
Caching Support for Push-Pull Data Dissemination
using Data-Snooping Routers

Ismail Ari
ari@cs.ucsc.edu

Ethan L. Miller
elm@cs.ucsc.edu

Storage Systems Research Center
�

University of California Santa Cruz

Abstract
Internet applications such as the HTTP-Web, audio-video
streaming and file sharing depend on wide-area data dis-
semination. Clients of these applications suffer from long
delays due to network queuing, bandwidth limitations and
adverse effects of bandwidth sharing between different
traffic.

Caching reduces delays and saves network bandwidth
by holding the fetched data and responding to the subse-
quent requests locally. Existing distributed caching solu-
tions are application-specific and do not support delivery
in the push-pull directions at the same time. Our pro-
posed architecture, called Storage Embedded Networks,
gives application- and direction-independent caching sup-
port by using memory-embedded, data-snooping routers.
These router caches can act both as a client proxy and
a server accelerator. We compare our architecture to the
web caches operating in forward proxy mode. We report
additional reductions in client response times and server
loads over proxies using the same cache sizes.

Keywords: Storage Embedded Networks, web proxy,
push-pull, GUOID, network modeling.

1 Introduction
Internet applications depend on wide-area data dissemina-
tion. The delays incurred by clients of these applications
over the network are still a big problem. For instance, the
delays distract students of distance learning from their on-
line lectures and annoy customers of online stores leading
to monetary losses. Caches alleviate the adverse effects of
network dynamics on wide-area data dissemination by re-
taining the fetched data and responding to the subsequent
requests for the same data locally. We propose the inte-
gration of a cache service into the Internet infrastructure
through router caching to improve data dissemination.

Recent Internet traffic studies [12] show HTTP-Web
to be the dominant source of the Internet traffic. How-
ever, they also report the emerging Peer-to-Peer (P2P) file
sharing [20] and media streaming applications [15] to be
�
This research is supported by the Storage Technologies Department

of Hewlett-Packard Laboratories.

������������������������

������������������
NSP

NSPISP

The Internet Backbone

ServersClients

Router
Caching

Routers
Current

Figure 1: Storage Embedded Network (SEN) architecture gives
caching service within networks by using cache-embedded,
data-snooping routers. SEN routers reside inside Internet and
Network Service Providers (ISP, NSP).

significant traffic contributors; reaching up to 60% of the
traffic transferred on some links [11]. All of these exist-
ing and emerging applications depend on wide-area data
dissemination and are subject to long delays and unpre-
dictable network dynamics due to sharing of the band-
width between applications. The user access character-
istics of these emerging applications [15, 23] are similar
to the web access characteristics [6]. The static nature of
the content exchanged and the skewed-popularity, or Zipf
distribution [24], makes these Internet applications good
candidates to benefit from distributed caching.

Distributed web proxy caches [8, 3] have successfully
been used over the last decade to reduce response times
for web clients. However, they are designed to serve only
to the web clients and operate mostly in the clients’ down-
load or pull direction [4]. This is also called forward proxy
mode. Push-based delivery happens when data items are
sent by the servers towards the clients without explicit re-
quests from the clients. Today, web servers need to deploy
reverse proxies or HTTP accelerators for a limited push
capability of their content. Content Distribution Networks
(CDN) [1] emerged as a new business model by combin-
ing the server-side acceleration with client-side caching.
Research shows the benefits of supporting both push and
pull paradigms for wide-area data dissemination [4, 9].
However, due to the lack of a generic caching support, that
covers many applications and both push-pull directions,
emerging applications are obliged to reinvent and reim-
plement similar, but non-interoperable cache services.

Our proposed Storage Embedded Networks (SEN) ar-
chitecture, shown in Figure1, provides an application and
direction-independent cache service within the Internet

This paper was published in the Proceedings of the 10th International Conference on Parallel and Distributed
Systems (ICPADS 2004) , Newport Beach, CA, July 2004.

infrastructure. It uses cache-embedded, snooping routers
as its building blocks. Conventional routers do not have
this capability. SEN routers are capable of making fast
cache-table lookups using globally-unique object identi-
fiers (GUOIDs). Applications use a new protocol called
Object Transport Protocol (OTP) to request and retrieve
objects using their GUOIDs.

