,2)-mds code is typically more reliable than a mirrored configuration.

This implies that density (number of code symbols per parity equation) will also

have an effect on reliability.

• An irregular code with the same Hamming distance and rate as an MDS code will

most likely have better reliability, given it does not cover too many devices. This

was apparent when comparing a (15,5)-flat code to the (6,2)-mds code.

• Structurally different codes may exhibit their own unique sensitivity to rebuild

time and sector failure characteristics.
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• Simple product codes (SPC) are generally unaffected by an increasing sector failure

rate (or decreasing scrub rate).
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Chapter 7

Layout of Erasure-Encoded Fragments

Across Heterogeneous Devices

Erasure codes such as replication, raid 5, and Reed-Solomon codes, are the

means by which storage systems are typically made reliable. Reed-Solomon codes pro-

vide the best trade off between fault tolerance and space-efficiency, but are compu-

tationally the most demanding type of erasure code. In addition to these traditional

erasure codes, there are a number of proposals for novel erasure codes that exclusively

use xor operations to generate redundancy (e.g., [21, 22, 65]). Such xor-based codes

are computationally more efficient than Reed-Solomon codes, but offer a non-uniform

trade off between performance, space-efficiency, and fault tolerance.

Methods to evaluate the space-efficiency and performance trade off for xor-

based codes are fairly well understood [23, 30, 51]. However, xor-based erasure codes

exhibit irregular fault tolerance: some subsets of failed storage devices of a given size

lead to data loss, whereas other subsets of failed storage devices of the same size are

tolerated. There have been many recent advances in understanding the irregular fault

tolerance [24, 65] and concomitant reliability [52, 25] of xor-based codes. However, all

of these advances assume a homogeneous set of storage devices that all fail and recover

at similar rates.

The contributions of this work are fourfold. First, we identify the redundancy

placement problem, a novel reliability problem in storage systems: in a storage system

comprised of a heterogeneous set of storage devices with known failure and recovery
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rates, how should erasure-coded symbols be placed to maximize reliability? The redun-

dancy placement problem is trivial for Reed-Solomon style codes because such codes

exhibit regular fault tolerance—all sets of device failures of some size lead to data

loss—so all placements have the same reliability. For xor-based codes, however, the re-

dundancy placement problem is non-trivial to solve because some failure sets are larger

than others and may involve devices of different reliability. Second, we propose a simple

analytic model, the Relative mttdl Estimate (rme), that allows the relative reliability

of different placements to be compared in a computationally efficient manner. Third, we

propose two redundancy placement algorithms that use the structure of the xor-based

erasure code and the rme to determine a placement that maximizes (estimated) reliabil-

ity. Fourth, we empirically demonstrate, via simulation, that the rme correctly orders

different placements with regard to their reliability, and that the redundancy placement

algorithms identify placements that maximize reliability. The empirical analysis relies

heavily on the techniques presented in Chapter 4. The HFRS v.1 implementation is

used throughout this chapter.

7.1 Redundancy Placement Algorithms

We have developed two redundancy placement algorithms that identify place-

ments of erasure-coded symbols on heterogeneous storage devices with known failure

and repair rates which maximize reliability. One redundancy placement algorithm is

based on brute force computation and the other is based on simulated annealing.

More formally, let S be the set of symbols in the erasure code and D be

the configuration (set of heterogeneous devices). For a code with n symbols, S =

{s0, . . . , sn−1} and D = {d0, . . . , dn−1}. A placement, ρ, is a bijective function that

uniquely maps each symbol in the erasure code to a single device: ρ : S ↔ D. The

goal of the redundancy placement algorithms is therefore to find a placement ρ that

maximizes reliability.

7.1.1 Relative MTTDL Estimate

We now introduce the simple analytic model that underlies both redundancy

placement algorithms: the Relative mttdl Estimates (rme). The rme can be used to
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compare the reliability of different placements. It is constructed to correlate with the

expected mttdl (e.g., as determined by HFRS v.1), but it does not accurately estimate

the mttdl. The rme can be used to compare the relative merit of different placements,

but not to determine if some placement meets a specific reliability requirement.

At a high level, the rme is the inverse of an estimate of the expected unavail-

ability of a given placement. It is based on the mel and a simple analytic device model.

The mel is a set of sets of erasure-coded symbols, i.e., mel ⊂ 2S , with the property that

¬∃f , f ′ ∈ mel : f ⊆ f ′, and so is a concise, exact description of irregular fault tolerance.

Let u(d) be the expected unavailability of device d. To calculate u(d), the mttr of d is

simply divided by its mttf. This analytic model ignores sector failures and scrubbing,

as well as the distribution of the device failures and repairs. The rme is calculated via

the following function of the redundancy placement ρ, device unavailability u, and mel:

rme =





∑

f ∈mel

∏

s∈f
u(ρ(s))





−1

.

The sum of products is inverted because rme values are values that should be maximized

to improve reliability, just like mttdl values.

The rme for the (4,4)-raid 10 code withmel {(s0, s4), (s1, s5), (s2, s6), (s3, s7)}

is as follows:

rme = (u(s0)u(s4) + u(s1)u(s5) +

u(s2)u(s6) + u(s3)u(s7))
−1.

Consider a configuration in which the first 4 devices have expected device un-

availability of 1.2 × 10−4 and the second 4 devices have expected device unavailability

of 2.4× 10−5. Note that the more reliable a device is, the lower its device unavailability

number, so the first 4 devices are less reliable than the second 4 devices in this configu-

ration. Now consider two distinct placements. In the first placement, the first 4 symbols

are placed on the first 4 devices, and the second 4 symbols are placed on the second

4 devices, and so the rme = 86.8 × 106. In the second placement, the “odd symbols”

(i.e., s1,s3,s5, and s7) are placed on the first 4 devices, and the “even symbols” on the

second 4 devices, and so the rme = 33.4 × 106. The first placement splits the pair

of replicated symbols that occur in each minimal erasure so that one is placed on the
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less reliable device and the other on the more reliable device. In contrast, the second

placement places all of the symbols from two minimal erasures (the “odd symbols”) on

the less reliable devices, which, intuitively, is a less reliable placement. The rme values

for the two placements correctly order them regarding our intuition about their relative

reliability; this intuition is confirmed via simulation, as described in Section 7.2.1.

The decision to use a simple analytic model is based on several reasons. First,

the simplicity of the analytic device model permits efficient evaluation of the rme and so

permits orders of magnitude more distinct placements to be evaluated than simulation

methods in the same period of time. Second, the model only has to produce an rme

that accurately orders different sets of device failures according to the likelihood that

they contribute to data loss. The product of expected device unavailability accomplishes

this task. Third, in a system with any redundancy, sector failures alone do not cause

data loss; only multiple disk failures, or disk failures in conjunction with sector failures

lead to data loss. Thus, the simple analytic model only needs to capture the reliability

affects of disk failures. We discuss the effect of sector failures further in Section 7.2.2.

7.1.2 Brute Force Algorithm

The brute force redundancy placement (bf-rp) algorithm evaluates the rme

for all possible placement and identifies the placement with the largest rme as the best

placement. The rme is a simple equation that can be evaluated efficiently. To calculate

an rme value requires |mel| additions and less than m×|mel| multiplications. Consider

the calculation of the rme for (4,4)-raid 10 given above. It required four additions

because |mel| = 4, and four multiplications because each of the four minimal erasures

consisted of exactly two symbols. Since all minimal erasures consist of m or fewer

symbols, each such product requires m − 1 or fewer multiplications.

For a code with n symbols, there are n! possible placements to evaluate. Given

the efficiency of the rme calculation, it is feasible to evaluate the rme for every possible

placement for small codes. For example, in Section 7.2 the bf-rp algorithm is used to

find the best placement for some codes with n = 12. Each such execution of the bf-rp

performs 12! = 479001600 rme calculations to determine the best placement.

109



7.1.3 Simulated Annealing Algorithm

For large codes, the factorial number of distinct placements make it is infeasible

to apply the bf-rp algorithm. The best placement for a code maximizes the rme

value. Therefore, the problem of finding the best placement can be understood as an

optimization problem. Unfortunately, the nonlinear structure of the rme equation—

all of the terms in the summation are products of variables to be assigned via the

optimization—precludes linear optimization techniques.

Fortunately, there are many non-linear optimization techniques. An approach

that requires little work, in terms of formulating constraint equations, is simulated

annealing [32]. This made simulated annealing, a stochastic optimization technique,

appealing as the first optimization approach for us to evaluate. Simulated annealing

uses randomization to find a solution; however, there is a chance that the solution found

is not globally optimal.

The simulated annealing redundancy placement (sa-rp) algorithm takes an

mel and a configuration of devices as input. The sa-rp algorithm is initialized with

a randomly selected placement. Each step in sa-rp is based on a random number of

random swaps of mappings in the current placement. As the algorithm proceeds, the

number of random swaps performed at each step decreases. This is the manner in

which we capture the “cooling” aspect of simulated annealing, in which randomness is

reduced over time so that some locally optimal placement is settled upon. In sa-rp,

we include parameters to backtrack if a step that decreased the rme does not, after

some number of additional steps, lead to a larger rme value. The sa-rp algorithm is

invoked multiple times, while keeping track of the best rme value found over different

invocations. Because each invocation is initialized with a different random placement,

repeated invocations finds distinct locally maximal placements (rme values).

Unfortunately, simulated annealing does not lend itself to many practical rig-

orous statements about the quality of solution found. However, our empirical evidence

to this point indicates that the sa-rp algorithm quickly produces good solutions.
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7.2 Evaluation

To evaluate the bf-rp and sa-rp algorithms, we consider configurations that

have devices with failure models between two bounds. The first device failure model

is based on that used by Elerath and Pecht (cf. Table 2 in [14]). Disk failures are

distributed according to a Weibull distribution with parameters γ = 0, η = 500000,

and β = 1.12. (Note that we “rounded up” the η parameter of 461386 hours used by

Elerath and Pecht). Disk recoveries are distributed according to a Weibull distribution

with γ = 6, η = 12, and β = 2. We refer to the first device as the 500k device

because its expected mttf is 500 thousand hours. The 500k device is the most reliable

device we consider in the evaluation. We refer to the least reliable device as the 100k

device. The 100k device differs from the 500k device only in its mttf: η = 100000

instead of η = 500000. To calculate the rme, only the mttf for disk failure and

the mttr for recovery is used. The HFR Simulator (HFRS v.1) uses the specified

Weibull distributions to simulate the mttdl. In some simulations, the device failure

models include latent sector failure and scrubbing: the latent sector failures per disk are

distributed according to an exponential distribution with mean 9259, and are scrubbed

(recovered) according to a Weibull distribution with γ = 6, η = 168, and β = 3.

There are two types of heterogeneous configurations we evaluate. Bimodal

configurations consist of only two types of devices: 100k devices and 500k devices. For

example, an 8 disk 3-bimodal configuration consists of 3 100k devices and 5 500k devices.

Uniform configurations consist of one 100k device and one 500k device; the remaining

devices have mttf values uniformly distributed between η = 100000 and η = 500000.

For example, an 8 disk uniform configuration consists of one device with each of the

following η values: 100000, 157000, 214000, 271000, 328000, 385000, 442000, 500000.

We evaluate 8, 12 and 20 disk configurations.

Table 7.1 lists the xor-based codes analyzed by the redundancy placement

algorithms. The Hamming distance and mev is listed for each code. The mel is used

to calculate the rme and so is more useful than the mev for understanding the results

in this section. The mel for the (4,4)-raid 10 is given in Section 7.1.1 and (5,3)-flat is

given in Section 3.4.2. The mel of the (6,2)-flat is {(s0, s1), (s2, s3), (s2, s6), (s3, s6),

(s4, s5), (s4, s7), (s5, s7)}. The mel for the larger codes is too verbose to list. The ftv
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code Hamming dist. (d) mev parity bitmaps

(6,2)-flat 2 (0, 7) 15, 51

(5,3)-flat 2 (0, 1, 10) 7, 11, 29

(4,4)-raid 10 2 (0, 4, 0, 0) 1, 2, 4, 8

(10,2)-flat 2 (0, 18) 127, 911

(9,3)-flat 2 (0, 5, 34) 31, 227, 365

(17,3)-flat 2 (0, 19, 162) 1023, 31775, 105699

(16,4)-flat 2 (0, 5, 80, 315) 511, 7711, 26215, 43691

Table 7.1: XOR-based erasure codes.

is used for comparison purposes because the reliability simulated based on on the ftv

approximates the median reliability over all possible placements.

The specific xor-based codes listed in Table 7.1 were selected because, for the

given values of k and m, they are the most fault tolerant xor-based codes [65]. The

only exception to this selection process is the (4,4)-raid 10 which was selected because

it has a familiar structure. The specific values of k and m were selected because the best

codes have a Hamming distance of 2. It takes many CPU days for the HFR Simulator to

simulate a single data loss event for more fault-tolerant codes, and so we restricted the

Hamming distance to ensure that the results of the redundancy placement algorithms

could be validated via simulation.

Beyond the xor-based codes, some mds codes are included in the evaluation

to provide context. The placement of such codes does not affect their reliability because

all sets of device failures of size d lead to data loss.

All of results presented in this section are mttdl values measured in hours.

