
HANDS: A Heuristically Arranged Non-Backup
In-line Deduplication System

Avani Wildani #1, Ethan L. Miller #2, Ohad Rodeh ∗3

#Storage Systems Research Center, UC Santa Cruz

Santa Cruz, California, USA
1
avani@soe.ucsc.edu
2
elm@soe.ucsc.edu

∗IBM Almaden Research Center

San Jose, California, USA
3
orodeh@us.ibm.com

Abstract— Deduplicating in-line data on primary storage is
hampered by the disk bottleneck problem, an issue which results
from the need to keep an index mapping portions of data to
hash values in memory in order to detect duplicate data without
paying the performance penalty of disk paging. The index size is
proportional to the volume of unique data, so placing the entire
index into RAM is not cost effective with a deduplication ratio
below 45%.

HANDS reduces the amount of in-memory index storage
required by up to 99% while still achieving between 30% and
90% of the deduplication a full memory-resident index provides,
making primary deduplication cost effective in workloads with
deduplication rates as low as 8%.

HANDS is a framework that dynamically pre-fetches finger-
prints from disk into memory cache according to working sets
statistically derived from access patterns. We use a simple neigh-
borhood grouping as our statistical technique to demonstrate the
effectiveness of our approach. HANDS is modular and requires
only spatio-temporal data, making it suitable for a wide range
of storage systems without the need to modify host file systems.

I. INTRODUCTION

Though the price of storage is falling rapidly, recent data

from the IDC indicates that the rate of data growth is outpacing

the rate of storage growth [1]. This divide is projected to

increase in the near future, even before taking into account

the effect of localized natural disasters on the global storage

supply, which can price available storage above what many

organizations can afford at scale [2]. Analysts believe that over

half of the information we currently produce does not have a

permanent home [3].

To address a growing need for primary space savings,

researchers such as Constantinescu [4], Jones [5], the iDedup

team [6], and the DBLK team [7] have proposed deduplicating

primary storage in addition to backups and archival systems.

At a high level, deduplication compares segments of data

against an index to determine if the segment in question is

already stored on a system. Unlike backups, primary storage

is constantly accessed, so the deduplication system must check

segments against the index shortly after the write request. This

is known as in-line deduplication.

In-line deduplication is rarely used on primary storage

because checking for duplicate blocks has a significant perfor-

mance impact. Many groups have tried to reduce this impact

by moving parts of the index to memory, but the cost of

storing the index in memory scales with the amount of unique

data in the storage system and quickly becomes economically

infeasible. In a system where some of the index must remain

on disk, performance is impacted by paging to and from disk:

this is known as the disk bottleneck [8].

To illustrate the cost of memory, suppose we want to

deduplicate incoming writes to a system with 100 TB of

unique data and a data segment size of 4 KB, resulting in

2.7 billion segments. At an average of 32 bytes per segment

hash, this would result in a massive 800 GB of memory

to store the deduplication index. At $100 per terabyte of

disk and $10 per gigabyte of DRAM, the $10,000 disk array

would require $8,000 of dedicated memory to store the entire

deduplication index. This means that if the deduplication rate

for the workload is under 45%, which is more than many

primary deduplication systems achieve [6], we are actually

paying extra to store less data with primary deduplication. To

make matters worse, many systems use a data segment size of

1 KB to get more fine-grained de-duplication, increasing the

break-even point for deduplication from 45% to an effectively

unattainable 76% [4].

To make deduplication on primary storage economically

feasible we introduce HANDS: a scalable, in-line, chunk-

based deduplication framework for primary storage. HANDS

generates correlated groups of segments, or working sets,

based on usage patterns and places the corresponding segment

hashes, or fingerprints, adjacently in the index cache so the

entire group can be accessed atomically when an element is

accessed. The method we propose for working set identifica-

tion relies only on historical segment I/O access data, which

is easy to collect and interpret across diverse storage envi-

ronments including HPC and enterprise. Though we propose

a domain agnostic method for determining working sets, our

technique does not rely on any particular method of generating

groupings.

We tested HANDS on trace data from a large, multi-user

enterprise storage system as well as a university research

server and found that loading groups of data into the index

978-1-4673-4910-9/13/$31.00 © 2013 IEEE ICDE Conference 2013446

cache significantly reduces the number of accesses to the on-

disk index cache while realizing most of the data reduction

potential.

Our work presents two major contributions. First, we

demonstrate a dynamic, scalable method to select a portion

of the deduplication index to store in memory, reducing

the memory cost for primary deduplication by up to 99%.

Second, we provide an experimental evaluation of deduplica-

tion with different methods of in-memory index management

and memory footprint size, demonstrating the generality and

adaptability of our technique. We found that we can reduce

the percentage of the index cache that is stored in memory

to 1% while still achieving 90% of the optimal space savings

for stored data. We also found that only 10% of the total data

blocks read by a trace need to be pulled into the memory cache

at all to achieve reasonable results.

The rest of this paper is laid out as follows. First, in

Section II we discuss primary deduplication and the solutions

other researchers have proposed for scalability. In Sections III

and IV, we present an overview of our working set calculation

methods and system design. Then, in Section V, we present

our experimental results and an analysis of our methodology.

We conclude with a discussion of how our work could be

extended to different workloads and storage systems.

II. BACKGROUND AND RELATED WORK

The goal of any deduplication method is to identify

redundancy in storage and eliminate it. Much work has been

done in increasing the efficiency of deduplication of data

streams, such as for backups. This work generally does not

apply to our problem because backup workloads have a

known stream ordering and different performance constraints.

In-line data deduplication generally consists of three steps per

incoming data segment:

1) Identify whether the segment is a duplicate

2) If the segment is a duplicate, create an index pointer for

that write

3) If the segment is new, store the data and add its

fingerprint to the deduplication index

The critical step that our work addresses is the need to

access and potentially update the index without increasing the

perceived I/O write time. Manipulating memory is relatively

imperceptible, so we focus our efforts on moving as many of

the accesses as possible from disk into memory.

Much of the data in large systems, generated data in particu-

lar, has a high duplication rate [4], [9]. Some workloads, such

as virtual machines, have obvious massive duplication, and

these images do not get cleaned up the way localized storage

does [10]. Other workloads, such as scientific computing, have

little file level duplication since results are unique, but they

have a high level of chunk level deduplication from the results

being similar or accretive.

Scalable primary storage has become more of a concern as

the concept of “stale data” evolves. While organizations used

to be able to identify older data to store on tertiary storage,

many modern datasets exhibit an unpredictable long-tail access

pattern, creating an archival-type workload where the write-

once, read-maybe assumption no longer holds [11].