In this paper, we first introduce the operation of exist-
ing routers and show how we extend them with a caching
capability. Then, we describe the details of SEN archi-
tecture, the data-caching routers and the OTP protocol.
We use extensive modeling and simulations for compari-
son of web proxy caches and SEN architecture. We find
that when caches can serve requests from all directions as
SEN caches do, they utilize the cache space better leading
to additional hit rates over forward proxy caches that use
the same amounts of cache.

2 Background

Routers are network-level devices that forward packets
from their source addresses to their destination addresses.
They can be considered the “building blocks” of the Inter-
net infrastructure as they are ubiquitous. Packets travers-
ing the Internet through routers carry the data pertaining
to applications and networked protocols. Existing routers
commonly use the Internet Protocol (IP) header informa-
tion to forward packets and ignore the rest of the packet
contents. Here, we overview the operation of existing
routers to show how we extend these routers with the
caching capability in the next section.

2.1 Router Details

Figure 2 shows the simplified hardware model of a
router [18]. The data plane is the fast path that can for-
ward several million packets per second. The control
plane [22] is the slow path that handles the route updates
and other management routines.

Line cards (Fig. 2) are network interface cards with in-
put and output ports through which packets are received
and transmitted, respectively. The core data forwarding
function of the line cards is done by a Forwarding Engine
(FE). Each FE maintains a Forwarding Information Base
(FIB) table, which is a partial or full copy of the rout-
ing table. FIB is downloaded from the route processor
and kept up-to-date. The processor on the FE consults its
local FIB to quickly find the next hop information. The
switch fabric (Fig. 2) has a switching capacity faster than
the combined speed of all the input ports. Access into and
out of the shared memory in the switch is done by Direct
Memory Access (DMA). The route processor (Fig. 2) is
responsible for maintaining the routing tables. It performs
spanning-tree calculations using the route update informa-
tion disseminated by the routing protocols.

FE FIB

FE FIB

FE FIB

Route Processor

Table
Routing

Data Plane

Control Plane

Line Card Fabric

FIB = Forwarding Info. Base
FE = Forwarding Engine

Switch

Figure 2: A simplified model of existing routers.

2.2 Packet Forwarding Operation
The packets are received and temporarily stored on the
line cards in existing routers. As soon as the packet head-
ers are read from the link-layer (e.g. Ethernet) frame, the
packet processor forwards the packet header to the For-
warding Engine (FE). The FE is either physically em-
bedded in the line card or is connected to it through the
switch. FE reads the destination IP address and finds
the matching next-hop entry from the Forwarding Infor-
mation Base (FIB). The results are quickly (e.g. in 2.5
microseconds [2]) returned to the packet processor. An
adjacency table holds the link-layer information for the
next hops. The processor moves the packet from line card
memory to the switch fabric interface. Each packet is
moved into the switch fabric frame-by-frame and is stored
with a pointer to the output port. A scheduling algorithm
such as Weighted Round Robin (WRR) is used to deter-
mine which frame should be scheduled to its output in-
terface next. The destination output interface is signaled
to take the packet frames out of a known memory loca-
tion. The frames are sent out to the network via the MAC
protocol once they are on the output interface.

2.3 Enabling Technologies
Network Processor Units (NPUs) are software pro-
grammable processors designed to process packets at wire
speeds. They combine the speed of ASICs with the flex-
ibility of CPUs. NPUs can use packet fields to perform
table lookups, pattern matching, and data manipulation.
Because of these advantages NPU market has become the
fastest growing segment of the microprocessor industry
soon after its introduction [14]. The shared internal mem-
ory in NPUs can be used to store the program code and
possibly small lookup tables. Additional data is stored in
the external memories. NPUs enable data caching at wire
speeds in SEN routers.