The HFRS v.1 was used to produce all the mttdl values. Except where noted, mttdl

values in tables and annotated on histograms are based on simulations of 1000 data loss

events. The mttdl values for data points in histograms are based on only 100 data loss

events and so exhibit greater variance.

Table 7.2 lists mttdl values for all the codes evaluated in this section based

on homogeneous configurations. Two such configurations are listed: one based on 100k

devices and the other based on 500k devices. Both device failure models only include disk
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code 100k 500k

(6,2)-flat 3.99× 107 9.66× 108

(5,3)-flat 2.88× 108 6.89× 109

(4,4)-raid 10 6.59× 107 1.83× 109

(7,1)-mds 1.01× 107 2.55× 108

(10,2)-flat 1.54× 107 3.89× 108

(9,3)-flat 5.28× 107 1.40× 109

(11,1)-mds 4.06× 106 1.03× 108

(17,3)-flat 1.44× 107 3.55× 108

(16,4)-flat 5.42× 107 1.32× 109

(19,1)-mds 1.55× 106 3.60× 107

Table 7.2: MTTDL Homogeneous config.

failure and recovery; sector failure and scrubbing is not included in these simulations.

Obviously, 500k homogeneous configurations are more reliable than 100k homogeneous

configurations.

7.2.1 Eight Disk Configurations

In this section we exhaustively evaluate the three xor-based codes of size 8

on various configurations. First, consider the 4-bimodal distribution. Figures 7.1, 7.2,

and 7.3 respectively show mttdl histograms for (4,4)-raid 10, (5,3)-flat, (6,2)-flat.

These histograms are constructed by simulating the mttdl of the 8! = 40320 distinct

placements. The simulations are based on devices that exhibit only disk failures and

recoveries, not latent sector failures.

Each histogram is annotated with a vertical line. The vertical line corresponds

to the mttdl for the ftv. The ftv is described in Section 5.3.2 and, as discussed below,

it estimates the mttdl of the median placement. In these figures, the ftvmttdl is

indeed near the median mttdl.

Each histogram is also annotated with a series of lines labeled with integers.

These lines are related to rme calculations. For each of these codes, the bf-rp algo-

rithm was used to determine the rme of each distinct placement. We were surprised to

discover that for each of these codes, only a small number of distinct rme values were
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Figure 7.1: (4,4)-RAID10, 4-bimodal.
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Figure 7.2: (5,3)-FLAT, 4-bimodal.
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Figure 7.3: (6,2)-FLAT, 4-bimodal.

produced. From this, we hypothesized that there are isomorphic placements, i.e., differ-

ent placements that have the same mttdl. Each line on each histogram is effectively a

sub-histogram for an isomorphic class of placements. The integer labels on the classes

are in order of rme value, so line 0 has a lower rme than line 1. These sub-histograms

strongly support our hypothesis that the rme correctly orders different placements with

regard to reliability.

To better understand isomorphic placements, consider (4,4)-raid 10. The fol-

lowing are example placements for each isomorphic placement class: 0 : (s1, s3, s5, s7,

s0, s2, s4, s6), 1 : (s0, s1, s2, s4, s3, s5, s6, s7), and 2 : (s0, s1, s2, s3, s4, s5, s6,

s7). The first four symbols in each placement is on a 100k device, and the second four

symbols are on a 500k device. We already discussed the placements for classes 0 and 2

in Section 7.1.1. The placement for class 1 is consistent with the prior discussion: one

pair of replicated symbols is on the 100k devices and so we expect the mttdl to fall

between class 0 (two pairs of replicated symbols on 100k devices) and class 2 (no pairs

of replicated symbols on 100k devices).

The mel for (5,3)-flat and (6,2)-flat is less regular than that of (4,4)-

raid 10, and so there are more isomorphic placement classes. The distribution of iso-

morphic placement classes is interesting: there tends to be many fewer placements in
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Figure 7.4: (4,4)-RAID10, uniform.

the best classes than in median classes. This suggests that good placement are less

common.

Now consider the uniform configuration instead of the 4-bimodal configuration.

Figures 7.4, 7.5, and 7.6 respectively show mttdl histograms for (4,4)-raid 10, (5,3)-

flat, (6,2)-flat. These histograms are constructed by simulating the mttdl of each

of the 8! = 40320 placements for the code on devices that exhibit only disk failures

and recoveries. The one exception being Figure 7.5, that includes sector failures in the

device model The bf-rp algorithm was used to determine the rme for every placement

simulated.

The ftvmttdl is annotated on these histograms. Sub-histograms for isomor-

phic placement classes are not presented. The uniform configuration leads to too many

such classes to illustrate (105, 840, and 280 respectively). Instead, a vertical line is

shown for a placement from each of the following isomorphic placement classes: Worst

rme, Q3 (third quartile) rme, Q2 (second quartile) rme, Q1 (first quartile) rme, and

Best rme.

Our hypothesis was that the mttdl of the placement from Worst rme class

would be less than that of the placement from the Q3 rme class, and so on. The results

mostly support this hypothesis. There are two exceptions: results for Q1 rme and Q2

rme for (5,3)-flat are out of order, as are Best rme and Q1 rme for (6,2)-flat. We
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Figure 7.5: (5,3)-FLAT, uniform, sector.
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Figure 7.6: (6,2)-FLAT, uniform.
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have looked at the specific placements in detail, as well as their rme values, and, based

on back-of-the-envelope calculations, believe that the bf-rp has correctly ordered these

placements.

We hypothesized that the ftvmttdl, because it is based on a probability

vector derived from the mev, would provide a rough estimate of the median placement.

We therefore expected the ftvmttdl to align closely with the Q2 rmemttdl. These

histograms support this hypothesis, and so we use the ftvmttdl as a reference with

which to compare the mttdl of other placements.

Table 7.3 summarizes results for all of the bimodal configurations and the

uniform configuration. For each code, the ftvmttdl and the Best rmemttdl are

listed. In all cases, the Best rmemttdl is better than that of the ftvmttdl.

7.2.2 Sector failures

When we developed the rme metric, we assumed that sector failures would

have a secondary effect on placement decisions and so could be excluded from the rme

metric. This assumption appears to be valid, however some disclaimers are warranted.

Figures 7.7 and 7.8 are based on the same 4-bimodal configuration setup respectively

used for Figures 7.2 and 7.3, but use device failure models that include sector failure

and scrubbing.

The histograms for (5,3)-flat met our expectations. Sector failures cause the

mttdl for the various placements to reduce significantly, but the shape of the histogram

is preserved: redundancy placement affects mttdl. The histograms for (6,2)-flat

surprised us: sector failures in the device model result in redundancy placement having

little effect on mttdl. Studying the mel for each code allows us to understand this

result Both codes have Hamming distance 2, and thus some minimal erasures of size 2.

In (5,3)-flat, only the symbols s4 and s7 occur in a minimal erasure of size 2, while all

of the symbols in (6,2)-flat occur in such a minimal erasure. Reviewing the simulation

results for (6,2)-flat, we note that the cause of data loss is single disk-single sector

failures. In this specific scenario, redundancy placement has little effect on mttdl

because all of the device failure models have the same sector failure rate.
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(4,4)-raid 10 (5,3)-flat (6,2)-flat

config. ftv Best rme ftv Best rme ftv Best rme (7,1)-mds

1-bimodal 8.60× 108 8.39× 108 3.30× 109 6.90× 109 4.98× 108 6.20× 108 1.19× 108

2-bimodal 4.74× 108 5.97× 108 1.94× 109 6.53× 109 2.94× 108 3.74× 108 6.71× 107

3-bimodal 3.01× 108 4.35× 108 1.23× 109 6.40× 109 1.72× 108 2.54× 108 4.41× 107

4-bimodal 1.69× 108 3.49× 108 9.24× 108 6.37× 109 1.33× 108 1.47× 108 2.96× 107

5-bimodal 1.51× 108 1.81× 108 6.07× 108 6.62× 109 8.76× 107 9.67× 107 2.05× 107

6-bimodal 1.09× 108 1.19× 108 4.53× 108 6.89× 109 6.50× 107 7.42× 107 1.61× 107

7-bimodal 8.29× 107 8.42× 107 3.40× 108 1.35× 109 4.99× 107 5.18× 107 1.26× 107

uniform 4.34× 108 4.88× 108 1.56× 109 6.11× 109 2.34× 108 2.79× 108 5.60× 107

Table 7.3: MTTDL of 8 disk configurations.
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Figure 7.7: (5,3)-FLAT, 4-bimodal, sector.
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Figure 7.8: (6,2)-FLAT, 4-bimodal, sector.
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(9,3)-flat (10,2)-flat

configuration ftv Best rme ftv Best rme (11,1)-mds

3-bimodal 3.45× 108 7.88× 108 9.83× 107 1.31× 108 3.13× 107

6-bimodal 1.57× 108 3.30× 108 4.25× 107 5.14× 107 1.27× 107

9-bimodal 8.81× 107 1.06× 108 2.57× 107 2.54× 107 5.75× 106

uniform 2.70× 108 5.63× 108 8.01× 107 9.59× 107 2.77× 107

Table 7.4: MTTDL of 12 disk configurations.

7.2.3 Twelve Disk Configurations

For 12 disk configurations, it is not feasible to evaluate every possible placement

via simulation, but it is feasible to do so via the rmemetric. We ran the bf-rp algorithm

for the (9,3)-flat, and (10,2)-flat codes for all possible bimodal configurations and the

uniform configuration. We also ran the sa-rp algorithm on these configurations. In all

cases, the sa-rp algorithm identified a placement from the same isomorphic placement

class as the bf-rp algorithm (i.e., its rme was the same as the Best rme).

To determine the quality of the placements selected by the bf-rp and sa-

rp algorithms, we simulated the Best rmemttdl and the ftvmttdl for a subset of

configurations. The results are listed in Table 7.4. In most cases, the mttdl of the

placement with the Best rme is significantly better than that of the ftv. For the

9-bimodal configuration, the mttdl values for (10,2)-flat are effectively the same.

From the bf-rp results, we also can identify the Worst rme, Q3 rme, Q2 rme,

and Q3 rme placements. We simulated the mttdl of these placements as well as 1000

random placements to generate low fidelity histograms. Examples of such histograms

for 6-bimodal configurations are given in Figures 7.9 and 7.10 for (9,3)-flat and (10,2)-

flat respectively. These results further support our hypothesis that the rme metric

correctly orders placements by reliability.

7.2.4 Twenty Disk Configurations

For 20 disk configurations, it is infeasible to evaluate every possible placement

via simulation or the rme metric. Instead, we use the sa-rp algorithm to identify an
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Figure 7.9: (9,3)-FLAT, 6-bimodal.
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Figure 7.10: (10,2)-FLAT, 6-bimodal.
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Approximate Best rme placement for these configurations. We ran the sa-rp algorithm

for the (17,3)-flat, and (16,4)-flat codes for all of the bimodal configurations and the

uniform configuration. We run the sa-rp algorithm for a total of 1000000 steps; if the

rme does not improve in 25 steps, the placement reverts to the last best placement

for this execution; if the best rme placement does not improve in 1000 steps, a new

execution is initialized with a random placement.

To determine the quality of the placements selected by the sa-rp algorithm,

we simulated mttdl of the Approximate Best rme placement found by sa-rp and

compare it with the ftvmttdl for a subset of configurations. The results are listed in

Table 7.5. In all cases, the Approximate Best rmemttdl is significantly better than

the ftvmttdl.

7.3 Conclusion

In this work, we have introduced the redundancy placement problem in which a

mapping of the symbols in a flat xor-based code onto a set of heterogeneous storage de-

vices with known failure and recovery rates is found in a way that maximizes reliability.

We solved this problem be developing a metric, called the Reliability MTTDL Estimate

(rme), a simple model based on estimated device unavailability and the Minimal Era-

sures List (mel), a compact description of the fault tolerance of an erasure code. Two

redundancy placement algorithms were developed in an effort to find a placement that

maximizes reliability. The first algorithm bf-rp is only feasible for small codes and find

a highly reliable placement via brute-force search. The second algorithm, which is best

suited for larger codes, uses simulated annealing to find a near-optimal placement with

respect to reliability, called sa-rp.

We extended our work in Section 5.3 to provide an extensive empirical evalu-

ation, which shows that the rme correctly orders different placements for a given code

by mttdl. Additional results suggest that placements found by sa-rp are significantly

more reliable than the median placement. Finally, results of the bf-rp algorithm lead

us to the existence of so-called isomorphic placements.
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(17,3)-flat (16,4)-flat

configuration ftv Best rme ftv Best rme (19,1)-mds (18,2)-mds

5-bimodal 8.94× 107 1.29× 108 3.59× 108 1.39× 109 9.63× 106 1.50× 1010

10-bimodal 4.36× 107 5.02× 107 1.89× 108 1.33× 109 4.48× 106 5.71× 109

15-bimodal 2.33× 107 2.61× 107 8.72× 107 2.85× 108 2.53× 106 1.94× 109

uniform 8.49× 107 9.62× 107 3.38× 108 8.71× 108 8.49× 106 1.27× 1010

Table 7.5: MTTDL of 20 disk configurations.

124



Chapter 8

Trading Reliability and Power-Efficiency

using Power-Aware Coding

Traditionally, storage systems are measured in terms of performance and reli-

ability. Due to the increasing amount of data stored in recent years and the significant

amount of power required to store such data, a great deal of work has gone into mea-

suring and minimizing the power consumption of storage systems [9, 61, 72, 48, 71, 60].