While some groups have presented solutions for backup

and archival workloads, primary deduplication at the peta

and exabyte level remains relatively unstudied [8], [12]. The

main argument against deduplication on primary storage is the

performance impact on the system caused by hash calculation

and additional I/O requests [4]. Researchers such as Con-

stantinescu [4] and Storer [13] use deduplication on primary

storage in addition to backups and archival systems, but they

focus on compression and security, respectively, and do not

directly address the disk bottleneck problem. El-Shimi et al.

show how naturally existing partitions in workloads can be

exploited for de-deduplication in enterprise workloads [14].

Our work complements theirs since they have shown that

the type of workload patterns we propose occur in a broader

range of workloads. Efforts that do address the disk-bottleneck

problem have typically been limited to backup systems, though

Mandagere et al. demonstrate the type of trade-offs that are

typically made to limit a deduplication index to available

memory, mainly by increasing the chunk size [15]. Srinivasan

et al. [6] propose to improve primary deduplication perfor-

mance with iDedup by only duplicating chunks with high

spatial locality. They also use temporal locality to restrict

their in-memory cache of hashes to LRU. Essentially, they

limit the blocks they de-duplicate to blocks that are hot and

sequential. While this may be necessary for workloads with

extremely high IOPS, we show in this work that it is possible

to de-duplicate every block instead of restricting ourselves to

blocks which have a high probability of duplication in certain

workloads. Our technique is broadly applicable and results in

better space savings than iDedup.

The Extreme Binning project tackles the data bottleneck

problem by noting that file similarity can be determined by

comparing the IDs of a subset of chunks, allowing similar files

to be grouped together in backup workloads by subsampling

larger pieces of a stream [8]. Our approach aims for the

same ends with different means. First, we assume we do

not know about existing chunk to file relationships when

grouping our data. Our groups are purely based on chunks.

This is beneficial because it allows us to proceed with less

system knowledge in an environment where many accesses

are not sequential. Adding groups to the file similarity metric

in Extreme Binning could improve their results on primary

workloads. A similar technique used by Lillibridge et al.

addresses the disk bottleneck problem by breaking up the

backup streams into very large chunks and selectively de-

duplicating them against similar chunks stored in a sparse

index [16]. Though their throughput is very high, they rely

on the large similar blocks of data that are common in backup

workloads but generally absent in multi-user primary storage.

Grouping in particular has been successfully used by some

projects to improve scalability in backup systems. Both Zhu

et al. [17] and Efstathopoulos and Guo [12] found that pulling

in data by group membership had a significant impact on

447

the memory requirement of the index cache. However, their

method of group detection, relying on the spatial locality of

the data stream in a backup workload, does not carry over to

the random accesses of a primary deduplication workload.

Zhu et al. also provide a comprehensive look at data

deduplication on backup workloads, and we build on their

use of Bloom filters to quickly test whether a write is a dupli-

cate [17]. DEBAR improved the scalability and performance of

deduplication for backup systems by aggregating a set of small

I/Os into large sequential blocks after passing them through a

preliminary filter [18]. Our work captures similar sequentiality

through working set identification and thus does not need to

rely on the backup stream.

Data grouping has been put forward as a means to improve

the efficiency of a variety of applications [19], [20], though

the grouping usually relies on domain knowledge. We use a

domain agnostic grouping methodology designed for condi-

tions when a minimal amount of trace data is available [21].

There are several extant methods for working set prediction

such as C-Miner [22], which uses frequent sequence matching

on block I/O data, or grouping using static, pre-labeled groups

as Dorimani et al. does [23]. There is also a large and varied

body of work on file access prediction which could be used

in place of working set selection [24], [25], [26].

III. WORKING SET IDENTIFICATION

Working sets are groups of blocks that are likely to be

accessed together. A good working set identification algorithm

for HANDS produces groups that are small, making them

less likely to churn the cache and more likely to have high

predictive value. The algorithm must also avoid overfitting to

the training data. Finally, any technique used for grouping has

to have low overhead and produce a grouping lookup table

with a small memory footprint.

Identifying working sets bears some similarity to cache pre-

fetching algorithms. Instead of trying to predict the next access

based on popularity, however, we co-locate elements on disk

if they are likely to be accessed together regardless of whether

the elements have a high probability of being accessed at all.

The important distinction between working set identification

and caching is that we are not limited in the size of what we

can, essentially, “pre-pre-fetch.” By grouping data regardless

of how it is accessed, we hope to capture associations caused

by the long tail of rare accesses that occur in observable

clusters.

A. Selecting a Grouping Technique

Working sets need to reflect the changing workloads of large

scale systems without constant maintenance. For example,

we cannot rely on semantic qualities of the data such as

project membership or filetype, since the definitions of these

qualities can shift, requiring regular manual updating to keep

the groupings relevant. Instead, we apply a statistical analysis

to a training set to establish initial groupings and then alter

these groupings based on their observed predictive capacity.

Though any predictive grouping technique can be easily

dropped in. To demonstrate HANDS, we extend Neighborhood

Partitioning, a working set classification technique that looks

at pairwise comparisons of accesses within a window [21]. We

modified neighborhood partitioning to add likelihood values

and scalability by combining the results of several overlapping

windows to return a resultant grouping.

B. N-Neighborhood Partitioning

Neighborhood Partitioning (NP) is a statistical method to

compare data across multiple dimensions with a definable

distance metric. Though it is very efficient and has some

ability to detect interleaved groupings, it does not scale well.

To support arbitrarily large amounts of data, we introduce

N-Neighborhood Partitioning (NNP), which merges several

NP groupings without the memory overhead of a single large

partitioning. By aggregating incoming accesses into regions

of fixed size, NNP is highly scalable and able to perform

in real time even in systems with high IOPS. The size of

regions is determined by the memory capabilities of the

system calculating the working sets, though increasing the

size of the region quickly meets diminishing returns [21].

The regions in our implementation also overlap by a small

number of accesses to account for groups that straddle the

arbitrary breakpoints in our region selection. The choice of

overlap is based on desired group size and is independent of

the data. For each region, the partitioning steps are:

1) Collect data

2) Calculate the pairwise distance matrix

3) Calculate the neighborhood threshold and

detect working sets in I/O stream

4) Combine new grouping with any prior groupings

1) Data Collection: NP requires a minimum of two di-

mensions of data to calculate similarity between accesses. For

disk-based storage systems and block devices, this is always

possible to collect without impacting system performance

because of the ability to directly monitor the storage bus to

get block I/O access data [27]. From block I/O traces, we can

extract temporal and spatial locality data. Though we use only

spatio-temporal locality to maximize the general applicability

of our technique, the algorithm is trivially extendible to other

dimensions such as source file, LUN, or PID; adding metadata

typically leads to tighter groupings [19].