Recently, fast tree-based lookup techniques have
been implemented in hardware [17, 13]. These techniques
are currently being used for route lookups using the 32-
bit IPv4 or the 128-bit IPv6 addresses. Caching in routers

2

requires a similar table lookup for GUOID to determine
whether the requested object is cached or not. With IPv4
addresses 20 and 80 million lookups per second are re-
ported using DRAM and SRAM technologies, respec-
tively [17]; for 128-bit IPv6 addresses 2 million lookups
per second are projected [13].

3 Storage Embedded Networks
SEN architecture provides caching service within the cur-
rent Internet infrastructure. It extends current routers with
a network card with embedded memory for data caching.
Applications use globally unique identifiers (GUOIDs)
and a presentation-layer protocol called Object Transport
Protocol (OTP) to request and retrieve objects.

3.1 Object Identification
Connection, application and protocol specific numbers are
not meaningful beyond their limited domain. To give a
generic cache service, a SEN router has to identify ob-
jects from different applications using a common format.
These identifiers also need to be globally unique to avoid
name clashes. Therefore, we use Globally Unique Ob-
ject Identifiers (GUOID) that we obtain by hashing a file’s
contents [5]. Emerging Peer-to-Peer (P2P) applications
and object-based file systems are already identifying their
objects with GUOIDs. Therefore, they don’t need any
naming change to benefit from SEN caches.

Applications that want to make use of router caching
will have to include a GUOID of the embedded objects.
Whenever an object is modified, it essentially becomes a
new object and is given a new GUOID value. The clients
make requests using � GUOID � offset 	 pairs. As with
the case of web pages, many objects have other embed-
ded static objects. An update operation may only change
the GUOID of the top-level object; if so, only that object
would need to be retransmitted. Upon reception, clients
can hash the contents and compare the result against the
expected GUOID of the object to check data integrity.

3.2 Object Transport Protocol (OTP)
The data caching service we provide in the routers is not
enforced on all by-passing packets. Therefore, existing
and emerging applications that see benefit in caching need
to indicate their willingness to the routers by setting a bit
in the IP-header and including an OTP header.

OTP runs on top of transport protocols and carries ob-
jects identified by GUOIDs. OTP is a generalization of
the Real Time Protocol (RTP) [21], which is successfully
being employed today to carry real-time traffic. RTP in-
troduces object awareness by tagging each packet with a
globally unique Synchronization SouRCe (SSRC) identi-
fier, which is the camera-id, and a time-offset for the real-
time payload being carried. However, these specific fields
make RTP suitable only for real-time traffic.

31

Byte Offset

0 15

TypeRsrvdV Port Num. of Application

Globally−Unique Object ID (GUOID)

(e.g. 128 bits)

7

(a) OTP header

UDPIP OTP

20 bytes 8

Payload

IP

20 bytes

OTP PayloadTCP

20

(b) Encapsulation of OTP header

Figure 3: OTP header and its encapsulation.

The OTP header shown in Figure 3(a) keeps a generic
GUOID for the object and an offset value for the data in
packet being transmitted. The length of the payload can
be obtained from the transport layer. The Type field indi-
cates what kind of action the application wants from OTP.
Currently, a Read type for a read request and a Data
type for the returned payloads are defined. Other types
such as Write, Publish, and Error are being consid-
ered. Port number of the original application can be used
to communicate the request or reception of the object to
the original application. Finally, the reserved field could
be used to assign priorities to objects to provide differen-
tiated caching services. Figure 3(b) shows the encapsu-
lation of OTP header into the transport (TCP, UDP) and
network (IP) headers before it is sent out to network.

3.3 Data-Caching Router
Figure 4 shows the hardware details of our data-caching
router. We add a new card that we call Data-Cache Engine
to the router to enable the caching of objects and process
the Object Transport Protocol (OTP) headers. The route
lookup in the line cards and the cache lookup in the Data-
Cache Engine are done in parallel. The Network Proces-
sor Unit (NPU) quickly searches the globally unique ob-
ject identifiers (GUOID) in the cache table and determines
whether it is a hit in the cache or a miss. If hit, the source
and destination addresses in the IP header are flipped and
the data is returned to the client. Otherwise, the packet
processor is informed of the miss result and the packet
forwarding proceeds as usual.