Energy has moved to the forefront of data center design as companies try to simulta-

neously reduce costs, maximize data center density, and push towards greener business

practices. Storage accounts for roughly 27% of a data center’s power budget [5]; thus,

pro-actively activating and deactivating disks can effectively lower the energy footprint

of a data center.

Whether data is mirrored or transformed via matrix operations, almost every

large-scale storage system relies on erasure codes for reliability [54, 58, 57, 33, 1]. Most

systems assume the existence of a k -of-n encoding scheme to protect data without

considering the underlying structure of the code. We find that two distinct k -of-n codes

may have very different performance and reliability properties that we can exploit to

intelligently partially reconstruct data.

In this chapter we present a technique called power-aware coding. We find that

in addition to fault-tolerance and performance, the structure of an erasure code may be

exploited to save power in a storage system. As an example, consider a simple RAID4

disk array with no failures. Since the array can tolerate any one disk failure, any single
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Figure 8.1: Code instance of a (5,3)-flat code across 8 devices.

disk in the array can be deactivated for an extended period of time and need not be

activated during a read request. Instead of activating the device, its contents can be

reconstructed from the remaining devices.

We define power-aware coding in terms of a set of devices and an erasure code

instance across the devices. Assume an erasure code contains a total of n symbols and

a system of N devices. A code instance is a mapping of code symbols to devices. An

example code instance is shown in Figure 8.1-b. There are N = n devices and a one-

to-one mapping of code symbols to devices. Each code symbol, si, is mapped to disk

Di.

The crux of power-aware coding is to prevent spinning up inactive disks when

servicing read requests by treating each inactive disk as an erasure. As an example,

consider the setup shown in Figure 8.1. Suppose disks D0, D5, D6 and D7 are active and

all others are inactive. If the system receives a read request for disk D4, we can service

the request asD0⊕D5⊕D6⊕D7 instead of activating diskD4, since s4 = s0⊕s5⊕s6⊕s7.

This chapter provides both theoretical and applied contributions to the study

of power-aware, erasure-coded systems. This chapter provides seven contributions: four

theoretical contributions and three applied contributions.

The theoretical portion of this work is rooted in a measure we call recon-

structability. First, we describe reconstructability, which is a generalization of tra-

ditional fault tolerance and applies to both MDS and non-MDS codes (Section 8.1).

Next, reconstructability is used to describe a property called the balanced property
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(Section 8.2). An available set of symbols, called an asset (Available Symbol SET), is

balanced if the number of symbols in the asset equal to the number of solvable data

symbols. Third, we describe how to generate balanced assets. Given a code, a sim-

ple algorithm is used to generate all possible balanced assets. Additionally, balanced

assets can be generated, allowing a designer to build codes around a set of balanced

assets. Fourth, we define a system-level requirement, called immediate parity update,

and the single-data connected-parity (sdcp) policy, which enforces this requirement

(Section 8.3). An immediate parity update system ensures that all parity information is

updated immediately when writing user data. A bound is placed on the rate of a code

that has balanced assets in a sdcp enforced system.

The applied portion of this chapter describes the architecture of an immediate

parity update system. First, we describe a power-managed, log-structured system that

uses device spin-down to save power (Section 8.4). The system utilizes a sdcp-like

policy to absorb a write workload and specialized reconstruction algorithms to recover

data on inactive devices. Next, we derive three metrics for use in a power-managed

system: aggregate write group size, aggregate reconstructability, and aggregate relative

gain. The proposed metrics are used to trade power, reliability and space efficiency

in a power-aware storage system (Section 8.5). We have selected 17 MDS and non-

MDS codes to perform the tradeoff analysis.

8.1 Reconstruction of Inactive, Erasure-Coded Symbols

Erasure codes are typically used to provide fault tolerance in storage systems

and communication channels. In general, k data symbols are transformed into n = k+m

code symbols in a way that tolerates 1 to m symbol erasures. Such an erasure code

is called systematic due to the separation of data and parity symbols. From now on,

when we say erasure code we mean systematic erasure code. Recall that an erasure is a

known error. That is, a symbol is erased if it is known to be in error or the information

corresponding to the symbol is lost. Examples of erased symbols include failed storage

devices, unreadable sectors and dropped packets. The use of erasure codes enables the

recovery of failed storage devices, unreadable sectors and dropped packets.

In addition to providing fault tolerance, erasure codes can also be used to
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recover symbols on inactive storage devices. Consider traditional fault tolerance in an

erasure coded codeword

Definition 8.1.1. An n-symbol codeword can tolerate an f -symbol erasure pattern if

the n− f available symbols can be used to recover the original k data symbols.

Assume that the code symbols are mapped to storage devices that are either

energized (active) or powered off (inactive). Define all symbols mapped to inactive

devices as erased and the symbols mapped to active devices as the Available Symbol Set

(asset). Suppose there are f symbols mapped to inactive devices. By Definition 8.1.1,

if the n− f available symbols can recover the k data symbols, then all read requests to

inactive data symbols may be served from the available symbols without activating any

additional devices.

The traditional definition of fault tolerance can be relaxed to allow partial

reconstruction of the data symbols.

Definition 8.1.2. An n-symbol codeword can partially tolerate (reconstruct) an f -

symbol erasure pattern if the n − f available symbols can be used to recover more than

1 and no more than k − 1 of the original data symbols.

By Definition 8.1.2, the n−f available symbols may, in some cases, be used to

avoid device activation when attempting to access a symbol on an inactive device. The

key to exploiting partial reconstruction is to maximize the reconstruction potential of

inactive symbols.

Whether fault-tolerance is presented in terms of full or partial reconstruction,

the reconstruction capability of available code symbols is fully captured by a metric

called reconstructability.

Definition 8.1.3. Reconstructability, R(C, s), is the number of directly readable or

solvable data symbols given an erasure code, C, and asset, s.

Suppose s contains t symbols, k′ of which are data symbols. By default, the

reconstructability of s must be at least k′, regardless of the underlying erasure code. By

Definition 8.1.3, R(C, s) − k′ inactive symbols can be reconstructed from the t active

symbols in s.
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In general, reconstructability is mostly dependent on the structure and rate of

the underlying erasure code. There are two distinct structural classes of erasure codes:

MDS and non-MDS . The difference between MDS and non-MDS codes is illustrated

by exploring the fault-tolerance and parity equations of each class.

Recall that the Hamming distance of an erasure code provides a compact

description of a code’s fault tolerance. Any set of symbol erasures strictly less than

the Hamming distance of a code can be tolerated. An MDS erasure code with k data

symbols and m parity symbols, denoted (k,m)-mds, has a Hamming distance of m+ 1.

Therefore, a (k,m)-mds code can tolerate up to any m symbol erasures out of n total

symbols. A non-MDS erasure code with k data symbols and m parity symbols, denoted

(k,m)-non-mds, has a Hamming distance strictly less than m + 1. This means that a

(k,m)-non-mds code can tolerate many, but not all, erasure patterns of size at most m.

Each of the m parity symbols in an erasure code can be expressed as a linear

combination of the k data symbols. For a MDS code, the coefficients of each linear

combination must be non-zero, otherwise the code will not be able to recover the k data

symbols in at least one erasure pattern containing less than m symbols. As a result,

every entry in each parity column of the systematic generator matrix of an MDS code

must be non-zero. Consider the following systematic generator matrix for an (4,2)-mds

code with symbols s0, s1, s2, s3, s4 and s5















s0 s1 s2 s3 s4 s5

1 0 0 0 α0 β0

0 1 0 0 α1 β1

0 0 1 0 α2 β2

0 0 0 1 α3 β3















where the αi and βi are elements of a finite field. Now suppose α1 = 0. An

(4,2)-mds code can tolerate the loss of any 2 symbols, but when α1 = 0, the code

cannot tolerate the loss of symbols s5 and s1. In other words, zeroing out the columns

associated with symbols s5 and s1 will result in a matrix with rank 3. Since there are

2 parity symbols and there exists at least one intolerant erasure pattern of size 2, the

code is not MDS .

In general, a zero entry in the parity submatrix of any systematic (k,m)-code
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code will result in a code with a Hamming distance of at most m. It follows that

the parity submatrix of a MDS code contains all non-zero entries. As a consequence,

each parity column represents an equation with k unknown variables; each data symbol

represents an unknown variable.

This insight leads to a fundamental property of systematic MDS erasure codes:

if less than k symbols are available, no erased symbols can be recovered. Suppose there

are k′ available data symbols and m′ available parity symbols. Each of the available

parity symbols is an equation of the same (k− k′) unknown variables. If (k− k′) ≤ m′,

then we can solve for the (k − k′) unknown variables (data symbols) using elementary

linear algebra. However, when (k − k′) > m′ the system of equations generated by the

m′ equations is under-determined and we cannot solve for the (k − k′) unknowns. In

short, erased data symbols cannot be recovered when k′ +m′ < k. A similar argument

applies to erased parity symbols: k available or recovered data symbols are needed to

recover an erased parity symbol. The formal description of these observations is stated

in Property 8.1.4.

Property 8.1.4. At least k symbols must be available in order to recover any erased

symbol in a systematic (k,m)-mds code.

The parity columns associated with a non-MDS code may have entries with a

value of zero. While such codes will not provide optimal fault-tolerance for parameters k

andm, recovery of an erased symbol may involve less than k available symbols. Consider

the following systematic generator matrix for a (4,2)-non-mds code















s0 s1 s2 s3 s4 s5

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1















Suppose symbol s3 is currently inactive. In order to reconstruct the data

associated with s3 only symbols s2 and s5 need to be active.

Property 8.1.5. In many cases, less than k available symbols are required to recover

a single erased symbol in a systematic (k,m)-non-mds code. This follows from the fact
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that parity columns in the systematic generator matrix for a (k,m)-non-mds code may

have zero entries.

Properties 8.1.4 and 8.1.5 are quite substantial and highlight the key difference

between the reconstructability of MDS and non-MDS codes. A (k,m)-non-mds code

will typically require less available symbols than an (k,m)-mds code when recovering

an erased symbol. This turns out to be very important when exploiting redundancy in

a power-managed system.

Here we combine Properties 8.1.4 and 8.1.4 with Definition 8.1.3 to place

bounds on the reconstructability of MDS and non-MDS codes. Assume an erasure

code with k data symbols and m parity symbols. Additionally, let s be the asset that

contains k′ data symbols and t total symbols. The reconstructability for any MDS code

(C) under these parameters is

R(C, s) =







k′ , when t < k

k , when t ≥ k
. (8.1)

This result is quite intuitive. Simply put, if the total number of available

symbols is less than the number of data symbols, then the reconstructability of any

systematic MDS code is equal to the number of available data symbols. If the number

of available symbols is equal to or greater than the number of data symbols, then all

data symbols can be reconstructed.

Next, consider a non-MDS code with the same parameters. While the recon-

structability of an MDS code will be one of two values, a non-MDS code can have a much

wider range. The reconstructability for any non-MDS code (C) under these parameters

is

k′ ≤ R(C, s) ≤ t ≤ k. (8.2)

These results show a clear distinction between MDS and non-MDS codes with

respect to reconstructability. Assume t symbols are in an asset. When t < k, the

reconstructability of an MDS code is maximized only when all t symbols in the asset

are data symbols. Once t exceeds k, the reconstructability will be k regardless of the
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symbols in the asset. For non-MDS codes, it turns out that the reconstructability can

be maximized when t < k and the asset is a mixture of data and parity symbols.

Equations 8.1 and 8.2 can be combined to define the maximum reconstructabil-

ity of any erasure code.

Definition 8.1.6. The maximum reconstructability of a (k,m)-code code with t

active symbols is k when t > k and t otherwise.

Definition 8.1.6 describes the optimal reconstructability of any asset given

a (k,m)-code code. If the number of available symbols is equal to maximum recon-

structability, then we call the symbol set balanced. In other words, the number of active

symbols equals the number of reconstructable data symbols. In terms of utility to a

power-managed system, the existence of balanced assets is interesting.

As an example, suppose t data and parity symbols are currently active such

that all dependent parity for at least one active data symbol is active. User data can

be written to the system and all dependent parity can be immediately updates. If the t

available symbols represent a balanced asset, then t data symbols can be read without

activating any additional devices. The balanced property enables parity updates to

finish in a timely fashion, while maximizing the amount of user data that can be read

without additional activations.

Property 8.1.7. If the maximum reconstructability of a (k,m)-code code with an

asset of t symbols equals t, then the asset is a Balanced Available Symbol Set

(basset) or a t-basset.

A simple example of a basset is the set that contains all data symbols. In prac-

tice an asset will contain a mixture of data and parity symbols, implying that in certain

cases non-MDS codes may be better suited to power-aware coding than MDS codes.

8.2 Structure of Balanced Available Symbol Sets

Section 8.1 introduced the idea of reconstructability for erasure codes and an

asset. We find that the maximum reconstructability for any erasure code equals the

size of the asset or k if the size of the asset is greater than k. Any asset of size k
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or less that achieves this optimum for an erasure code is balanced. In this section we

explore how both erasure code and asset choice lead to this balanced property.