2) Calculating the Distance Matrix: NP depends on a pre-

calculated list of distances between every pair of points, where

points each represent single accesses i.e., reads or writes in

a block I/O trace, and are of the form 〈time, offset〉. For n

accesses, we represent pairwise distance between every pair of

accesses (pi, pj), as an n×n matrix d with d(pi, pi) = 0. We

calculate the distances in this matrix using weighted Euclidean

distance, defined as

d(pi, pj) = d(pj , pi) =
√

(ti − tj)2 + oscale× (oi − oj)2

448

Ň

Fig. 2. Each incoming access is compared to the preceding access to
determine whether it falls within the neighborhood (Ň) to be in the same
group. If it does not, a new group is formed with the incoming access.

where a point pi = (ti, oi), t = time, o = offset, and oscale is

a scaling factor based on the typical relative distance between

accesses in space versus time.
We treat the spatial component of our access as a unique

identifier for the purpose of classification, which is safe as
long as the classifier has a short memory [21]. We were
most interested in recurring offset pairs that were accessed
in short succession. As a result, we also calculated an m×m
matrix, where m is the number of unique block offsets in
our data set. This matrix was calculated by identifying all
the differences in timestamps T = [T1 = ti1 − tj1, T2 =
ti1 − tj2, T3 = ti2 − tj1, . . .] between the two offsets oi and
oj . Weighting timestamps led to overfitting, so we decided to
treat the unweighted average of these timestamp distances as
the time element in our distance calculation. Thus, the distance
between two offsets is:

d(oi, oj) =

√

√

√

√

(

∑|T |
i=1

Ti

|T |

)2

+ oscale× (oi − oj)2

3) Identifying Working Sets: Once the distance matrix is

calculated, we calculate a value for the neighborhood thresh-

old, Ň. In the online case, Ň must be selected a priori and

then re-calculated once enough data has entered the system

to smooth out any cyclic spikes. In the absence of extended

trace data, we found the recalculating working sets once per

day was sufficient. In Section VI we discuss more empirical

techniques for determining when to re-calculate groupings.

Once the threshold is calculated, the algorithm looks at every

access in turn. The first access starts as a member of group g1.

If the next access occurs within Ň, the next access is placed

into group g1, otherwise, it is placed into a new group g2, and

so on. Figure 2 illustrates a simple case.
4) Combining Neighborhood Partitions: A grouping Gi is

a set of groups g1, . . . , gl that were calculated from the ith

region of accesses. Unlike NP, NNP is not entirely memory-

less; NNP combines groupings from newer data to form an

aggregate grouping.
We do this through fuzzy set intersection between groupings

and symmetric difference between groups within the group-

ings. So, for groupings

G1, G2, . . . Gk, the total grouping G is :

G = (Gi ∩Gj) ∪ (Gi∆gGj) ∀i, j 1 ≤ i, j ≤ k

where the groupwise symmetric difference, ∆g , is defined

as every group that is not in Gi ∩ Gj and also shares no

members with a group in Gi ∩ Gj . For example, for two

group lists G1 = [(x1, x4, x7), (x1, x5), (x8, x7)] and G2 =
[(x1, x3, x7), (x1, x5), (x2, x9)], the resulting grouping would

be G1 ∩ G2 = (x1, x5) ∪ G1 ∆g G2 = (x2, x9), yielding a

grouping of [(x1, x5), (x2, x9)]. (x1, x4, x7), (x1, x3, x7), and

(x8, x7) were excluded because they share some members but

not all. We choose this aggregation technique because it has

a natural bias against larger groups; this in turn limits the

amount of churn in our cache. This group calculation happens

in the background during periods of low activity.

As accesses come in, we need to update groups to reflect

a changing reality. We do this by storing a likelihood value

for every group. This numerical value starts as the median

intergroup distance value and is incremented when the group-

ing is pulled into cache and successfully predicts a future

access. If a requested fingerprint appears in multiple groups,

only the group with the highest likelihood is returned. This

serves to further augment the bias towards small groupings,

which we have found to have a higher average likelihood.

This is expected because with fewer group members, there is

less chance of a group member being only loosely correlated

with the remainder of the group, bringing the entire group

likelihood down.

Figure 1 shows that the working set distributions of both of

our workloads were heavily biased towards small working sets.

Additionally, when calculating likelihood values over working

sets, small sets had higher average likelihood. We leverage this

distribution property to reduce working set lookup times by

arranging our working set data structure as a tiered hashtable

(Figure 5). The upper tier maps working set sizes to a group

of working sets while the second tier maps fingerprints to the

appropriate working set.

NNP is especially well suited to rapidly changing usage

patterns because individual regions do not share information

until the group combination stage. When an offset occurs

again in the trace, it is evaluated again, with no memory

of the previous occurrence. Combining the regions into a

single grouping helps mitigate the disadvantage of losing the

information of repeated correlations between accesses without

additional bias. The groups that result from NNP are by design

myopic and will ignore long-term trend data, reducing the

impact of fingerprints being updated over time.

C. Runtime

Neighborhood partitioning runs in O(n) since it only needs

to pass through each neighborhood twice: once to calculate the

neighborhood threshold and again to collect the working sets.

This makes it an attractive grouping mechanism for workloads

with high IOPS (for example, the enterprise system we worked

with can support 200,000 IOPS, though we saw far fewer

in our trace), where a full O(n2) comparison is prohibitive.

Additionally, we can capture groups in real time and quickly

take advantage of correlations. We also can easily influence

the average group size by weighting the threshold value. A

main concern for us was cache churn, so we heavily biased

our grouping parameters towards smaller groups. While larger

449

 0 2000 4000 6000 8000 10,000 12,000

100

101

102

103

104

105

Group Size

#
 G
ro
u
p
s

Group Sizes: fiu

(a) fiu

 0 5 10 15 20 25 30 35 40

100

101

102

103

104

105

Group Size

#
 G
ro
u
p
s

Group Sizes: ent-storage

(b) ent-storage

Fig. 1. Group size distributions for neighborhood partitioned data sets. Both data sets have a median group size of about 3; the y axis is on a log scale.

groups improve prediction immediately after groupings are

calculated, over time larger groups need more re-calculation

to prevent false negatives as the workload shifts. This negates

their short term predictive benefit.

D. Validity

96% of group elements shared a process ID with an arbi-

trarily selected “first” group element in the groupings for the

research(fiu) dataset. We refer to this number as the group

purity of this grouping. The high group purity of fiu indicates

that NNP can catch interleaved groups, which prior work

supports [21]. On small subsets of this data, the result is closer

to 80%, likely because the groupings do not have enough

occurrences to obtain high likelihood. For the enterprise data

set we used (ent-storage), the equivalent metric showed

a group purity of 100%, though the groups were generally so

small that this reflects group size more than the strength of

the grouping algorithm.