The client application reflects its read request by choos-
ing the OTP-READ option in the request type field of
OTP header. For example, the HTTP-GET requests used
by web browsers to retrieve web pages are mapped to an
OTP-READ request. If the router doesn’t have the object
cached, then the object is retrieved from the server in one
or more packets. Each packet carries the bytes starting
from the offset byte where the previous packet stopped. If
the transport is reliable, it handles the packet losses and
ordering. After the object is cached by the router, a sub-

3

Header

Payload

P
ac

ke
t

P
ro

ce
ss

or

DataCache Engine

FE

OTP Hdr

Line Card
Switch

Line Card

Forwarding Engine
IP Hdr

Hit+Data or Miss
Fast Mem

Cache
Table

Object
Cache

NPU

Figure 4: Data-Cache Engine is a specialized line card added to
the SEN routers. It makes GUOID lookups to determine whether
an object is cached or not.

sequent OTP-READ request may result in a hit. The ob-
ject is sent the client with OTP-Data field set in the OTP
header. If the Maximum Transfer Unit (MTU) between
the router and the client is bigger than the MTU between
the router and the server, then the router may send more
bytes in one jumbo-packet. When the incoming IP packet
is marked, denoting that it contains cache-able data, it is
forwarded both to the output line card for the next-hop to-
wards the destination and to the Data-Cache Engine. This
operation is similar to the IP multicast operation.

SEN architecture is backwards compatible. Therefore,
it can be deployed in an incremental fashion into the
current Internet infrastructure. Existing routers will for-
ward IP packets with embedded OTP headers as usual and
SEN routers will forward unmarked IP headers as existing
routers do.

4 Methodology
We use event-driven simulations to compare the proposed
Storage Embedded Network (SEN) architecture to the
web caches that operate in forward proxy mode. We
model a multi-level network topology with nodes repre-
senting the clients, servers, caches and routers. The clients
and the servers are at the edges of the topology, as shown
in Figure 5. We parse web requests from a real proxy trace
file and assign them to randomly selected clients. The
simulated network nodes forward these requests towards
the web servers that contain those objects; calculated by a
modulo over the object identifier. Caches are on the paths
from clients to the server.

4.1 Network Model
We generate wide-scale network topologies with user di-
rected input for (1) the number of nodes in a Wide Area
Network (WAN), (2) the number of Metropolitan Area
Network (MAN) nodes per WAN, (3) the number of Local
Area Network (LAN) nodes per MAN (4) the number of

0 1

3

4

5

6

7

8

9

10

11

12

13

14

21

15

16

17

18

19

20

WAN

MAN

LAN22
23

24

25

26

27

28
29

Hosts

LAN

MAN
Hosts2

Figure 5: Network topology used for the simulation.

hosts in a LAN, (5) the propagational delays, and (6) the
bandwidths for each link. Delays and bandwidths are the
same for links of the same type, e.g. all the links between
the LAN and the MAN levels are the same.

The topology used in the simulations is illustrated in
Figure 5. There are 58 directed links. The network
delays were based on our traceroute collections from
our university machines to different universities. The

delay � bandwidth � parameters for the links are as fol-

lows: WAN-to-WAN

10ms � 655Mbps � , WAN-to-MAN

2ms � 155Mbps � , MAN-to-LAN links

1ms � 1 � 5Mbps � ,

and LAN-to-Host

0 � 5ms � 10Mbps � .

4.1.1 Network Queuing Delays

We use a fluid-flow network queuing model [16]. The data
that passes through a router is queued in a FIFO queue and
serviced at the bandwidth speed of the outgoing link. We
use two parameters, TimeStamp and QueueTime, in each
node. TimeStamp is the last time when an object was re-
ceived into the FIFO queue. QueueTime is an estimate of
how much time the next object will be waiting or delayed
in this router. QueueTime is updated every time a new
object is received:

ServiceTime Ob jectSize � Bandwidth
∆T �� Now � TimeStamp �

NewQueueTime QueueTime � ∆T � ServiceTime �
(1)

For each queue the TimeStamp parameter is initialized to
the current simulation time and the QueueTime is initial-
ized to zero.