We focus on xor-based, non-MDS codes, denoted nxor or (k,m)-nxor. In

the rest of this chapter, we consider the terms non-MDS and xor-based non-MDS to

be synonymous. While much of our discussion thus far applies to any non-MDS code,

we use xor-based codes to simplify the analysis. This simplification is due to the size

of the finite field used to construct the generator matrix. In general, the elements of

the generator matrix of a non-MDS code is built using the Galois field of 2l elements.

The generator matrix of an xor-based code is based on the field of 2 elements: 0

and 1. Much of our analysis is built on top of elementary matrix operations on a

code’s generator matrix. Obtaining crisp results is much more straightforward when all

elementary operations are performed on columns with entries from GF (2).

An asset (or basset) with t symbols for a (k,m)-code code is represented

by a k × t matrix. The matrix is induced by the corresponding columns from a code’s

generator matrix. The elements of the matrix will consist of elements from GF (2) for

an nxor and GF (2l) for an MDS code with m > 1.

In general, the structure of a basset can be determined using elementary

linear algebra. That is, treating the columns of the generator matrix as k × 1 vectors

and performing elementary operations on these vectors. The generator matrix, G, of a

code contains a k× k identity matrix formed by the first k columns and a k×m parity

submatrix that contains columns that are linear combinations of the first k columns.

The first k columns correspond to the data symbols of the code, while the lastm columns

correspond to the parity symbols. If the code has a total of n symbols, s1, s2, . . . , sn,

then si = ei, where 1 ≤ i ≤ k and ei is the elementary column with a 1 in the i-th entry.

Finding a t-basset begins by choosing elementary columns that correspond

to t different data symbols. The matrix induced by these columns can be transformed

into another matrix via elementary column operations. A basset is found whenever

the columns of the transformed matrix have corresponding columns in the generator

matrix of the code.

Definition 8.2.1. Let ci1 , ci2 , · · · , cil be the column vectors associated with code sym-

bols si1 , si2 , · · · , sil. We can get the reduced-column echelon form of [ci1 , ci2 , · · · , cil ],
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M , by applying elementary column operations. The number of unit column vectors in

M equals the number of solvable data symbols. It is well-known that each elementary

column operation can be reversed in a way that yields [ci1 , ci2 , · · · , cil ] from M , thus

every ci1 , ci2 , · · · , cil is a linear combination of the columns of M .

Definition 8.2.1 can be used to place a restriction on the structure of the

symbols in a basset.

Theorem 8.2.2. Suppose an asset containing code symbols si1 , si2 , . . . , sit is a t-

basset. The matrix induced by the corresponding columns ci1 , ci2 , . . . , cit must have

(k − t) all zero rows.

Proof. This follows from Definition 8.2.1. Since the asset is a t-basset, M =

[ci1 , ci2 , · · · , cit ] can be reduced to M ′ = [ei1 , ei2 , · · · eit ] via elementary column oper-

ations. It follows that eij 6= eik , where j 6= k, otherwise the asset would not be

t-balanced. Thus, M ′ has (k − t) all-zero rows and by Definition 8.2.1 so must M . �

Definition 8.2.1 and Theorem 8.2.2 provide guidelines for finding a basset

given a set of symbols from an arbitrary erasure code. Building bassets using MDS and

non-MDS codes is discussed in the remainder of this section.

8.2.1 BASSETs using MDS Codes

The regular structure of MDS codes simplifies reasoning about bassets. These

codes have two types of bassets: the set containing all data symbols when t < k and

the set containing any combination of data or parity symbols when t = k. When t > k,

the set cannot be balanced, since the number of active symbols exceeds the total number

of data symbols in the underlying code.

Trivially, when using an MDS code and an asset of size t = k, all data symbols

are solvable; thus, the set will always be balanced.

The other type of basset using MDS codes can be explained using Theo-

rem 8.2.2 and Property 8.1.4. Suppose the size of an basset is t = k′ + m′, where

the set contains k′ data symbols and m′ parity symbols. Property 8.1.4 states that the

parity columns of an MDS code must consist of all non-zero entries. If t < k, then by

Theorem 8.2.2, (k − t) > 0 rows of the matrix induced by the t symbols must be all
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zero. As a consequence, when t < k, a basset cannot contain parity symbols from an

MDS code. This is true because there cannot be zero entries in the parity submatrix of

an MDS code. Therefore, any basset built from a MDS code must contain only data

symbols when t < k.

8.2.2 BASSETs using Non-MDS XOR-based Codes

nxor codes are more complicated than MDS codes. As with MDS codes, an

asset containing all data symbols will be balanced when t ≤ k. In addition, when t > k,

there is no way to make a basset using a nxor code. Unlike MDS codes, a basset

containing both data and parity symbols can be obtained when t < k. The existence of

a basset or an ensemble of bassets depends solely on the underlying erasure code.

There are three ways to construct t-bassets based on a nxor code. In the

first construction, all
(

n
t

)

possible assets can be evaluated from a candidate (k,m)-nxor

code. In the second construction, all possible
(

2k−1
t

)

assets can be evaluated from all

2k−1 possible generator matrix columns for a (k,m)-nxor code. The final construction

can simply generate all possible t-bassets given the number of data symbols in the

code. In the first construction, a set of bassets are built around a nxor code. In the

latter two constructions, a nxor code can be built around a set of bassets.

8.2.2.1 Building t-BASSETs Around a Code

The brute-force algorithm used to find bassets, called bf-code-basset, relies

on Definition 8.2.1 and Theorem 8.2.2. A k × t matrix is generated for each asset. If

there are more or less than (k− t) non-zero rows in the matrix, the asset is discarded;

otherwise, the asset is added to a list of candidate bassets. Once all assets have

been evaluated using the row test, the matrices associated with the candidate bassets

are placed in canonical form using elementary matrix operations. If the canonical form

contains t unit columns, then the candidate basset is added to a list of bassets.

The basic algorithm is:

Input: a (k,m)-nxor code and t

Step 1 Generate
(

n
t

)

k × t binary matrices
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Step 2 If a matrix has (k − t) all-zero rows, add it to the candidate set S

Step 3 If the canonical form of a matrix in S has t elementary columns, then return it

as a t-basset

Obviously, this algorithm requires
(

n
t

)

asset evaluations. The bf-code-

basset algorithm proceeds in two phases. In general, the first pass will require
(

n
t

)

·k ·n

operations (check for (k− t) rows) and the second pass will require k ·n2 operations per

candidate basset. The magnitude of the number of candidate bassets on the second

pass is completely dependent on the underlying erasure code. As n increases, we expect

the first pass check to assist in a lower running time.

8.2.2.2 Building Codes around t-BASSETs

There are two algorithms for building codes around t-bassets: bf-all-basset

and gen-all-basset. Both algorithms require t (basset size) and the number of

data symbols in the code, k, as input. Similar to bf-code-basset, bf-all-basset

performs a brute force search over all possible assets with k data symbols and returns

all t-bassets in the form of k × t binary matrices. The gen-all-basset algorithm

generates all t-bassets from k × t matrices containing only elementary columns.

The bf-all-basset algorithm requires a search over all possible k × t binary

matrices. There are a total of 2k·t k× t binary matrices. In most cases, finding bassets

in the space of 2k·t matrices is intractable. The space of matrices resulting in bassets

can be drastically cut down using a few pieces of information. Every matrix induced

by the symbols of a basset must have distinct columns. That is, no two columns can

be the same. Additionally, every column must have at least one non-zero entry. These

two pieces of information cut the search space down from 2k·t to
t
∏

i=1

(

2k − i
)

.

We use Theorem 8.2.2 to drastically cut down the search space even further.

By Theorem 8.2.2, the matrix corresponding to a basset will have (k − t) all-zero

rows. There are
(

k
k−t

)

ways to choose (k − t) all-zero rows. This means that the search

space can be reduced to
(

k
k−t

)

·
t
∏

i=1

(

2t − i
)

possible matrices. An algorithm similar to

bf-code-basset can be used to find bassets over the
(

k
k−t

)

·
t
∏

i=1

(

2t − i
)

candidate

bassets.
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An alternative to the bf-all-basset algorithm is the gen-all-basset algo-

rithm. Instead of performing a brute-force search over a set of candidate matrices, the

gen-all-basset algorithm generates every basset of size t for a nxor code with k

data symbols. The intuition behind the gen-all-basset algorithm is based on Defi-

nition 8.2.1. The most basic basset of size t is the basset of all data symbols. By

Definition 8.2.1, performing elementary column operations on a matrix induced by a

basset will result in another basset.

The gen-all-basset algorithm begins by enumerating all possible k × t ma-

trices containing t distinct elementary columns. There are
(

k
t

)

such matrices, called

elementary bassets. Each elementary basset will generate 2t
2−t bassets as follows.

Each column can be recomputed as the sum of itself and any other column in the ma-

trix. Each time a column is recomputed, a new basset is been generated. A column

from an elementary basset can take on one of
t−1
∑

i=0

(

t−1
i

)

possible values. That is, each

column can be the sum of itself and between 0 and t − 1 other columns. As a result,

each elementary basset generates

(

t−1
∑

i=0

(

t− 1

i

)

)t

= 2t
2−t (8.3)

total bassets. Putting it all together, the gen-all-basset algorithm will

generate
(

k
t

)

· 2t
2−t bassets. Note that the generated bassets are not necessarily

unique; thus, whenever a duplicate basset is generated, it should be discarded.

8.2.3 Discussion

In this section we have shown the general structure of bassets and how they

are created for both MDS and nxor codes. In terms of a power-aware system, bassets

provide a way to balance the total number of active symbols and number of available

data symbols. In a way, a basset provides the accessibility of simply keeping only data

symbols active, while allowing parity symbol updates to complete in a timely fashion.

There are two main takeaways from this section. First, reasoning about the

reconstructability and existence of bassets is much easier for MDS codes than nxor

codes. Furthermore, nxor codes provide much more flexibility when assets have less
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than k symbols. nxor codes will provide more opportunity for finding bassets among

assets containing a mixture of data and parity symbols. As we will explain in the

subsequent sections, this can be beneficial to power-aware storage systems. Second, we

have developed three algorithms for finding bassets in nxor codes. Given an nxor

code, the bf-code-basset algorithm will find bassets via brute-force search. The

bf-all-basset algorithm will find all t-bassets for a code with k data symbols using

brute-force search. The gen-all-basset algorithm generates all t-bassets for a code

with k data symbols.

To get an idea of the space of bassets among all possible assets, we briefly

analyze the search space associated with bf-all-basset and gen-all-basset. Fig-

ure 8.2 counts assets for codes containing 4 (a), 8 (b), 16 (c) and 24 (d) data symbols.

A line in each plot corresponds to all possible k × t matrices (All), all possible k × t

matrices with distinct non-zero columns (Distinct Cols.), all possible k×t matrices with

(k − t) all-zero rows (Possible Balanced) and all k × t matrices that correspond to a

basset (Actual Balanced).

There are two major pieces of information to take away from these figures.

First, the bf-all-basset algorithm should only be used when the number of data

symbols is small. Attempting to perform a brute force search for all codes with k data

symbols is obviously intractable in general. For example, in relatively small values of k

the probability of a candidate asset being “Possibly Balanced” is less than 0.01 in most

cases. These probabilities quickly approach 0 as k increases. Second, the effectiveness of

the basset generation algorithm compared to brute force search is quite apparent from

the figures. When the fraction of bassets to the total space of assets is effectively 0,

as is the case when k = 16 and t = 8, the gen-all-basset algorithm is invaluable.

Again, it is assumed that a brute-force algorithm will be primarily used to find

bassets given a specific code, while the gen-all-basset algorithm is apt for building

codes around a set of bassets. One can use heuristic search to find the appropriate

bassets in both cases. In the case of the bf-code-basset algorithm, the total search

space for assets of size t is
(

n
t

)

. When building a code around bassets and using

the gen-all-basset generation algorithm, the total search space is
(

k
t

)

· 2t
2−t. The

heuristic search algorithm is entirely dependent on both the underlying system and any
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Figure 8.2: Number of processed binary matrices when searching for bassets of size
t. An asset of size t can be represented by a k × t matrix, where k is the number of
data symbols. Each graph represents the space of codes with 4 (a), 8 (b), 16 (c) and 24
(d) data symbols. The data sets in each graph are: all possible k × t matrices (All), all
possible k× t matrices with distinct columns (Distinct Cols.), all possible k× t matrices
with (k− t) all-zero rows (Possible Balanced) and all k× t matrices that correspond to
a basset.
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associated policies.

Our exploration so far has been limited to erasure-coded symbols. Without a

concrete system and set of policies dictating how data is read and written, there is no

clear way to choose appropriate assets. As an example, if data reads are much more

common than writes, keeping most of the parity symbols inactive may be an appropriate

policy. While this section treated assets in a general fashion, the remaining sections

focus on a specific type of system and policy used to determine the appropriate assets.

8.3 The Single-Data Connected-Parity Policy (SDCP)

The last section covered finding bassets among specific erasure codes or over

a class of erasure codes for a given number of data symbols or a candidate code. The

algorithms used to find bassets are general in nature and are system and policy agnos-

tic. In reality, a set of policies is required to choose the appropriate erasure code(s) and

assets for a system. Without a policy or set of policies, there is no way to properly

choose assets. In this section, we focus on a specific policy for determining assets,

called the single-data connected-parity policy (SDCP).