IV. DESIGN

HANDS is a framework for content addressed in-line dedu-

plication that incorporate working sets to manage the memory

footprint of the fingerprint cache. These algorithms can be

interchanged modularly so, for example, another grouping

technique could easily be substituted to tune HANDS for a

particular environment. Our high-level framework consists of

three elements: the fingerprint index mapping fingerprints to

chunks, the index cache, which is a subset of the fingerprint

index that is kept in memory, and the working set table that

maps fingerprints to working sets of fingerprints.

A. Initialization

The first step towards deduplication is creating the working

set table. Our method for compiling this table is covered in

Section III, but any grouping mechanism that results in groups

that are small and predictive can be substituted. The next step

is to allocate the fingerprint index and the index cache. The

index cache is fixed size, allocated in memory, and starts

out empty. We explored bootstrapping the index cache with

the most frequently accessed or highest likelihood working

sets from training data, but found that neither improved our

results. The working sets are then written serially into the on-

disk fingerprint index such that entire working sets can be

retrieved without seeking. Since fingerprints can be members

of several groups, this could lead to duplication within the

on-disk fingerprint index. We accept this because the small

amount of extra index cache required is inexpensive compared

to the memory savings.

B. Deduplication

Once the indices are established, we can begin de-

duplicating incoming I/O requests. We expected most of our

benefit to come from having the fingerprints for incoming

write requests in cache instead of the main fingerprint index

on disk. While there is some conceivable benefit to also

calculating fingerprints for chunks read, that benefit is highly

dependent on the underlying data retrieval mechanisms, and

thus we limit the scope of this paper to write requests. We

also assume that all the accesses we get are post disk cache.
Figure 4 outlines the interactions of the components of

our deduplication system. Our first step on receiving a write

request is to calculate a hash value for the write. Any fast,

low-collision hash method works equally well; we recommend

SHA-1, which for an exabyte scale system has under a 1 in 10

billion chance of hash collision in non-adversarial situations

while still having a fast runtime [10], [28].
1) Duplicate Data: After the hash is computed, we com-

pare the hash to the fingerprints in the index cache. If the

hash is found in the index cache, the request is identified as

a duplicate and the index cache is updated according to the

caching algorithm in use. We refer to this as a cache hit.
In the case of a cache miss, the request is sent to the on-

disk fingerprint cache, which is arranged in tiers as shown

in Figure 5. There is a Bloom filter across the entire index

to quickly detect new data. Each tier represents groups of

a given size, and they are searched from smallest to largest

450

In-memory LRU Fingerprint Index

Cache Hit Rate: 70%

Group A

Group B

Group C

Cache Hits

A A A

A A A

A A A

B B B B

B B B B C C C C

B B B C C C C

C C C C

B B B B

X

X

X

Cache Misses

Incoming Fingerprints

In-memory LRU Fingerprint Index

Cache Hit Rate: 20%

Cache Hits

Cache Misses

Without HANDS With HANDS

Fig. 3. Illustration of HANDS on a toy example. The patterned rectangles correspond to fingerprints. We see that adding three working sets, or groups,
improves the cache hit rate significantly by pre-fetching fingerprints into memory. In the diagram, the letters underneath the fingerprints correspond to group
membership where the bolded letter is a group member that required a disk seek (a cache miss) and the italicized letters are group members that were pulled
in with a bolded member.

until a group is found. The bias towards small groups here is

intentional and designed to limit cache churn.

If the fingerprint is found in the fingerprint index, in addition

to serving the content the system also queries the working

set table to see if the fingerprint has any known working

sets. We accept the first working set match for a hash where

the likelihood value is above the mean likelihood minus one

standard deviation. Smaller working sets are more likely to

have high likelihood, so our tiered working set index (Figure 5)

reduces the search time in very large on-disk indices. The

working set returned by the working set cache is then copied

into the index cache; overflow cache contents are removed

based on the caching algorithm replacement policy. While this

results in some CPU overhead, we accept this because it is

negligible compared to the penalty for the I/O.

2) New Data: If a fingerprint is not in the fingerprint index,

the data is written and the hash is stored to the fingerprint

index. New writes are not members of any working sets, so

they can safely be placed in a temporary area without being

accidently pulled into memory as a working set member. When

working sets are next computed, the fingerprints will be added

to working sets as appropriate. Fingerprints on disk are co-

located based on group membership. Since fingerprints can

be members of several groups, this could lead to duplication

within the on-disk fingerprint index. We accept this because

the small amount of extra index cache required is inexpensive

compared to the memory savings.

C. Design Considerations

Figure 3 shows how HANDS noticeably improves the cache

hit rate. The rectangles represent fingerprints, uniquely identi-

fied by color and pattern. There are three groups, identified by

the letters underneath the fingerprints. An LRU cache without

HANDS (left) catches most quickly repeated fingerprints and

must go to disk for everything else. With HANDS (right), the

cache predicts future fingerprint accesses and thus achieves

considerably better cache hit rate. There is a concern that

large working sets could fill the cache quickly, causing a high

amount of cache churn that would push out relevant data. With

the working set calculation methodology we propose, however,

the likelihood of a working set tends to decrease with every

additional member. This inherent bias towards smaller working

sets led to less cache churn in our experimental results.

Fingerprints and blocks do not share a fixed mapping. In

fact, for one of our workloads we found that over 78% of the

time, consecutive accesses of the same block had different

fingerprints. Thus, we group using block address but need

data with actual fingerprints in order to estimate index cache

performance. We found experimentally that groups tend to stay

the same over time even as the fingerprints associated with

blocks change [21]. Therefore, we hypothesize that our block

451

DiskFingerprint Index

Memory Resident Index Cache

Chunk

Fingerprint

LBAi

{LBAi0,LBAi1,L

BAi2,...}

LBAj

{LBAj0,LBAj1,L

BAj2,...}

Working Set Table

Chunk Server

A

B1

B2

Fig. 4. Deduplication framework. A duplicate chunk is either in the index
cache (path A) or must be recovered from disk (path B). When a fingerprint
enters path B, the working set for that fingerprint is pulled into the index
cache from the fingerprint index, which is laid out in working set order.

Size 2

Size 3

Size 4

Size n - 1

Size n

Groups Size 2 groups

Fig. 5. The fingerprint index is tiered so groups of size n− 1 are searched
before groups of size n

addresses are generally “unique under mutation,” meaning that

the usage of the data stays similar even as the actual data is

modified. We discuss this shift more in Section V-C.