4.1.2 Pending Client Requests

Nodes with caching capabilities can implement a
pending-request queue to measure the round trip times
(RTT) and to avoid duplicate requests from traversing the
same network paths. GUOIDs for the objects that are cur-
rently being fetched are enqueued in this pending queue
together with the client and timestamp information. When
the object is retrieved, all requests that are pending on this
object are dequeued and responded. So, in our context
pending is defined as: holding on to the subsequent re-
quests for an object that has already been requested. We
measure the effects of using this strategy for both web
proxies and SEN architecture.

4

4.2 Web Proxy vs. SEN
Web proxy caches [8, 3] are successfully being used today
to reduce response times for web clients [6]. These caches
define parent-child relationships and structure themselves
in a hierarchy thus forming a tree topology from bottom
(leaf) to top layers. Clients connect to the leaf caches,
make web requests and wait until the proxy returns a re-
sponse. If the leaf cache cannot fulfill the request, it con-
tacts its parent and so on until the server is contacted and
the object is fetched. The object traverses the same path
backwards getting cached along the hierarchy.

SEN caches are topologically transparent to the clients
and servers. Clients append OTP headers to their request
packets and expect improvements from the SEN caches
within the Internet infrastructure. The requests are di-
rected towards the server. They are not delayed by addi-
tional forwarding to off-the-path parent caches. However,
for fairness of comparison we use the same tree topology
and same amounts of cache for both architectures.

4.3 Workload
National Laboratory for Applied Network Research
(NLANR) operates a global cache hierarchy using Squid
proxy caches and has provided important web traces [10].
We use a day long trace collected from a busy web proxy
server, SV, in the NLANR Squid cache hierarchy. It
contains about 675,342 requests (� 4.20 Gigabytes) to
269,031 unique web objects (� 1.17 Gigabytes). The infi-
nite hit rate is 60% and infinite byte hit rate is 72%. Each
client node sees a portion of this workload.

4.4 Cache Replacement
A cache replacement policy keeps the cached objects in
a priority order and replaces the least valuable objects.
An object’s access time, access frequency and size are
the most commonly used criteria for making replacement
decisions. We compare two replacement policies: LRU
and GDSF. Least Recently Used (LRU) replaces the least
recently accessed object from the cache. Greedy Dual
Size with Frequency (GDSF) policy [7] replaces the ob-
ject with the smallest key Ki �� Ci � Fi ��� Si � L, where
Ci is the cost of fetching the object, Fi is the access fre-
quency, Si is the object size and L is a running age factor.
L is set to the key value of the objects that are replaced
from the cache and Ci=1.

5 Results and Discussion
We compare web proxy and SEN architectures using the
described network topology and web workload. The com-
parison is based on performance metrics such as hit rates,
effects on client response times and effects on the server
load. For each metric, the web proxy and SEN nodes are
also evaluated separately according to their request pend-
ing strategy, i.e. with or without pending. Different cache

sizes are tested, but the two architectures are always com-
pared at the same cache sizes for fairness.

5.1 Hit Rates
Figure 6 compares the hit rates achieved by the same node
in the network (node 6 in Figure 5) when used as a for-
ward web proxy or as a SEN router cache. The hit rates
are plotted as a function of increasing cache sizes. The
network topology contains caches only at the LAN-level,
thus at the edges of the wide-area network. Figure 6(a)
shows that the same node achieves up to 20% higher hit
rates when used a SEN node rather than as a web proxy
node and both with LRU replacement. This is because
SEN routers operate both as forward and reverse proxies,
simultaneously, thus getting hits in both directions.

Figure 6(b) shows the hit rates for Greedy-Dual Size
with Frequency (GDSF) that uses frequency and size cri-
teria for replacement in addition to the recency of ac-
cesses. This policy can reach the hit rates achieved by
LRU replacement by using only a fraction of the cache
sizes used by LRU. This results in the steep increase in hit
rates seen in Figure 6(b). The pending strategy does not
effect the hit rates, since the decision on whether to pend
a request or not comes after a cache miss occurs and after
the hit rates are calculated.