Definition 8.3.1. The single-data connected-parity (sdcp) policy represents the

minimum number of symbols in a codeword that must be active to service any write

request. If the data symbol is the member of a parity equation, the corresponding parity

symbol is connected to the data symbol. An asset under the sdcp policy will contain

an initiating data symbol and its connected parity symbols. assets structured in this

way ensure that enough symbols are active to update parity symbols in a timely fashion.

Under the sdcp policy, there exist k possible assets for an erasure code. These assets

are termed an sdcp-ensemble.

Consider an asset, A, created from a (k,m)-code code, C, using the sdcp

policy. Suppose the only available symbols in C are the symbols in A. Recall, that a

symbol can refer to a single bit or an entire device. Here we assume that a symbol will

be associated with a large fraction of a device or a whole device. All data writes to C

will be directed at the single available symbol. Since the sdcp policy was used to create

A, all dependent parity symbols are also available and all redundant information can
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be updated without activating any additional symbols.

We call any system that requires dependent parity to be updated without im-

mediately activating or staging additional symbols an immediate parity update system.

Any asset in an immediate parity update system must be a superset of an asset built

using the sdcp policy. Suppose an asset, A, is not a superset of an asset built using

the sdcp policy. This means that A does not contain all of the connected parity symbols

for any of the data symbols in A. As a consequence, all data updates will require a

symbol activation or the corresponding parity information will have to be staged until

the appropriate symbols are active. This conflicts with any immediate parity update

system; thus, any asset within an immediate parity update system must be a superset

of an asset created by the sdcp policy.

We focus on storage systems that require immediate parity updates. Based on

the aforementioned observations, Property 8.3.2 must hold for all assets.

Property 8.3.2. The sdcp policy represents the minimal active symbol require-

ment for any immediate parity update system. All assets in such a system must be

based on the sdcp policy. That is, the symbols in an asset must be a superset of the

symbols in an asset under the sdcp policy.

Property 8.3.2 implies that many of the results that apply to the sdcp policy

will apply to immediate parity update systems in general.

Much of the discussion so far has focused on properties of individual assets.

In the remainder of this section we analyze properties of ensembles of assets under the

sdcp policy. To a system, an ensemble of assets describes how symbols are activated

and deactivated as a function of time, workload or some other policy.

We can make general statements about erasure codes when the policy used to

determine the assets for a system is fixed. First, we analyze balanced sdcp-ensembles.

Since the asset policy is fixed, creating balanced sdcp-ensembles is completely de-

pendent on the structure of the erasure code. Second, we explore the existence of

k-balanced sdcp-ensembles policy. A k-balanced sdcp-ensemble contains k assets

created under the sdcp policy with a reconstructability of k. In other words every data

symbol is always accessible.

We assume that each data symbol contributes to at least one parity symbol,
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otherwise, a data symbol may be unprotected. The m parity elements cover all k data

elements if each data element contributes to at least one parity equation. The parity

symbols of a code are unique if no pair of columns in the parity submatrix of the code

are equal.

8.3.1 Balanced Available Symbol Set Ensembles

The main result of this section is a bound on the rate of a (k,m)-code code

that has a balanced sdcp-ensemble. The only time an (k,m)-mds code has a balanced

sdcp-ensemble is when m = k − 1. When k ≥ 2, the rate will be at most 2
3 . This

same bound, k
k+m ≤

2
3 , is obtained for (k,m)-nxor codes.

A specific type of nxor code, we call a minimum-cover dual-parity code

(mcdp), will always have a balanced sdcp-ensembles. There are two major aspects

of a mcdp code: all data symbols must be covered by the parity symbols (minimum-

cover) and each parity equation is unique and consists of exactly two data symbols

(dual-parity).

In terms of the parity equations, a mcdp code is the most sparse nxor code

that has a balanced sdcp-ensemble. The sparsity of the code refers to the sparseness

of the parity submatrix: the parity submatrix of a mcdp code has the minimum number

of non-zero entries for any code that covers all data elements and has a balanced sdcp-

ensemble. Any code that has one or more parity columns with a Hamming weight

of 1 will never have a balanced ensemble under the sdcp policy, since such a column

represents a mirrored copy of a data symbol. Thus, the columns of the parity submatrix

of a code with a balanced sdcp-ensemble must be unique and have a Hamming weight

of at least 2.

Lemma 8.3.3. Any nxor code that has a parity submatrix with unique columns of

Hamming weight 2 that cover all of the data symbols (a mcdp code) has a balanced

sdcp-ensemble.

Proof. We prove this by showing that an arbitrary asset from a sdcp-ensemble is

balanced.

Consider a (k,m)-nxor code that has a parity submatrix with unique columns

of Hamming weight 2 that cover all of the data symbols. Under the sdcp policy, an
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asset contains a single data symbol, di, and all parity symbols connected to di. k assets

are created from each of the k data symbols. Let di be the data symbol associated with

the i-th asset, ai. ai contains di and all parity symbols connected to di. The XOR

sum of each connected parity column with the column associated with di will result in

a unique data symbol. That is, if there are m′ parity symbols connected to di, we can

solve for m′ different data symbols. We can reconstruct m′ + 1 data symbols and there

are m′ + 1 symbols in ai; thus, ai is balanced. �

We call the sdcp-ensemble created for a mcdp code a minimal balanced

ensemble. As we will show, if a balanced sdcp-ensemble exists for a (k,m)-nxor code,

then a minimal balanced ensemble must also exist for a (k,m)-nxor code.

A minimal balanced ensemble represents the balanced sdcp-ensemble built

from a (k,m)-nxor code with a maximally sparse parity submatrix. That is, removing

any data symbol from a parity equation will result in a parity equation with one data

symbol. This means that every (k,m)-nxor code with a balanced sdcp-ensemble

must be created by adding parity dependencies onto a mcdp (k,m)-nxor code. In

other words, every (k,m)-nxor code with a balanced sdcp-ensemble is created by

flipping 0 entries in the parity submatrix of a mcdp code to 1. This suggests that

a balanced sdcp-ensemble for a (k,m)-nxor code only exists if a minimal balanced

ensemble exists for a (k,m)-nxor code. Here, we formally prove this statement.

Lemma 8.3.4. A minimal balanced ensemble under the sdcp policy must exist

for some (k,m)-nxor code in order for a balanced sdcp-ensemble to exist for any

(k,m)-nxor code.

Proof.

Suppose a balanced ensemble exists for a (k,m)-nxor code and a minimal

balanced ensemble does not exist for a (k,m)-nxor code. If a balanced ensemble

exists under the sdcp policy, then each write group must at least be able to to solve

for the defining data element and some other data symbol. Additionally, the m parity

symbols must cover all k data symbols; thus, a parity submatrix consisting of columns

with Hamming weight 2 that covers all of the data symbols can be constructed. This

contradicts the claim that a minimal balanced ensemble does not exist. �
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The simple structure of a mcdp code allows us to determine the maximal rate

of a mcdp code. It follows from Lemma 8.3.4 that this rate is also the maximum rate

of any code that has a balanced sdcp-ensemble.

Theorem 8.3.5. If m ≤ k ≤ 2 ·m, then there exists a balanced sdcp-ensemble for a

(k,m)-nxor code. If k > m · 2, then a balanced ensemble does not exist under the sdcp

policy.

Proof. A mcdp code will have a parity submatrix with exactly m ·2 ones that cover all

of the data elements. By Lemma 8.3.3, a mcdp code will always have a balanced sdcp

ensemble (minimal balanced ensemble). Lemma 8.3.4 states that under the sdcp policy,

a minimal balanced ensemble must exist for some (k,m)-nxor in order for a balanced

sdcp-ensemble to exist for any (k,m)-nxor. Here, we show that we can always build

a mcdp code when m ≤ k ≤ 2 ·m and cannot build a mcdp code when k > m · 2.

When m ≤ k ≤ 2 · m, a mcdp code can always be created as follows. The

parity submatrix begins as the m ×m identity matrix (Im) and (k −m) ×m all-zero

matrix:











































1 0 · · · 0

0 1 · · · 0

0 0 · · · 0
...

...
. . . 0

0 0 · · · 1

0 0 · · · 0
...

...
...

...

0 0 · · · 0











































If k = m, then for each row in the parity submatrix, set the ((i+1) mod m)-

th entry to 1. If k > m, then for (k −m) ≤ i ≤ k, set the ((i + 1) mod m)-th entry

in row i to 1. This construction will always result in a parity submatrix that covers all

data symbols and each column has a Hamming weight of 2: a mcdp code, which has a

balanced sdcp ensemble.
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If k > m ·2, then a mcdp code cannot be created since all k data elements will

not be covered and by Lemma 8.3.4 a balanced ensemble cannot exist.

�

Theorem 8.3.5 places a bound on the maximum rate of a (k,m)-nxor code that

has a balanced sdcp-ensemble. The highest code rate is 2·m
3·m = .667 when k = 2 ·m.

This also matches the bound placed on MDS codes, leading to the following observation.

Observation 8.3.6. In order to have a balanced ensemble in an immediate parity update

system, the rate of the underlying erasure code is bound by k
k+m ≤

2
3 .

Observation 8.3.6 is quite powerful. Since the assets of a immediate parity

update system must be a superset of a sdcp asset, the only useful codes—from a

power-aware coding perspective—will have a rate of at most 2
3 . Given that the number

of parity symbols in an non-mirrored, erasure-coded system tend to never exceed the

number of data symbols, the rate of useful codes is bound on both sides by 1
2 ≤

k
k+m ≤

2
3 .

8.3.2 k-Balanced Available Symbol Set Ensembles

From the perspective of a power-managed system, a best case scenario would

allow for devices to be deactivated, all parity updates to immediately complete and have

all data symbols be available. Such a setup requires an ensemble of k-balanced assets

that contain a mixture of data and parity symbols. It turns out that in this setup a

MDS code will always have a lower rate than a nxor code under the sdcp policy. This

is not necessarily the case when augmenting the sdcp policy; we show an example of

an nxor that has a comparable rate to a MDS code and has a balanced ensemble.

The only MDS code that has a k-balanced sdcp-ensemble is a (k,k− 1)-mds

code. As stated by Property 8.1.4, at least k symbols must be available in order to

reconstruct any erased symbol in an MDS code. In an immediate update system, all m

parity symbols of an MDS code must always be active. When m < k − 1, each asset

will contain at most k−1 symbols, which is insufficient for rebuilding all k data symbols.

If m > k − 1, each asset will contain at least k + 1 symbols: too many symbols for a

balanced asset. It follows that under the sdcp policy, k-bassets can only be created

when m = k − 1.
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In order for a (k,m)-nxor code to have a k-balanced sdcp-ensemble, m = k.

If m < k, then no k-balanced sdcp-ensemble exists.

Lemma 8.3.7. If a (k,m)-nxor code has a k-balanced sdcp-ensemble, then the num-

ber of parity symbols must be equal to the number of data symbols.

Proof. By definition, a basset with k symbols can reconstruct k data symbols. Under

the sdcp policy, each basset must have at least k−1 parity symbols. When m = k−1,

the parity submatrix of the generator matrix is all ones and will never produce a k-

balanced sdcp-ensemble. If m < k − 1 there is no way to make a k-balanced sdcp

asset. When k = m,
(

k
k−1

)

= k parity columns can be created so that each data symbol

is covered by k − 1 parity symbols. �

Lemma 8.3.7 shows that MDS codes will require less space overhead than nxor

codes when using k-balanced sdcp-ensembles. k-balanced ensembles can be created

for lower-rate codes by augmenting the sdcp policy. Here we give an example, leaving

more general analysis to future work.

Assume a code, C =(4,3)-nxor and let s0, s1, . . . , s6 be the symbols associated

with C. The parity equations of C are:

s4 = s0 ⊕ s1

s5 = s1 ⊕ s2

s6 = s2 ⊕ s3

Under the sdcp policy the assets for both codes are balanced, but not k-

balanced. The assets under the sdcp policy for C are:

{s0, s4}

{s1, s4, s5}

{s2, s5, s6}

{s3, s6}
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The algorithm described in Section 8.2.2.1 can be used to find k-bassets such

that the bassets are subsets of the sdcp assets. The following asset ensemble for C

is k-balanced:

{s0, s3, s4, s6}

{s1, s3, s4, s5}

{s0, s2, s5, s6}

{s3, s4, s5, s6}

This code has the same rate as an MDS code having a k-balanced sdcp-

ensemble. There is an obvious disadvantage to this approach. The MDS code with

the same parameters will provide higher fault tolerance: (4,3)-nxor is 1 symbol fault

tolerant, while (4,3)-mds is 3 symbol fault tolerant. On the other hand, the use of nxor

codes allows a system designer to effectively cycle the devices. For example, the 3 parity

symbols of a (4,3)-mds code must always be active; this is not necessarily the case for

nxor codes. The use of nxor codes provides more freedom in how assets are created.

8.4 Architecture of a Power-Aware Storage System

Here we present the architecture of a power-aware storage system and relevant

terms specific to this architecture. This architecture is quite similar to Pergamum [58]

and serves as a straw-man system for presenting the power-aware coding techniques.

At a high-level, all writes into the system are served in a log-structured manner.