V. EXPERIMENTS

To test the HANDS design, we simulated a deduplication

environment where a portion of the fingerprint index is stored

in memory both with and without the addition of working

sets. We pass real traces with fingerprint hashes through the

simulator to determine the efficacy of the working set based

cache.

We measured the effect of working set grouping using

three cache replacement algorithms: LRU, naı̈ve LFU (LFU),

and working set aware LFU (LFU-ws). Our implementation

of LRU is straightforward; the oldest elements are dropped

successively until there is enough room for the new element.

Elements of the same age (e.g., members of a working set that

were pulled in together) are dropped in the order in which they

appear on disk, which is preserved in the cache. Naı̈ve LFU

is an approximation of LFU that drops the least frequently

used elements in the cache and is unaware of out-of-band

relationships between data once the data is in the index cache.

As a result, after a cache hit only the accessed element has its

frequency value updated. When the LFU-ws algorithm records

a hit to the index cache, the access frequency for every member

of the working set associated with the accessed fingerprint and

currently in cache is updated by .5, while the frequency of

the accessed fingerprint is updated by 1 as usual. This biases

the algorithm towards keeping working sets together in cache

and quickly throwing out “singleton” accesses that have no

working set and are not rapidly accessed.

A. Data

We tested our design using data sets from two real systems.

Our first dataset was collected from an enterprise grade storage

server at a major technology company. This storage server has

120 TB of disk along with a 60 GB cache. The traces from

this server are labeled ent-storage. Sequential accesses

are handled by the storage server, so we do not see these in

the trace. Our second trace, fiu, is from Florida International

University and traces local researchers’ storage [29]. For both

of these traces, we used timestamp and logical block address

(LBA) to create working sets. We provide statistics about these

two data sets in Table I. For our purposes, the most important

difference between these two data sets was average IOPS,

meaning that over time it was harder to get predictive groups

for ent-storage than fiu.

B. Results

We present graphs as percent of ideal cache versus percent

of total fingerprint size. We measure ideal cache as the best

a cache could do if it could always recall an element it has

seen before, i.e., if the entire fingerprint index were in memory.

Total fingerprint size is the sum of all of the unique fingerprints

over an entire trace. We realize that this may underestimate

the data size a real system needs to handle: all of our data is

accessed, which is not true in many systems. However, this is

the best representation that was available to us and is useful

for our work because we are primarily interested in predicting

accesses to elements we have seen before.

1) LRU: LRU was the best cache replacement strategy for

the index cache with working sets. Figure 6(a) shows that the

cache hit rate for the fiu dataset was almost ideal even with

an index cache that was only .01% of the total fingerprint size.

In contrast, without working sets fiu had an unsurprisingly

steady increase in index cache hits as the cache size increased.

Adding working sets to LRU in the fiu case worked so well

because fiu almost entirely represents accesses by real people

and so has a very high degree of temporal locality. The fiu

workload also has far lower IOPS, which helps groups remain

stable over time.

In the ent-storage dataset (Fig. 6(b)), we see a more

modest but still clear improvement in cache hit rate for every

cache size except about .05% after adding working sets. At

452

TABLE I

WORKLOAD STATISTICS. WRITES ARE REMOVED FROM ENT-STORAGE TRACE

Trace avg IOPS max IOPS R/W Ratio # of Accesses # Unique LBAs # Groups Time (h)
fiu 37 11897 96/4 17836701 1684407 2062671 503
ent-storage 75997 342142 100* 2161328 968620 70759 36

 0

 20

 40

 60

 80

 100

 0.001 0.01 0.1 1 10

C
a

c
h

e
 H

it
 R

a
te

 (
%

 o
f

Id
e

a
l)

Cache Size (% of total fingerprint size)

LRU Cache Hit Rate for fiu Data

Grouped
Ungrouped

(a) fiu: The ideal cache hit rate was 33.94%

 20

 30

 40

 50

 60

 70

 80

 90

 0.001 0.01 0.1 1 10

C
a

c
h

e
 H

it
 R

a
te

 (
%

 o
f

Id
e

a
l)

Cache Size (% of total fingerprint size)

LRU Cache Hit Rate for xiv Data

Grouped
Ungrouped

(b) ent-storage: The ideal cache hit rate was 35.59%

Fig. 6. LRU Cache hits across cache sizes. Grouped data does consistently
at least as well and often significantly better than ungrouped data.

.05%, we see the beginnings of cache churn: the phenomenon

where the cache is too small to hold all of the elements that

are being accessed and so is passing elements in and out.

This is due to a large group being pulled into cache and being

quickly ejected. Smaller caches reject the group entirely and

thus remain unaffected. We can reduce this churn in the future

by modifying the LRU to remove entire working sets at a time

instead of just elements. We also note that the working set line

never dips below the base LRU line, implying that the cache

churn is not severe enough to impact performance.

2) LFU: Figure 7 shows that for both the fiu and

ent-storage datasets, there is a substantially smaller im-

provement in cache hit rate when grouping is added to the LFU

caching algorithm as compared to LRU. This is surprising at

first glance, but it is logical when the effect that the cache

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.001 0.01 0.1 1 10

C
a

c
h

e
 H

it
 R

a
te

 (
%

 o
f

Id
e

a
l)

Cache Size (% of total fingerprint size)

LFU Cache Hit Rate for fiu Data

Grouped
Ungrouped

(a) fiu: The ideal cache hit rate was 33.94%

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.001 0.01 0.1 1 10

C
a

c
h

e
 H

it
 R

a
te

 (
%

 o
f

Id
e

a
l)

Cache Size (% of total fingerprint size)

LFU Cache Hit Rate for xiv Data

Grouped
Ungrouped

(b) ent-storage: The ideal cache hit rate was 35.59%

Fig. 7. LFU Cache hits across cache sizes. The ent-storage dataset sees
no benefit from grouped data while the fiu dataset sees a modest benefit from
grouping.

replacement policies have on working sets are taken into

account. The benefit of working sets for access prediction

comes from a heightened probability of co-access within a

working set in a given period of time. LFU evicts working

set members almost as soon as they are pulled in, since they

are often not used immediately. Indeed, if they were used

immediately, they would be trivially easy to find and much less

interesting. We attribute the slight success of LFU on the fiu

dataset to the presence of a large number of sequential working

sets. Sequential accesses were automatically filtered out of

the ent-storage trace before it was given to us, so LFU

underperforms. Note that even without sequential accesses the

grouped line never falls below the ungrouped line, indicating

453

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07

%

Total Accesses

LRU Predictions vs. Sequential Working Sets for fiu

% Correct Predictions
% Sequential Working Sets

(a) fiu data set using .01% cache

 0

 10

 20

 30

 40

 50

 60

 70

 0 500000 1e+06 1.5e+06 2e+06

%

Total Accesses

LRU Predictions vs. Sequential Working Sets for ent-storage

% Correct Predictions
% Sequential Working Sets

(b) ent-storage data set using .01% cache

Fig. 8. For the fiu data set using LRU, predictive power of groups
was unrelated to sequentiality. In the ent-storage data set using LRU,
predictive power of groups fell as sequential groups increased. The percentage
of predictive accesses is deceivingly low because it is calculated as a
percentage of total accesses, which were an order of magnitude higher for
fiu than ent-storage. The cache size was .01%

that the working sets are not pushing enough other predictive

elements out of cache to impact the base performance.