Figure 7 compares the hit rates of web proxy and
SEN caches with caches at both the LAN and MAN
levels. The hit rates reported in this figure are path
hit rates (PHR), calculated by adding the hit rate
of the first level (HR1) to the hit rate of the sec-
ond level over the traffic missed from the first level:
PHR � 1 �� HR1 ��� 1 � HR1 � � HR2. Note that the path
hit rate metric is independent of the direction of the traffic
as PHR � 2 �� HR2 ��� 1 � HR2 � � HR1 PHR � 1 � . Due
to the increased total cache space the hit rates in Figure 7
are approximately 5% higher in comparison to hit rates in
Figure 6. However, the gap between the web proxy and
SEN cache hit rates close by 5-10%. The two reasons
for this reduction are as follows. First, the web proxies
are now serving a relatively larger, unified community (al-
though still only in download or pull direction), thus cre-
ating an accelerated path between two LANs within each
MAN. Second, with multi-level caches client sharing be-
tween communities is exploited to avoid duplications in
caches and the saved cache space is used to avoid some
capacity misses. Again, the GDSF policy achieves high
hit rates with smaller cache sizes than LRU and pending
strategy does not affect the hit rates.

5.2 Client Response Times
Figure 8 compares the average client response times
(CRT) of proxy and SEN caches with caches located only
at the LAN level. We find that the additional hit rates
achieved by SEN caches over proxy caches illustrated in
Figure 6 did not immediately result in additional reduc-
tions in CRT. This is because as a single level cache the
SEN router could only accelerate the server content one

5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500

H
it

R
at

e
(%

)

Cache Size (Megabytes)

SEN-NoPend
SEN-Pend

Proxy-NoPend
Proxy-Pend

(a) LRU replacement.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500

H
it

R
at

e
(%

)

Cache Size (Megabytes)

SEN-NoPend
SEN-Pend

Proxy-NoPend
Proxy-Pend

(b) GDSF replacement.

Figure 6: Hit rate comparison of forward web proxies vs. SEN routers; Caches are only at the LAN level.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 100 200 300 400 500

H
it

R
at

e
(%

)

Cache Size (Megabytes)

SEN-NoPend
SEN-Pend

Proxy-NoPend
Proxy-Pend

(a) LRU replacement.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 100 200 300 400 500

H
it

R
at

e
(%

)

Cache Size (Megabytes)

SEN-NoPend
SEN-Pend

Proxy-NoPend
Proxy-Pend

(b) GDSF replacement.

Figure 7: Hit rate comparison of forward web proxies vs. SEN routers; Caches are at the LAN and MAN levels.

hop (0.5ms) closer to the clients and not more. We will see
the immediate results of increased hit rates on the server
load later in this section. Note that, in Figure 8 the CRT
for SEN caches are slightly lower than the CRT for proxy
caches. The emerging distinction is seen better in Fig-
ure 8(b) for GDSF policy that achieves higher hit rates
than LRU with smaller cache sizes.

In Figure 9 the success of multi-level SEN caches over
multi-level web proxies becomes more eminent. SEN
caches reduce the client response times additionally 30-
50% over the CRT’s achieved by the web proxy caches.
Providing caching on the paths for data traversing in all
directions and not limiting the cache service to only the
client’s pull direction results in better use of the same
amount of cache space.

Another important result seen in both Figure 8 and 9
is the effect of pending policy over client response times.
For both SEN and web proxy caches, if the requests for
already requested objects can be pended inside the cache,
then many repeating requests will be responded at once
when the object is fetched for the first request. Pending
a request in a router can be more challenging than pend-
ing requests in web proxies, since routers are meant to
forward packets as fast as possible.

5.3 Server Load
Figure 10 shows the comparison of the effects of web
proxy vs. SEN caches on the server load expressed as
number of requests handled by the web servers (cumu-
lative). The caches are located only at the LAN level.
The web servers experience the additional benefits of SEN
caches starting with LAN-level caching. The additional
hits achieved by SEN caches result in additional reduc-
tions in the load of the server, which is one hop away from
the cache. This leads to increased server scalability. The
results for two-level caching are similar and are omitted.