In log-structured file system terminology, the current segment of the log corresponds

to one or more devices. This means that only the devices associated with the current

segment need to be active to service the write workload. This is an immediate parity

update system; thus, parity updates will never be staged and later moved to their

respective persistent stores. As a result, the parity devices associated with the current

segment must also be active to ensure all parity information is updated as soon as

possible.
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Figure 8.3: High-level view of a power-managed system, where storage devices are
deactivated to save power. The devices are partitioned into code instances. Each code
instance will have a write group ensemble, which determines how devices are activated
to serve an incoming write workload. All writes into the system are done so in a log-
structured manner. The current segment of the log is associated with a write group
from each code instance. A write group can be the empty set, which means that none
of the devices in the code instance are used to serve the current write workload.

148



Figure 8.3 shows a system that contains a number of storage devices that may

be deactivated to save power. Each device in the system is partitioned into equal-sized

disklets. A disklet can be anything from a single sector up to an entire device. The

system pictured in Figure 8.3 has whole-device-sized disklets. The disklets in the system

are further partitioned into code instances. A code instance is a one-to-one mapping of

erasure code symbols to disklets.

A write group is a set of devices in a code instance that are active to service a

write workload. A write group ensemble is the set of all write groups for a code instance.

Individual write groups and the resulting write group ensemble depends on factors such

as expected workload, reliability and power budget. A write group is distinct from an

asset in that it refers to devices, not symbols.

The write group ensemble will be generated based on an asset ensemble.

The current write group for a code instance is determined by an asset. The devices

associated with an asset will be the devices in a write group. Here we assume a one-

to-one mapping of devices to code symbols, thus the terms asset and write group are

equivalent.

The current segment of the log will be written to devices from one or more

write groups. In turn, the current segment may correspond to devices in different code

instances.

The system shown in Figure 8.3 partitions the devices into four, disjoint 6-disk

code instances:

{D0, D1, D2, D3, D4, D5}

{D6, D7, D8, D9, D10, D11}

{D12, D13, D14, D15, D16, D17}

{D18, D19, D20, D21, D22, D23}.

Suppose the current segment in the log corresponds to data disk D0 from the

first code instance and data diskD7 from the second code instance. Furthermore, assume

that devices D3 and D4 contain the parity symbols that are connected to data disk D0

and devices D10 and D11 contain the parity symbols that are connected to data disk

D7. Then, the current segment will be written across two write groups: {D0, D4, D7}
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and {D3, D10, D11}.

Of the 24 devices shown in Figure 8.3, 8 devices are active. The active devices

are shaded in gray, while the inactive devices are white. Six of the active devices—

D0, D3, D4, D7, D10, D11—are called deterministic activations because they represent

the write groups associated with the current segment. The remaining active devices—

D14 and D18— are called transient activations. A transiently active device is a device

that is activated to service a read request and is typically deactivated after some thresh-

old.

Three conditions are necessary for an erasure-coded system to be power-aware.

First, a read policy is necessary to dictate if data is accessed directly off a disk or

reconstructed using redundant information. Second, the system must have policies that

service writes in a way that minimizes operational power consumption while maintaining

a sufficient level of reliability. Finally, when disk activation is necessary to service a read

request, a policy is needed to determine how to efficiently schedule disk activations.

8.4.1 Servicing Reads

Read requests are satisfied by either accessing an active disk or using the

erasure code to reconstruct the appropriate content from the active disks. If the infor-

mation provided on the active disks is insufficient for serving the request, other disks

must be activated. This is a transient disk activation. A transient activation may be

used to directly service the request or as part of data reconstruction if the request in-

volves multiple disks. Since a transient activation involves a disk that is not a member

of an active write group, it will be deactivated after some fixed period and will not

service writes. In addition to reads, transient activations may also be used to perform

background operations such as disk scrubbing [56].

Choosing to perform reconstruction, transient activation, or a combination of

the two depends on the situation, environment and workload. There may be cases where

a transient activation may be more power efficient than reconstructing the data from

active disks. The system should optimize for each read request based on the state of

the system and number of disks involved.

Most systems handle read requests to inactive disks using the naive strategy,
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which simply activates the disks involved in the request. Multiple transient activations

can have a dramatic effect on system power consumption and reliability. In addition,

recent analysis shows that the system reliability will decrease if disks are power cycled

too often [56]. In order to minimize power consumption and maintain a reasonable level

of reliability, the system should minimize the number of transient disk activations.

8.4.1.1 Power-Aware Read Algorithm

At a high level, the power-aware read algorithm treats symbols on inactive

devices as erased and relies on matrix methods (elementary matrix operations) to de-

termine if partial or whole-stripe reconstruction is possible using disks that are already

active [24]. If reconstruction of any erased data is possible, the matrix transformations

result in appropriate recovery equations. Instead of marking a disk as failed (or erased),

we mark all symbols on inactive devices tentatively lost. A tentatively lost symbol is

made available through activation. When a read request involves data that is tenta-

tively lost, we try to reconstruct the symbols in a way that minimizes the number of

disk activations.

Our read algorithm relies on a function that determines if lost data is re-

coverable, and if so, the equations needed to reconstruct. The recovery equations for

tentatively lost data are computed using the underlying generator matrix, G. A matrix,

G′, is constructed by zeroing out the columns in G that correspond to the tentatively lost

symbols. In order to determine the recovery equations we must find a pseudo-inverse,

R (as defined by Hafner et al. [24]), of G′. Suppose the vector c′ is the vector c = d ·G

with zeroes in the positions corresponding to tentatively lost symbols. Then c′ ·R = d′,

where the non-zero elements of d′ are the corresponding recoverable symbols of d and

the zero elements are unrecoverable. In this case, R contains the recovery equations

and c′ contains the available data and parity symbols.

The power-aware read algorithm is shown in Algorithm 6. The algorithm

takes the inactive symbols involved in the read request (I), the generator matrix for the

underlying code (G) and the set of currently inactive symbols (L) as input. The function

recoverable uses the aforementioned matrix methods to determine the symbols that

are recoverable based on the underlying code and the set of currently available (or
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recoverable) symbols. The recoverable function returns a list of recoverable symbols,

L′, and the corresponding recovery equations. The activate disk function, which is

explained in Section 8.4.1.2, determines the disk (or disks) to activate given the read

request and state of the system.

As an example, assume a one-to-one mapping of code symbols to devices. Sup-

pose I = {s2, s4} and L = {s1, s2, s3, s4} in the code instance shown in Figure 8.1. In the

first iteration, recoverable returns ({s4 = s0⊕s5⊕s6⊕s7}, {s4}). The second iteration

begins with I = {s2} and L = {s1, s2, s3} and recoverable returns (∅, ∅), therefore,

a disk must be activated. Since s2 is the only disk left in I, activate disk returns

({s2 = s2}, {s2}); disk D2 must be activated. The loop invariant evaluates to false

at the beginning of the third iteration and the algorithm returns the corresponding

recovery equations.

Algorithm 6 Recover I using G and L

1: while I 6= ∅ do

2: (eqns, L′)← recoverable(G, L)

3: if L′ = ∅ then

4: (eqns, L′)← activate disk(L,G, I)

5: else

6: I ← I − L′

7: L← L− L′

8: end if

9: all eqns.append(eqns)

10: return all eqns

11: end while

8.4.1.2 Disk Activation Algorithm

Since our approach takes advantage of the underlying erasure code, there exist

many cases where the naive activations can be avoided. If the read request contains

a single inactive symbol that cannot be reconstructed, then we simply activate the

corresponding disk. If more than one inactive symbol is in a read request, we must

determine the minimum number of activations required to service the request.
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Algorithm 7 performs a brute force search of potential disks to activate by

generating all possible combinations of disk activations (i.e. powerset of inactive disks).

All disks involved in the read request are in the set I, while all inactive disks are in

the set L. The powerset function, P, orders the combinations in ascending order by

size. For each combination, s, the algorithm determines if the request can be satisfied

when the disks listed in s are activated (via is fully recoverable). It is assumed that

the is fully recoverable function has access to the symbol-to-disk mapping. Once a

satisfactory combination is chosen, the algorithm returns the disks to activate and an

updated list of inactive devices. Since the combinations are ordered, this algorithm will

return the minimum number of activations needed to service the request.

Algorithm 7 Determine the minimum number of disk activations required to service

request I when disks in L are inactive.

1: for s ∈ P(L)− ∅ do

2: try← L− s

3: if is fully recoverable(try,I,G) then

4: L← L− s

5: return (s, L)

6: end if

7: end for

8.4.2 Servicing Writes

The total power consumed by the storage system is heavily dependent on the

write group ensemble. A write group will likely be active for a number of hours and

keep the number of active disks to a minimum. In addition, the number of active disks

determine which data can be reconstructed; thus, a proper balance is required to service

both writes and reads into the system.

Given the current assumptions, two types of system designs stand out for a

power managed system. Both of these designs are shown in Figure 8.4. Assume that

the incoming write workload can be handled by 4 data devices, where each block of user

data corresponds to 1 data block and 2 parity blocks.

Figure 8.4-(a) shows a design where whole code instances are kept active to
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Figure 8.4: Two possible setups for a power-managed system that satisfies our three
assumptions. The first setup (a), sends all write requests to a single code instance and
services read requests by spinning up inactive devices. The second setup (b), activates
subsets of each code instance to service the write workload and handles read requests
via partial reconstruction or by spinning up inactive devices. Each code instance is
defined by the (4,4)-flat code shown on the right.
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service a write workload. In this case, a single code instance is active and the remaining

code instances are inactive. The active disks are shaded. Any read request to the

disks in code instance 0 can be serviced without activating any additional devices; read

requests to all other disks will require activations.

Another strategy is to activate data devices across multiple code instances in

a way that can handle the incoming write workload. In this case, a subset of devices

in each code instance are activated to handle the write workload. Using the (4,4)-flat

code shown in Figure 8.4, each write to a data device requires two updates to parity

devices; thus, activating any 4 data devices across the code instances will be able to

handle the workload. Again, the active devices are shaded. A single data device and

its dependent parity devices are activated in the first two code instances. Two data

devices and their dependent parity are activated in the last code instance. Since we

have spread the write workload across multiple code instances, most read requests need

not be serviced by activating a disk. The disks corresponding to solvable data are shaded

in black.

Code instances 0 and 1 correspond to 3-bassets under the sdcp policy. Three

devices are active in each code instance to serve an incoming write workload. Code

instance 0 has devices D0, D4 and D5 active and can reconstruct the contents of data

devices D0, D1 and D3. Code instance 1 has devices D9, D13 and D14 active and can

reconstruct the contents of data devices D8, D9 and D10. Code instance 2 corresponds

to an asset that is not balanced: 5 devices are active, but all 4 devices worth of data can

be read without activating an additional device. There is no way to serve the incoming

workload under this configuration and have all code instances correspond to balanced

assets, so this configuration maximizes the number of bassets with two.

The main disadvantage to activating devices as shown in Figure 8.4-(b), is

the power consumed when there is a very light read workload. Any savings via partial

reconstruction are overshadowed by the disks active to service the write workload. This

motivates a direct tradeoff. There are 8 active devices in Figure 8.4-(a), which is capable

of handling the write workload, but will require disk activations for read requests to 8

of the 12 data disks. The setup in Figure 8.4-(b) requires 11 active devices, but only

requires a disk activation for read requests to 2 of the 12 data disks.
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8.5 Evaluation

In this section we perform an elementary tradeoff analysis. Using the HFR

Simulator, we compare the estimated reliability of a variety of codes to their relative

power savings. We rely on three metrics for estimating the relative power savings: ag-

gregate write group size, maximum reconstructability and relative gain. The aggregate

reconstructability of a code describes the average number of data symbols that can be

recovered when there are no transient activations. The relative gain of a code estimates

the effect of performing partial reconstruction over simply activating the target disks.

We assume a system with an architecture similar to the system described in

Section 8.4. Here we focus on the performance of a single code instance, where the

mapping of code symbols to devices is one-to-one; thus, the number of devices in a code

instance is equal to the number of code symbols. While the metrics are derived in terms

of write groups, they can be easily generalized to assets. Finally, we assume the system

uses the sdcp policy for creating write groups (or assets).

8.5.1 Metrics

We have developed three metrics to measure the aggregate write group size

based on a write group policy and potential disk activation avoidance by reconstructing

data on inactive devices for a single code instance. The aggregate write group size met-

ric is rather straightforward: compute the average number of disks active over a write

group ensemble for a code instance. We provide two metrics for measuring potential

disk activation avoidance given a code instance and write group ensemble. First, ag-

gregate reconstructability measures the average number of reconstructable data symbols

over all write groups within a write group ensemble. In other words, aggregate recon-

structability captures the average number of data symbols that can be accessed without

transient activations. Second, aggregate relative gain measures the impact of using data

reconstruction to access data on inactive devices. Device activations are counted over

every possible read request combination to a code instance. The relative gain metric

is based on the ratio of device activations for data reconstruction and the naive read

strategy.

Each metric is normalized to facilitate comparison between different codes and
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code instance configurations.

8.5.1.1 Aggregate Write Group Size

Given the write group ensemble W = {w0, w1, . . . , wk−1}, the average number

of active devices used to service write requests—assuming the duration of each write

group is equal—is

1

k

k−1
∑

i=0

|wi|

This value can be normalized with respect to the total number of symbols, n.