We also ran our simulations with LFU-ws, but saw es-

sentially identical results compared to LFU, and thus do not

include those in this paper. The results were likely identical

because the bias provided by LFU-ws is not enough to offset

the huge disadvantage of having working sets pushed out of

cache quickly. We believe it is worth investigating whether

there is a balance, but we reserve that for future work.

3) Random Working Sets: We also implemented a random

working set generator to compare HANDS against. Our goal

was to identify any unforeseen externalities in pulling large

chunks of data into the index cache created in our dedu-

plication system. To best mirror our observed working set

distributions, we wrote a random generator sampling from

a discretized Pareto distribution. The Pareto distribution is

sampled from uniform using the formula:

X =
xm

U1/α

Here, xm is a parameter indicating the minimum value of X ,

which for groups is 1, U represents the uniform distribution

between [0, 1], and α is a shaping parameter. We set α =
3 to replicate our small-group bias. The resulting continuous

value is then rounded to obtain an integer group size. This

distribution skews towards small values with few outliers and

thus is a good fit for our small working sets (Fig. 1).

When we ran this, however, we found that the results were

identical to the ungrouped results. We attribute this to the

large search space of LBAs combined with the small size

of groups resulting in an exceptionally low probability of

successful access. Indeed, the ent-storage case had 0

predictive fingerprints while the fiu random run had under

5%. Thus, we can say with some confidence that the benefit

of working sets is more than just pulling extra data into cache;

the pre-computed correlation of data in working sets has value.

C. Analysis

Throughout this project, our technique performed as well as

or better on the fiu dataset compared to the ent-storage

dataset. We learned that, in the ent-storage dataset, se-

quential accesses are not part of the trace we were given

because they are pre-fetched by the storage hardware. Since

previous work has shown that sequential working sets are

common and strong groupings, we thought that the lack of

sequentiality in the ent-storage dataset was to blame

for its relatively poor showing in both the LRU and LFU

cases. However, in Figure 8(b) we see an inverse relationship

in the ent-storage dataset for the LRU case; there is a

strong correlation between groups becoming sequential and

groups becoming less predictive. In the parallel figure for

the fiu dataset (Fig. 8(a)), we see no relationship between

the sequentiality and the percentage of predictive accesses.

Instead, the difference in the two datasets in the LRU case is

likely a consequence of the average IOPS of ent-storage

being high enough to make groups more transient.

 0

 20

 40

 60

 80

 100

 0 200000 400000 600000 800000 1e+06 1.2e+06

%

Total Accesses

% Correct Predictions by Cache Size for ent-storage with LFU

.001
.05
.1
.5
1

10

Fig. 9. % of correct predictions by cache size, compared against the total
fingerprints pulled into cache and not immediately replaced. We see that the
few fingerprints that were pulled in were predictive at small cache sizes, while
extra elements were pulled into a larger cache. Cache sizes below 1% had
fewer predictions and are thus hidden by the overlap in the graph.

454

We also verified our theory that the LFU ent-storage

case suffered from cache churn by tracking correct predictions

over time based on cache size. In Figure 9, we see that the

few accesses that have a chance to be predictive are correct

for small cache sizes before taking a precipitous drop as the

cache size grows. This indicates two things: first, that working

sets are being evicted early on, leading to an inflated rate of

correct predictions, and second, that as the cache grows there

are enough legitimate fingerprints being removed from cache

that even an improvement in longevity of working set members

is not enough to salvage the algorithm. LFU is simply a poor

choice for a deduplication index cache with working sets.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000 100000 1e+06 1e+07

%
 o

f
to

ta
l
L

B
A

s
 p

u
lle

d
 i
n

Total Accesses

% LBAs pulled into Cache by Cache Size for ent-storage with LRU

.001

.005
.01
.05

.1

.5
1

10

(a) % LBAs pulled in for ent-storage; there are 968620 unique LBAs

 0.01

 0.1

 1

 10

 100

 1000 10000 100000 1e+06 1e+07 1e+08

%
 o

f
to

ta
l
L

B
A

s
 p

u
lle

d
 i
n

Total Accesses

% LBAs pulled into Cache by Cache Size for fiu with LRU

.001

.005
.01
.05

.1

.5
1

10

(b) % LBAs pulled in for fiu; there are 1684407 unique LBAs

Fig. 10. Each line corresponds to a run with the given cache size. Adding
working sets to ent-storage with LRU achieves an increased cache hit
rate while only pulling in < 3% of the total LBAs. Conversely, fiu with
LRU pulls in up to 80%.

Figure 10(a) shows that smaller cache sizes pull in more

LBAs early on, but over time the total number of LBAs pulled

converges. Even though the average increase in cache hit rate

for adding working sets to ent-storage for LRU was only

about 10%, we accomplish this by only pulling in 3% of the

total LBAs. For the fiu case, we see that at about one million

accesses, where the ent-storage trace ends, about 15%

of the total LBAs are pulled in regardless of cache size. In

contrast to ent-storage, by the end of the trace almost

80% of the total dataset LBAs had been pulled in. This high

percentage of LBAs in cache is almost certainly why the cache

performed so well for the fiu with LRU case.

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06

%
 o

f
to

ta
l
L

B
A

s
 c

h
a

n
g

e
d

Total Accesses

LBA-Fingerprint Shifts over Time

ent-storage
fiu

Fig. 11. LBA-fingerprint correlation shifts over time. Though the data sets
have very different characteristics, both show a sharp rise in shifts after about
500,000 accesses.