6 Related Work
Our proposed globally-distributed cache infrastructure re-
lates to many distributed systems with distributed caches.
These include web proxy caches [8, 19], Content Dis-
tribution Networks (CDNs) [1], and Peer-to-Peer (P2P)
networks [20]. Our technique differentiates itself and
complements the mentioned architectures by provid-
ing an application- and direction-independent, widely-
distributed cache resource within the Internet.

Content Distribution Networks (CDN) such as Aka-

6

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

A
ve

ra
ge

 C
lie

nt
 R

es
po

ns
e

Ti
m

e
(s

ec
)

Cache Size (Megabytes)

Proxy-NoPend
SEN-NoPend

Proxy-Pend
SEN-Pend

(a) LRU replacement.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

A
ve

ra
ge

 C
lie

nt
 R

es
po

ns
e

Ti
m

e
(s

ec
)

Cache Size (Megabytes)

Proxy-NoPend
SEN-NoPend

Proxy-Pend
SEN-Pend

(b) GDSF replacement.

Figure 8: Client response times (CRT) comparison of web proxy caches vs. SEN routers Caches are only at the LAN level.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

A
ve

ra
ge

 C
lie

nt
 R

es
po

ns
e

Ti
m

e
(s

ec
)

Cache Size (Megabytes)

Proxy-NoPend
SEN-NoPend

Proxy-Pend
SEN-Pend

(a) LRU replacement.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

A
ve

ra
ge

 C
lie

nt
 R

es
po

ns
e

Ti
m

e
(s

ec
)

Cache Size (Megabytes)

Proxy-NoPend
SEN-NoPend

Proxy-Pend
SEN-Pend

(b) GDSF replacement.

Figure 9: CRT comparison of web proxy caches vs. SEN routers; Caches are at the LAN and MAN levels.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

S
er

ve
r

Lo
ad

 (R
eq

ue
st

s
x

10
00

/d
ay

)

Cache Size (Megabytes)

Proxy-NoPend
Proxy-Pend

SEN-NoPend
SEN-Pend

(a) LRU replacement.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

S
er

ve
r

Lo
ad

 (R
eq

ue
st

s
x

10
00

/d
ay

)

Cache Size (Megabytes)

Proxy-NoPend
Proxy-Pend

SEN-NoPend
SEN-Pend

(b) GDSF replacement.

Figure 10: Server load reduction comparison of web proxy caches vs. SEN routers; Caches are only at the LAN level.

7

mai [1] “akamaize” the server-side web content and com-
bine push-pull of this content within their private net-
works. SEN cache architecture uses globally unique ob-
ject identifiers (GUOIDs) and routers to make its cache
service globally accessible to all entities on the Internet.
Therefore, SEN architecture can act as a cache infrastruc-
ture for CDNs, so that they can push their content along
client paths to ensure the delivery of closest copies. SEN
architecture can also provide stable caching service be-
tween the peers of an overlay network.

7 Conclusions
We described the design of a new caching architecture
for the Internet infrastructure, called Storage Embedded
Networks (SEN). We compared the SEN architecture to
web caches operating in forward proxy mode. We used
the same network topology, the same web workload, and
same cache sizes for comparisons. We found that being
able to service requests over all network paths helps uti-
lize cache spaces better leading to improved performance.
The benefits of SEN caches increase as more caches are
installed along the network paths: i.e additional reduc-
tions of client response times and served loads can be
achieved over the web proxy caches. The network cost
is continuous, but memory cost is a one-time investment.
Even with modest hit rates router data caches can pay for
themselves within a short period of time.

References
[1] Akamai, http://www.akamai.com.

[2] Cisco Routers Layer 3 Forwarding, http://www.cisco.com.

[3] Squid web proxy cache, http://www.squid-cache.org/.

[4] S. Acharya, M. Franklin, and S. Zdonik. Balancing push
and pull for data broadcast. In Proceedings of the 1997
ACM SIGMOD International Conference on Management
of Data, pages 183–194, Tucson, AZ, May 1997.