The normalized version is calculated as

1−

1
k

k−1
∑

i=0
|wi|

n
.

The normalization results in the following scale: 0 means all of the devices

within a code instance are active over the write group ensemble and a value of 1 cor-

responds to W = ∅. From a purely power consumption standpoint, a value of 1 is the

best and a value of 0 is the worst.

8.5.1.2 Aggregate Reconstructability

By Definition 8.1.3, the reconstructability of a code C, R(C, s), is defined as

the number of readable data symbols when symbols in s are available. The average

reconstructability for a code C with write groups in W is calculated as

Ravg(C,W ) =
1

k

k−1
∑

i=0

R(C,wi).

Suppose there are two codes C and C ′ that have k and k′ data symbols,

respectively. When k 6= k′, Ravg(C,W ) and Ravg(C
′,W ′) cannot be compared in an

apples-to-apples fashion. In order to facilitate a fair comparison between codes, average

reconstructability is normalized to give us the aggregate reconstructability

Ragg(C,W ) =
Ravg(C,W )

k
.
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As with aggregate write group size, aggregate reconstructability normalizes to

a scale between 0 and 1. A value of 0 corresponds to a code and write group ensemble

pair that cannot reconstruct any data symbols. A value of 1 corresponds to a (C,W )

pair where all k data symbols are reconstructable for every write group in W .

8.5.1.3 Aggregate Relative Gain

The read strategy in most power-managed systems will always energize inac-

tive disks that receive read requests; this is the naive strategy. Avoiding spin-up by

recovering contents of inactive disks is called the recovery strategy. Relative gain is

used to compare any two arbitrary read strategies. Here, we compare the naive and

recovery strategies.

Consider a code instance containing n disks, labeled 0, 1, ..., n − 1, with k

data disks and n − k parity disks. Let D = {0, 1, ..., k − 1} be the set of data disks,

P = {k, k + 1, . . . , n − 1} be the set of parity disks and A ⊆ (D
⋃

P ) be the set of

active disks. Every possible read request combination with respect to the devices can

be described by the powerset (P) of the k data disks. Every possible read request to

the code instance is contained in the set C = P(D). For some c ∈ C, c′ = c \ A

represents the inactive devices involved in a read request. In the naive read strategy,

|c′| disk activations are required to service the read request.

Define β(c, A) as the function described by Algorithm 7 (cf. Section 8.4.1.2).

β(c, A) returns the minimal number of disk activations required to service the read

request, c, when A devices are available. The number of such activations is given by

|β(c, A)|.

The write group ensemble completely describes the devices that will be ac-

tive at some point in time to service write requests. Here we ignore any time com-

ponent and only consider the number of write groups and each groups associated de-

vices. Here, we consider the sdcp policy, therefore, there are k total write groups:

W = {w0, w1, . . . , wk−1}. Each wi is a subset of (D
⋃

P ) and describes the active

devices for the write group’s scheduled slot.

The relative gain metric computes the ratio of device activations when per-

forming partial reconstruction to simply activating devices for a single write group
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Gi(C) =
∑

c∈C

(

1−
|β(c, wi)|

|c \ wi|

)

The relative gain across all write groups in an ensemble is simply computed as

the average across all write groups

G(C) =
1

k

k−1
∑

i=0

Gi(C).

If the naive disk activation policy perfectly matches partial reconstruction,

then the ratio in each Gi(C) will be 1 and the relative gain will be 0. Similarly, when

partial reconstruction requires no activations over all possible requests, then the relative

gain will be 1.

8.5.2 Setup

The codes used to analyze the power-space-reliability tradeoff are shown in

Table 8.1. Given the exploratory nature of this chapter, these results serve more as

a catalyst for more discussion and work in power-aware coding than a means of gen-

erating concrete recommendations to those interested in using the power-aware coding

techniques. In short, defining the metrics for such a tradeoff and showing that a trade-

off does, in fact, exist is a substantial contribution; this rudimentary analysis uses the

proposed metrics to provide a way to think about the impact of power-aware coding in

an erasure-coded system.

For simplicity, the write group ensembles for each code are created using the

sdcp policy: each write group corresponds to a single data symbol and its connected

parity elements.

Table 8.2 contains the structure and fault tolerance information for the irreg-

ular codes used in the tradeoff analysis. Each (k,m)-mds code is a flat MDS code that

can tolerate up to m symbol failures. In this analysis, the codes were chosen based

on the total number of symbols, fault tolerance, rate and potential power savings. In

addition, we assume that a single symbol is mapped to one and only one device and the

number of symbols is equal to the number of devices.
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code Hamming distance rate number of disks

(5,5)-balanced 3 0.50 10

(5,5)-raid 10 2 0.50 10

(5,5,2)-weaver 3 0.50 10

(7,3)-mds 4 0.70 10

(8,2)-mds 3 0.80 10

(9,1)-mds 2 0.90 10

(8,4)-balanced 2 0.67 12

(8,4)-max 2 0.67 12

(8,4)-mds 5 0.67 12

(10,2)-mds 3 0.83 12

(11,1)-mds 2 0.92 12

(5,3)-flat 2 0.63 8

(4,4)-flat 4 0.50 8

(6,2)-max 2 0.75 8

(5,3)-mds 4 0.63 8

(6,2)-mds 3 0.75 8

(7,1)-mds 2 0.88 8

Table 8.1: List of erasure codes used in our tradeoff evaluation.

code Fault Tolerance Vector parity bitmap

(5,5)-balanced (0.00, 0.00, 0.00, 0.00, 0.05, 0.30, 1.00) (15, 29, 27, 23, 30)

(5,5)-raid 10 (0.00, 0.11, 0.33, 0.62, 0.87, 1.00) (1, 2, 4, 8, 16)

(5,5,2)-weaver (0.00, 0.00, 0.04, 0.19, 0.52, 1.00) (17, 3, 6, 12, 24)

(8,4)-balanced (0.00, 0.18, 0.51, 0.84, 1.00) (3, 12, 48, 192)

(8,4)-max (0.00, 0.15, 0.43, 0.74, 1.00) (255, 253, 251, 247)

(5,3)-flat (0.00, 0.04, 0.29, 1.00) (7, 11, 29)

(4,4)-flat (0.00, 0.00, 0.00, 0.20, 1.00) (7, 11, 13, 14)

(6,2)-max (0.00, 0.39, 1.00) (63, 62)

Table 8.2: Fault tolerance and structure of erasure codes used in the tradeoff evaluation.
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All of the listed MDS codes obviously provide optimal fault tolerance for the

total number of symbols and rate. In the case of MDS codes, in order to reconstruct

the data from any inactive device (or symbol), at least k devices must be active. The

XOR-based codes, while providing suboptimal fault tolerance, may have the ability to

reconstruct data from an inactive device while having less than k active devices. Here,

three types of XOR-based codes are considered. Three of the codes exhibit balanced

write group ensembles (equivalently bassets) under the sdcp policy: (5,5)-balanced

(5-balanced ensemble), (5,5,2)-weaver (2-balanced ensemble) and (8,4)-balanced (2-

balanced ensemble). Two of the codes provide maximum reconstructability under the

sdcp policy: (8,4)-max (0.4531 normalized reconstructability) and (6,2)-max (0.31 nor-

malized reconstructability). The remaining XOR-based codes were chosen as the most

fault-tolerant for a (k,m)-flat code: (5,3)-flat (1 symbol fault tolerant) and (4,4)-

flat (3 symbol fault tolerant).

8.5.3 Power-Space-Reliability Tradeoff

Figures 8.5 , 8.6 and 8.7 each contain three graphs and contain comparisons

for the 12-disk codes, 10-disk codes and 8-disk codes, respectively. The x-axis of each

graph corresponds to the probability of data loss given a 10 year mission time using the

HFRS v.2 simulator and the parameters used in Chapter 4. Each graph labeled with an

(a) compares relative gain, which corresponds to the number of avoided disk activations

under the sdcp policy, with reliability. Each graph labeled with an (b) compares ag-

gregate reconstructability, which corresponds to the number of reconstructable inactive

disk reads per write group under the sdcp policy, with reliability. Finally, each graph

labeled with an (c) compares the normalized write group size, which corresponds to

the average number of active disks used to service writes under the sdcp policy, with

reliability.

Figure 8.5 contains the 12-disk configurations. As expected the (8,4)-mds

code provides the highest level of reliability across all codes. The (8,4)-max provides

the highest expected reconstructability and relative gain across all codes. Again, (8,4)-

max has the maximum reconstructability for any XOR-based code with 8 data and

4 parity, so this is expected. Unfortunately, the (8,4)-max code requires too many
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Figure 8.5: Power-reliability tradeoff for 12-disk configurations.
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Figure 8.6: Power-reliability tradeoff for 10-disk configurations.

devices for serving writes. We find that higher rate and/or lower density codes typically

require fewer additional active devices to service writes, but provide low reliability.

When comparing across all codes, no code provides the best space efficiency, reliability

and expected reconstructability. It appears that the code with a 2-balanced ensemble

provides a decent middle ground between codes. The (8,4)-balanced code provides

roughly the same reliability as (8,4)-max, requires very few devices (2 on average under

the sdcp policy) to service writes and provides an expected disk activation savings

between the worst and best across the compared codes.

Figure 8.6 shows the tradeoff between 10-disk configurations. Again, no code

appears to provide best space efficiency, reliability and expected reconstructability. In

fact, for some codes, there appears to be an inverse relationship between expected power
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due to writes and the reconstructability metrics. The (5,5)-balanced code provides

the best reliability and reconstructability for all codes. The same code requires the

most active devices to service writes, which is most likely due to the density of the

code (each parity equation is computed from 4 data symbols). The (9,1)-mds and

(5,5)-raid 10 codes have the worst reliability and provide the least utility in terms of

reconstructability, but require less active devices to service writes under the sdcp policy.

As shown in Figures 8.6 (a) and (b), code rate has an effect on reconstructabil-

ity and relative gain. Two of the three rate 0.50 codes perform better than all MDS

codes. A second order effect is apparent in the structure of each code of rate 0.50. The

least sense code ((5,5)-raid 10) has reconstructability comparable to the higher rate

MDS codes. As more dependencies are added to create (5,5)-balanced and (5,5,2)-

flat the reconstructability improves. (5,5)-balanced is the most dense and has the

best performance in terms of reconstructability.

Finally, as seen across all graphs in Figure 8.6, the (5,5,2)-flat appears to

provide a middle ground between all codes. Under the sdcp policy, this code has a 2-

balanced ensemble, its regular structure results in a decent relative gain and on average

only 3 devices are active to service writes.

Finally, Figure 8.7 contains the tradeoffs between 8-disk configurations. As

with the other code configurations, no code appears to provide best space efficiency, re-

liability and expected reconstructability. In terms of high reliability and space efficiency,

the (4,4)-flat code almost rivals the (5,3)-mds. Both require half of the symbols to be

active to service writes under the sdcp policy. The irregularity of (4,4)-flat results in

higher reliability than the (5,3)-mds code. While the relative gain of the (5,3)-mds code

is slightly better than the (4,4)-flat code, we see comparable reconstructable reads out

of the (4,4)-flat code.

8.5.4 Discussion

While it is difficult to make any sweeping conclusions based on this rudi-

mentary analysis, a few general statements can be made. Obviously, code rate has a

dramatic effect on the reconstructability of a code under power-aware coding. Given

two properly constructed codes, the code with a lower rate is expected to provide higher
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Figure 8.7: Power-reliability tradeoff for 8-disk configurations.
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reconstructability. This comes at a cost. The lower rate and high reliability (i.e. higher

density) codes tend to require more active devices to service requests under the sdcp

policy. This is expected to hold as policies derived from the sdcp are created.

While not true in general, the aggregate reconstructability appears to be corre-

lated with relative gain; thus, a code with high aggregate reconstructability is expected

to also have a high relative gain. In the end, the trick is to find a code that has good

enough reliability and provides good reconstructability, while not requiring too many

additional active symbols to service writes. This implies that nxor, codes may be

well-suited for power-aware coding.

8.6 Conclusion

This chapter has introduced a novel way to save power in erasure-coded sys-

tems, called power-aware coding. At a high level, power-aware coding is based on a

generalization of traditional fault-tolerance, called reconstructability. Reconstructabil-

ity uses information on active devices to reconstruct user data on inactive devices,

allowing data availability in the face of inactive devices.

The reconstructability metric is used to find sets of active symbols (or devices)

that equalize the number of available user data symbols, called balanced. Algorithms

were developed to find balanced sets given a candidate erasure code and to build erasure

codes around balanced sets.

We have defined a system property called immediate parity update, which

enforces timely parity updates and a policy that ensures enough code symbols are active

to satisfy the property. We have placed a bound on the rate of any code that can achieve

the balanced property in an immediate parity update system.

A high-level system architecture of an immediate parity update system is pro-

posed and subjected to a rudimentary space-power-reliability tradeoff analysis. We have

developed three metrics, which are used to quickly estimate the expected power sav-

ings of an erasure code and set of activation and access policies. While the metrics do

not provide absolute results on the power savings of any particular system, they give a

system designer a way to compare a set of candidate system configurations.
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Chapter 9

Future Work

9.1 High-Fidelity Reliability (HFR) Simulator

While the techniques presented in Chapter 4 are useful to a researcher, they

provide little utility to the practitioner. Currently, both HFRS v.1 and HFRS v.2 are

not in a releasable form. In the future, both versions will be merged into a single

version, cleaned up and released as an open source Python package. The markov model

package and specialized modeling language will also be released along with the updated

HFR Simulator. This package will give storage researchers and practitioners a single

module that can be used to perform trending analysis and comparison between system

instances.