One concern with this method is that the working sets are

made without the content data in mind. As we see in Figure 11,

the fingerprint-LBA pairing is transient. If this pairing falls

away before working sets are re-calculated, the quality of

predictions could decline. In this case, however, there were

significantly more write accesses than read accesses, and so

we have good reason to believe that the different fingerprints

on consecutive LBAs thus represent different content with the

same access characteristics. In a subset of fiu with a slightly

higher read ratio of 9.5%, the maximum percent of LBAs

changed drop from 78% to 58.5%. Even with our high read ra-

tio, we see that for both the fiu and ent-storage datasets

the correlations between LBAs and fingerprints remain fairly

consistent until the system sees about 500,000 accesses. We

are interested in acquiring more datasets with fingerprints to

determine how this compares to other types of workloads.

Determining when to recalculate the groupings will be

essential to future real-time systems. Though we did not

recalculate groupings often during the course of our runs

because we had relatively little data, we looked for insights

to determine when to recalculate our groupings. Figures 8(b)

and 8(a) show that the predictive power of our groupings is

strongest early on. A real system could have an automatic alert

system to track the level of predictive power and re-calculate

groups in the background as needed. Alternatively, working

groups could be calculated even more frequently to correspond

with the need to go to disk to fetch recent LBA-fingerprint

pairs. As we see in Figure 11, the LBAs and fingerprints

shift at about 500,000 accesses in both traces, though the

fiu trace stops shifting for a time after. More frequent group

calculation is likely to slightly improve cache hit rate numbers

as the groups will more closely match the current working

environment. However, since groups are based on a somewhat

455

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 0.001 0.01 0.1 1 10

T
o

ta
l
C

P
U

 T
im

e
 (

s
e

c
o

n
d

s
)

Cache Size (% of Total Fingerprints)

Runtimes for LRU with ent-storage

Grouped
Ungrouped

(a) Times for LRU with ent-storage

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0.001 0.01 0.1 1 10

T
o

ta
l
C

P
U

 T
im

e
 (

s
e

c
o

n
d

s
)

Cache Size (% of Total Fingerprints)

Runtimes for LFU with fiu

Grouped
Ungrouped

(b) Times for LFU with fiu

Fig. 12. A comparison of runtime vs. cache size for our algorithms. This was run in a prototyping environment; for translation to a real system the key is
that the grouped performance closely tracks the ungrouped performance with a fixed overhead.

longer term system view, re-calculation should not provide a

large bonus in the absence of a major usage shift.

D. Overhead

While keeping the working set table up to date results in

some CPU overhead, we accept this because group calculation

will never cause I/O blocking. We also used NNP, an O(n)
grouping algorithm that runs in our simulator in under ten

minutes. Our implementation was done on a personal desktop

using Python for both group calculation and cache simulation.

Figure 12 shows the overhead for LRU for ent-storage

and LFU for fiu. These graphs are representative of all of the

experiments we did, and show that while the grouped version

takes about twice as long, the grouped and ungrouped lines

closely track each other. This indicates that overhead is mostly

fixed and can be predicted. Though we used the PyPy high-

speed Python implementation [30], our code is designed for

prototyping. As a result, the runtime numbers we have should

only be considered relative to each other.

Finally, it is likely that the systems’ own cache policies will

also place the data from the active working set into system

cache, but that is outside the scope of this paper.

VI. DISCUSSION AND FUTURE WORK

It is important to note that, contrary to our expectations,

adding working sets to the index cache never reduced the cache

hit rate. This indicates that there is room for larger working

sets to be pulled in before cache churn starts becoming a seri-

ous problem. Thus, a workload specific implementation with

domain informed grouping will have a greater improvement

in cache hits. For example, a system with extra computational

power could update working sets continually, resulting in more

large working sets and corresponding cache hits. Also, though

LFU was ineffective, a variant that is partially working set

aware might prove effective for more archival workloads.

We create working sets based on minimal features, namely

location and timestamp. We used these to show our method

was valuable even in cases where it is not practical to extract

rich system traces. Additional features such as request origin

or client type could make the working sets more reflective of

real workload phenomena. Any method for working set pre-

diction or even file level access prediction can be substituted

into our system with little modification, making HANDS a

general purpose tool to improve primary deduplication.

Though we showed significant improvement in research and

enterprise deduplication, there are particular workloads where

we believe HANDS will shine. For example, a collection of

virtual machine images would have both higher deduplication

ratios and tighter working sets, since they correspond closely

to individual systems. Workloads from businesses that operate

based on strict timing rules such as banks and trading houses

should show a cyclic usage pattern that would be amenable

to our deduplication method. In addition to large scale data,

our technique could be applied to object stores where any

reduction in media cost is amplified because of the relative

expense of storage class memory technologies. Our method

could also be used to cost-effectively address the growing

problem of archival-like storage that does not obey “write-

once, read maybe” semantics and instead has transient periods

of primary activity. Storing exabytes of data and maintaining a

usable primary deduplication index is prohibitive, but storing

.1% of the index size in memory should be much more

manageable and cost effective for long term storage such as

Internet archives and media.

We are seeking new data sets to test our algorithm on,

particularly datasets with a high degree of inherent duplication.

We then intend to attempt a characterization of workloads

based on the most salient features for working set analysis

and examine the possibility of automatically tuning working

set algorithms based on the workload type.

VII. CONCLUSION

We have demonstrated the use of a fingerprint cache guided

by algorithms to predict and then prefetch accesses to solve the

456

disk-bottleneck problem in deduplication scalability. HANDS

scalably calculates working sets and pulls entire sets of fin-

gerprints into memory when a single fingerprint is accessed,

significantly increasing the number of cache hits for the in-

memory deduplication index cache. We include a novel tiered

working set index for rapid retrieval. We also showed that LRU

outperforms LFU for index cache replacement regardless of

context awareness, and we hypothesize that a similar pattern

will hold for most other workloads.

Our design translates directly into fewer disk accesses

for inline deduplication and, from there, better user-facing

performance. HANDS is highly modular and adaptable to

specific environmental constraints, and thus is an approach

that can be deployed in nearly any system to alleviate the disk

bottleneck problem. Although neither of our workloads had

the requisite 45% deduplication ratio to benefit from traditional

primary deduplication, with HANDS both achieve near perfect

deduplication using between .01% and 10% of the memory.

This reduces the required deduplication ratio to break even

on cost to a mere 8% of incoming data if using 4KB blocks.

Since such a small percentage of fingerprints need to be kept

in cache for good performance, we encourage wider adoption

of primary deduplication in industry and even personal servers.

ACKNOWLEDGMENTS

We thank David Chambliss, Jorge Guerra, and Maohua Lu

for providing us with data and many valuable discussions and

arguments. This work was partially conducted at and supported

by IBM Almaden Research Center. This research was also

supported in part by NSF awards CNS-0917396 (part of the

American Recovery and Reinvestment Act of 2009 [Public

Law 111-5]) and IIP-0934401. We also thank the industrial

sponsors of the SSRC, our reviewers, and all SSRC members

for insightful discussions and feedback.