[5] K. Akala, E. Miller, and J. Hollingsworth. Using content-
derived names for package management in Tcl. In Pro-
ceedings of the 6th Annual Tcl/Tk Conference, pages 171–
179, San Diego, CA, Sept. 1998. USENIX.

[6] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira.
Characterizing reference locality in the WWW. In Pro-
ceedings of the 1996 International Conference on Parallel
and Distributed Information Systems (PDIS ’96), 1996.

[7] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin.
Evaluating content management techniques for web proxy
caches. In Proceedings of the 2nd Workshop on Internet
Server Performance (WISP ’99), Atlanta, Georgia, May
1999.

[8] A. Chankhunthod, P. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell. A hierarchical Internet ob-
ject cache. In Proceedings of the 1996 USENIX Annual
Technical Conference, San Diego, CA, 1996.

[9] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham,
and P. Shenoy. Adaptive push-pull: Disseminating dy-
namic web data. In Proceedings of the 10th International
World Wide Web Conference, pages 265–274, Hong Kong,
China, May 2001.

[10] S. G. Dykes and K. A. Robbins. A viability analysis of
cooperative proxy caching. In Proceedings of INFOCOM
’01, pages 1205–1214, 2001.

[11] M. Fomenkov, K. Keys, D. Moore, and K. Claffy. Lon-
gitudinal study of Internet traffic in 1998-2003. Technical
report, Cooperative Association for Internet Data Analysis
(CAIDA), 2003.

[12] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan,
D. Moll, R. Rockell, T. Seely, and C. Diot. Packet-level
traffic measurements from the Sprint IP backbone. IEEE
Network, 17(6):6–16, 2003.

[13] T. Harbaum, D. Meier, M. Zitterbart, and D. Brokel-
mann. Hardware-assist for IPv6 routing table lookup. In
SYBEN’98, pages 434–443, Zurich, Switzerland, 1998.

[14] G. Memik and W. H. Mangione-Smith. Design and eval-
uation of a network processor accelerator for layer seven
applications. Submitted to ACM Transactions on Embed-
ded Computing Systems (TECS), 2004.

[15] B. K. B. Mohamed M. Hefeeda. On-demand media stream-
ing over the Internet. In Proceedings of International
Workshop on Future Trends of Distributed Computing Sys-
tems (FTDCS’03), San Juan, Puerto Rico, May 2003.

[16] D. Nicol, M. Goldsby, and M. Johnson. Fluid-based simu-
lation of communication networks using SSF. In Proceed-
ings of 1999 European Simulation Symposium, Erlangen-
Nuremberg, Germany, Oct. 1999.

[17] D. Pao, C. Liu, A. Wu, L. Yeung, and K. S. Chan. Effi-
cient hardware architecture for fast IP address lookup. New
York, NY, June 2002. IEEE.

[18] C. Partridge and P. Carvey. A 50-Gb/s IP router.
IEEE/ACM Transactions on Networking, 6(3):237–248,
June 1998.

[19] P. Rodriguez, C. Spanner, and E. Biersack. Web caching
architectures: hierarchical and distributed caching. In Pro-
ceedings of the 4th International WWW Caching Work-
shop, 1999.

[20] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A mea-
surement study of peer-to-peer sharing systems. In Pro-
ceedings of Multimedia Computing and Networking 2002
(MMCN ’02), pages 156–170. SPIE/ACM, Jan. 2002.

[21] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A transport protocol for real time applications. Re-
quest For Comments (RFC) 1889, IETF, Jan. 1996.

[22] A. Shaikh and A. Greenberg. Experience in black-box
OSPF measurement. In Proceedings of the ACM SIG-
COMM Internet Measurement Workshop (IMW), 2001.

[23] D. A. Tran, K. A. Hua, and T. Do. Zigzag: An efficient
peer-to-peer scheme for media streaming. In Proceedings
of INFOCOM ’03, 2003.

[24] G. K. Zipf. Human behaviour and the principle of least
effort. Addison-Wesley, 1949.

8