In addition to merging the current versions of the HFR Simulator, there exist

two possible major improvements over what exists. First, we found that around and be-

yond 4-disk fault tolerance, the use of balanced failure biasing alone for non-Markovian

systems may not be sufficient. One possible improvement is to augment balanced fail-

ure biasing with multi-level splitting techniques [17]. Second, while both versions of the

HFR Simulator effectively map one or more code symbols to each device, the current

implementation is not efficient for simulating distributed storage systems. Our hope is

to accommodate simulations involving hundreds or thousands of devices, with multiple

code instances across the devices.

Another important research question is the expected impact of a data loss

event. In the future, we plan to flesh out this metric, which can be used in conjunction
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with the results of Chapter 7 to estimate the impact of a data loss event on different

classes of data (i.e. highly sensitive data, re-computable data, etc.).

9.2 Fragment Placement

The redundancy placement problem and associated metrics have applications

outside of exploring the effect of fragment placement on reliability. There are two ap-

plications that can make use of the results presented in Chapter 7. First, there has

been a great deal of buzz surrounding flash+disk hybrid systems. Since flash and disk

have different reliability characteristics, the placement of erasure-coded fragments will

affect system reliability. Second, certain organizations may store various classes of data.

For simplicity, assume that there are two classes of data: sensitive and insensitive. An

example of sensitive data may be customer transactions or plans for a space shuttle; in

other words, heads will roll if data is lost. Insensitive data could be email spam or a

temporary directories. The lost of insensitive data should not affect daily business oper-

ations. The placement of such data onto heterogeneous devices presents an interesting

research problem, especially when there are many classes of data.

One possible improvement to the techniques presented in Chapter 7 is to ex-

ploit the structure of the mel to make placement decisions. That is, instead of using

an aggregate availability measure (rme) for each placement in stochastic optimization,

we would like to find ways to directly use the mel in placement decisions.

9.3 Reconstructability

The idea of reconstructability is quite similar to the reconstruction of lost

data presented by Hafner [24]. In short, reconstructability measures the fraction of

data symbols that can be recovered given a subset of the code symbols are available. In

many cases, all of the data symbols can be recovered. What happens if only a subset can

be recovered? What are the consequences/impact of such a scenario? These questions

unify some of the ideas presented in Chapters 4 and 7. An interesting research topic

would be to unify the expected impact of data loss (cf. Chapter 4), placement of multiple

classes of data (implied from Chapter 7) and reconstructability (cf. Chapter 8).
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9.4 Power-Aware Coding

Chapter 8 defined the terminology for power-aware coding, presented theoret-

ical results, motivated continued work through a basic reliability-power-space tradeoff

analysis and suggested possible architectures where power-aware coding may prove fruit-

ful. Without a workload-based analysis, there is no way to determine how well power-

aware coding will fare in the wild. In addition, a proper system-level analysis will be

required. One of the looming questions is if power-aware coding is useful enough to

incorporate into systems that already rely on architectural techniques such as caching,

the use of flash, or the use of other MAID-like techniques.

While the theoretical results were generalized to code symbols and are not

necessarily tied to a specific layout of code fragments to devices, much of the analysis

assumed that a single code symbol is mapped to a single device, and vice-versa. This

policy was used to simplify the analysis. Based on our theoretical results, it is possible

that a system can benefit from power-aware coding when mapping a single code symbol

to a single device. After performing the simple analysis, we found that the techniques

may be more effective in a more general setting that maps multiple symbols to a single

device. Such architectures are considered in this section. Additionally, we found a spe-

cific code construction that leads to balanced ensembles. As the number of code symbols

approaches infinity, the code rate approaches the bound implied by Theorem 8.3.5.

The main purpose of this section is to encourage more thought into how power-

aware coding techniques could be incorporated into a real-world system.

9.4.1 Codes Derived from Lattice Graphs

As shown in Figure 9.1, an XOR-based code constructed may be constructed

from a lattice graph. The vertices correspond to parity symbols and the edges corre-

spond to data symbols. In this construction, we construct what we call square lattice

graphs; thus, the code must contain exactly p2 total vertices. The graph consists of p

rows (R0, R1, . . . , Rp−1) and p columns (C0, C1, . . . , Cp−1). There are exactly 4 parity

symbols that have 2 contributing data symbols, (p − 2) × (p − 2) parity symbols that

have 4 contributing data symbols and (p − 2) × 4 parity symbols with 3 contributing

data symbols. Such a code will contain exactly 2 · p · (p− 1) edges (data symbols). An
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example lattice graph for p = 4 and its associated Tanner graph is shown in Figure 9.1.

Assuming a square lattice, the rate of the code can be derived from the number

of parity symbols in the lattice. If there are p parity symbols in a row, then there are

p2 total parity symbols. From this we get 2 · (p − 1) · p data symbols. The rate as p

tends to infinity is

limp→∞
2 · (p− 1) · p

p2 + 2 · (p− 1) · p
=

limp→∞
2 · p2 − 2 · p

p2 + 2 · p2 − 2 · p
=

limp→∞
2 · p− 2

3 · p− 2
=

2

3

Thus, the rate of this code meets the bound specified by Theorem 8.3.5. In

addition, it turns out that k-balanced write group ensembles under an augmented sdcp

policy are quite easy to create with this construction. There are two write groups in

such an ensemble. The first write group contains all of the devices associated with the

rows. The second contains all of the devices associated with the columns.

As an example, consider the code shown in Figure 9.1. If all of the symbols

associated with the rows are activated, every active data symbol can be used to service

writes. In this case 12 data symbols are used to service writes. Additionally, all 24 data

symbols can be reconstructed without activating any additional symbols. The same

is true for activating all of the symbols associated with the columns; thus, both write

groups are 24-balanced and the entire ensemble is 24-balanced.

9.4.2 Disklets with Disks

If multiple code symbols are mapped to a single device, then whenever the

device is active multiple code symbols are available. Such an arrangement can be gen-

erated as follows. Assume an erasure code with n total symbols and a set of N disks.

Each disk is divided into a set of fixed-sized disklets, where each disk has at least two

disklets. Suppose n disklets can be created across the N disks in this way. Multiple

code symbols can now be mapped to a single device by creating a one-to-one mapping

between code symbols and disklets.
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Figure 9.2: Disk with disklets.

Both reliability and expected savings due to power-aware coding will most

likely change between mappings, though, there most likely exists isomorphic mappings

similar to those shown in Chapter 7. An example erasure code and mapping is shown

in Figure 9.2. There are a total of 6 disks, each of which contain 2 disklets. This

accommodates all 12 symbols in the code shown Figure 9.2-(a). The mapping shown in

Figure 9.2-(b) results in a 2 disk fault-tolerant configuration. Additionally, a 6-balanced

write group ensemble can be created.

Under this configuration, the sdcp policy (at the symbol level) results in a

6-balanced ensemble. If the write groups are

{{D0, D2, D3}, {D1, D3, D4}, {D2, D4, D5}, {D3, D0, D5}, {D4, D1, D0}, {D5, D1, D2}},

then a single symbol worth of data can be written and all data symbols are

available without additional device activations. The write group {D0, D2, D3} is shown

in Figure 9.2-(a), where the devices (and symbols) shaded in grey are active and the

symbols shaded in black can be reconstructed from the active symbols.
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Other types of configurations based on symbol rotation and parity declustering

are expected to have similar properties. Such configurations are left to future work.

9.4.3 Disklets with Disk+NVRAM

As shown in the last subsection, the use of disklets can provide additional util-

ity under power-aware coding. Adding non-volatile memory (NVRAM) to the equation

can further assist in keeping disks spun down. Currently, the most prevalent form of

NVRAM is flash memory. Two attractive properties of flash memory are its low power

utilization (compared to disk) and good random read performance. One major issue

with current flash memories is endurance: a block can only sustain a certain amount

of writes before becoming unreliable. The endurance of a flash memory block can be

anywhere from 104 writes to 106 writes, depending on the technology and level of error-

correction implemented on the device’s controller. Other NVRAM technologies such as

MRAM do not have the same endurance limitations as flash.

Assume that we can create disklets across both disks and flash devices such

that each disk has twice the capacity of each flash device. Figure 9.3 shows an example

code and fragment mapping across the disklets. Due to the endurance limitation of

flash, in most cases it is probably unwise to store parity on flash in a disk-flash hybrid

system. Here, we assume that the workload is write-once, read-maybe, thus data is

rarely re-written. The mapping in Figure 9.3-(b) can tolerate any single device failure.

All of the symbols mapped to flash devices can be read or written to without having to

spin a device up; thus, their availability is similar to that of an active disk. If D0 and D2

are chosen as a write group, then the system can write to the disklets associated with

data symbols s0, s2, s4 and s7. Under this write group, every data symbol is accessible

without any additional disk activations.

While this particular architecture may not be feasible in general, it does have

some value. Once other NVRAM technologies without the endurance limitation become

more widespread, this architecture may be feasible in high-performance systems.
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9.4.4 Utilizing Unused Space on Disk

Finally, consider a generalization of the techniques proposed in PARAID [61].

As in the previous examples, each disk is partitioned into fixed-sized disklets. Instead

of creating a one-to-one mapping between disklets and code symbols, the number of

disklets exceeds the number of symbols; thus, some disklets remain unmapped. These

unmapped disklets can be used to temporarily store parity information for both power

savings and temporary fault-tolerance.

Figure 9.4 illustrates an example of using unallocated disklets to keep drives

spun-down. The main code used to provide fault-tolerance is a 2 disk fault tolerance

MDS code. As shown in the figure, disksD0 throughD5 are data disks and the remaining
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disks are devoted to parity. Each disk is partitioned into two disklets: the first disklet

is used to create the (6,2)-mds instance and the second contains unused space.

Suppose the following write group ensemble is created based on an augmented

sdcp policy:

{{D0, D2, D6}, {D1, D3, D6}, {D2, D4, D7}, {D3, D5, D7}}.

Consider the write group {D0, D2, D6}. An impromptu code instance can be

created using a few of the unallocated disklets. Such a code is shown in Figure 9.4-(a).

By placing the parity symbols s8, s9 and s10 on the unallocated disklets of devices D0,

D2 and D6, respectively, the write group becomes 6-balanced. In addition, both active

data symbols (s0 and s2) can absorb writes.

The challenge in using this architecture is migrating data between each write

group switch and finding a suitable impromptu code to use for each write group. In the

example shown in Figure 9.4, the impromptu code can be used for the first two write

groups in the ensemble, but will not provide the same properties for the remaining

write groups. These challenges are left to future work. We believe that the results of

Sections 8.2 and 8.3 can be used to find suitable codes.
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Chapter 10

Conclusion

In this thesis we have studied and analyzed the reliability and potential power

savings of erasure-coded storage systems. We have identified a variety of issues with

current reliability modeling techniques and have created the High-Fidelity Reliability

(HFR) Simulator, an efficient, accurate reliability simulation framework for erasure-

coded systems.

In Chapter 6, the HFR Simulator was used to perform the most thorough

reliability analysis of erasure codes to date. In our analysis, we analyzed the reliability

of array codes, flat XOR-based codes and MDS codes. Prior to the HFR Simulator,

such an analysis was not possible.

The most common downside to simulation is the possibility of long running

times. A version of the HFR Simulator, called HFRS v.2, utilizes a fast simulation

technique called importance sampling. Importance sampling allows us to efficiently

evaluate the reliability of a highly fault-tolerant system and accurately compare the

reliabilities of highly fault-tolerant systems.

The HFR Simulator was used to perform a variety of sensitivity analysis. We

showed the effect of sector failure model on overall system reliability. We find that

considering the critically exposed region when determining a data loss event can have

a dramatic effect on the reliability estimate. Another interesting finding was the sensi-

tivity of SPC codes to increasing sector error rates. Given the symbol-wise Hamming

distance of an SPC code, systems that utilize such codes remain robust in the face of

sector errors.
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The HFR Simulator was used to study the reliability of erasure codes across

heterogeneous devices in Chapter 7. We introduced a novel problem in erasure-coded

systems, called the redundancy placement problem: given a set of heterogeneous devices,

how does one map code symbols to devices in a way that maximizes reliability? The

Reliability MTTDL estimate was created to quickly order distinct symbol placements

and two algorithms were developed in an effort to determine placements that maximize

reliability. Both the algorithms and analytic model were validated using the HFR

Simulator.

Finally, Chapter 8 introduced the concept of power-aware coding, which relies

on the underlying structure of an erasure code to avoid disk activation. The minimal ac-

tivation policy, called single-data connected-parity, allows both data and parity symbols

to be updated without additional disk activation. The most promising result involves

erasure codes that exhibit the balanced property under the single-data connected-parity

policy. We have placed a bound on the rate and provide insight into the structure of

such codes. Three metrics are created to explore the power-reliability-space tradeoff.

The tradeoff analysis uses the three metrics and the HFR Simulator to estimate the

utility of different codes in a system that utilizes power-aware coding.
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