REFERENCES

[1] J. Gantz, C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W. Schlichting,
et al., “The Diverse and Exploding Digital Universe,” IDC White Paper,
vol. 2, 2008.

[2] T. Economist, “Data, data everywhere,” The Economist Newspaper

Limited, February 2010. [Online]. Available: http://www.economist.
com/node/15557443?story id=15557443

[3] K. Lawrence, “Re-thinking the lamp stack: Part 2,” PINGV, December
2010. [Online]. Available: http://pingv.com/blog/rethinking-the-lamp-
stack-disruptive-technology

[4] C. Constantinescu, J. Glider, and D. Chambliss, “Mixing deduplication
and compression on active data sets,” in 2011 Data Compression

Conference. IEEE, 2011, pp. 393–402.
[5] S. Jones, “Online de-duplication in a log-structured file system for

primary storage,” University of California, Santa Cruz, Tech. Rep.
UCSC-SSRC-11-03, May 2011.

[6] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti, “iDedup:
Latency-aware, inline data deduplication for primary storage,” in Proc-

cedings of the 10th conference on File and storage technologies.
USENIX Association, 2012.

[7] Y. Tsuchiya and T. Watanabe, “Dblk: Deduplication for primary block
storage,” in Mass Storage Systems and Technologies (MSST), 2011 IEEE

27th Symposium on. IEEE, 2011, pp. 1–5.
[8] D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge, “Extreme binning:

Scalable, parallel deduplication for chunk-based file backup,” in Mod-

eling, Analysis & Simulation of Computer and Telecommunication Sys-

tems, 2009. MASCOTS’09. IEEE International Symposium on. IEEE,
2009, pp. 1–9.

[9] D. Meyer and W. Bolosky, “A study of practical deduplication,” in Pro-

ceedings of the 9th USENIX conference on File and stroage technologies.
USENIX Association, 2011, pp. 1–1.

[10] K. Jin and E. L. Miller, “The effectiveness of deduplication on virtual
machine disk images,” May 2009.

[11] I. Adams, E. L. Miller, and M. W. Storer, “Analysis of workload behavior
in scientific and historical long-term data repositories,” University of
California, Santa Cruz, Tech. Rep. UCSC-SSRC-11-01, Mar. 2011.

[12] P. Efstathopoulos and F. Guo, “Rethinking deduplication scalability,” in
HotStorage10, 2nd Workshop on Hot Topics in Storage and File Systems,
2010.

[13] M. Storer, K. Greenan, D. Long, and E. Miller, “Secure data deduplica-
tion,” in Proceedings of the 4th ACM international workshop on Storage

security and survivability. ACM, 2008, pp. 1–10.
[14] A. El-Shimi, R. Kalach, A. Kumar, A. Oltean, J. Li, and S. Sengupta,

“Primary data deduplication - large scale study and system design,”
2012.

[15] N. Mandagere, P. Zhou, M. Smith, and S. Uttamchandani, “Demys-
tifying data deduplication,” in Proceedings of the ACM/IFIP/USENIX

Middleware’08 Conference Companion. ACM, 2008, pp. 12–17.
[16] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and

P. Camble, “Sparse indexing: large scale, inline deduplication using
sampling and locality,” in Proceedings of the 7th conference on File

and storage technologies. USENIX Association, 2009, pp. 111–123.
[17] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the data

domain deduplication file system,” in Proceedings of the 6th USENIX

Conference on File and Storage Technologies. USENIX Association,
2008, p. 18.

[18] T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, and Y. Wan, “Debar: A
scalable high-performance de-duplication storage system for backup and
archiving,” in Parallel & Distributed Processing (IPDPS), 2010 IEEE

International Symposium on. IEEE, 2010, pp. 1–12.
[19] A. Arpaci-Dusseau, R. Arpaci-Dusseau, L. Bairavasundaram, T. Denehy,

F. Popovici, V. Prabhakaran, and M. Sivathanu, “Semantically-smart disk
systems: past, present, and future,” ACM SIGMETRICS Performance

Evaluation Review, vol. 33, no. 4, p. 35, 2006.
[20] A. Wildani and E. Miller, “Semantic data placement for power manage-

ment in archival storage,” in Petascale Data Storage Workshop (PDSW),

2010 5th. IEEE, 2010, pp. 1–5.
[21] A. Wildani, E. Miller, and L. Ward, “Efficiently identifying working sets

in block i/o streams,” in Proceedings of the 4th Annual International

Conference on Systems and Storage, 2011, p. 5.
[22] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou, “C-miner: Mining block

correlations in storage systems,” in Proceedings of the 3rd USENIX

Conference on File and Storage Technologies. USENIX Association,
2004, pp. 173–186.

[23] S. Doraimani and A. Iamnitchi, “File grouping for scientific data man-
agement: lessons from experimenting with real traces,” in Proceedings

of the 17th international symposium on High performance distributed

computing. ACM, 2008, pp. 153–164.
[24] J.-F. Pâris, A. Amer, and D. D. E. Long, “A stochastic approach to file

access prediction,” in The International Workshop on Storage Network

Architecture and Parall I/Os (SNAPI ’03), sep 2003.
[25] G. A. S. Whittle, J.-F. Pâris, A. Amer, D. D. E. Long, and R. Burns,

“Using multiple predictors to improve the accuracy of file access
predictions,” in Proceedings of the 20th IEEE / 11th NASA Goddard

Conference on Mass Storage Systems and Technologies, Apr. 2003, pp.
230–240.

[26] A. Amer, D. D. E. Long, J.-F. Pâris, and R. C. Burns, “File access
prediction with adjustable accuracy,” in Proceedings of 21st Inter-

national Performance, Computing, and Communications Conference

(IPCCC 2002). Phoenix, Arizona: IEEE, 2002.
[27] A. Riska and E. Riedel, “Disk drive level workload characterization,”

in Proceedings of the USENIX Annual Technical Conference, 2006, pp.
97–103.

[28] W. Dai, “Crypto++ 5.6.0 benchmarks,” 2009. [Online]. Available:
http://www.cryptopp.com/benchmarks.html

[29] R. Koller and R. Rangaswami, “I/o deduplication: utilizing content
similarity to improve i/o performance,” ACM Transactions on Storage

(TOS), vol. 6, no. 3, pp. 1–26, 2010.
[30] A. Rigo and S. Pedroni, “Pypy’s approach to virtual machine construc-

tion,” in Companion to the 21st ACM SIGPLAN symposium on Object-

oriented programming systems, languages, and applications. ACM,
2006, pp. 944–953.

457

