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Abstract
Current file systems optimize for a single objective, often
to the detriment of other objectives. This can result in an
unbalanced system that does not reflect the needs of the
system or its users. We suggest addressing the data al-
location problem as a multi-objective optimization prob-
lem, using our general data placement framework, JACK.
This provides us with a means of finding an optimal data
allocation, tailored to the requirements of individual sys-
tems, requiring at most the specification of the relative
importance of competing performance goals.
For such an approach to be feasible, we need to de-

fine meaningful, yet observable, metrics for such a multi-
objective optimization problem. We introduce the ob-
jectives we intend to optimize for and example metrics
which can be used to gauge them. We provide a detailed
description of how each metric was developed, using a
data set provided by Los Alamos National Laboratory
for evaluation. We also explain how the metrics enable
the development of JACK, with the intent that others can
make use of our metrics and develop their own metrics
for additional performance goals.

1 Introduction

Current file systems are focused on optimizing for a sin-
gle objective, with, e.g., one system claiming to have the
fastest response time and another boasting of the most
energy savings. Some systems attempt to optimize for
two similar objectives, such as load balancing and sys-
tem responsiveness. The problem arises when a system
that has been optimized for energy savings, for example,
is expected to have excellent load balancing. Not only
are these two objectives in direct conflict with each other,
but it effectively forces a custom data allocation scheme
for that particular set of requirements and that particular
system to be produced.
We are developing a general approach to address such

problems that would be simpler to administer and deploy

for different applications. Rather than developing cus-
tom solutions for specific domains and forcing these ad
hoc applications onto systems that may not be suited for
them, we are choosing to address data placement as a
multi-objective optimization problem from the start. We
have chosen to use energy savings, load balancing, and
system responsiveness as our initial objectives, in order
to show that multi-objective optimization is useful when
considering both complimentary and contrasting objec-
tives. The advantage of optimizing for multiple objec-
tives is that rather than one single optimal answer, a set
of optimal answers is obtained. Thus, we have the flex-
ibility to chose an answer that reflects the requirements
of the system and users, yet is still optimal.

To this end we are developing JACK, which stands
for Joining, Aggregating, and Collocating Knowledge.
The multi-objective nature of JACK allows the allo-
cation problem to be tailored to any environment by
specifying the objective of specific environments and
users, rather than awkwardly adapting traditional single-
objective schemes. Such adaptation is both imprecise
and demands a mastery of both the allocation scheme
and the specific environment, whereas an implementa-
tion of JACK would demand at most an understanding of
the target system’s performance goals.

In order to develop JACK, some groundwork is nec-
essary: not only must we identify the objectives we in-
tend to optimize for, it is also necessary to define the
metrics that will be used to measure optimality for each
objective. Our goal is to demonstrate how such metrics
for JACK can be defined. We present a set of three ex-
ample performance objectives, and demonstrate how we
designed and refined metrics for these objectives. It is
our intent that our metrics be used for other work that
requires the measurement of these objectives and as a
source of inspiration for the development of metrics for
other objectives.
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2 Background

It is necessary to understand the problem we are address-
ing before we can develop a set of measurable metrics;
we therefore begin by observing the difference between
a single objective optimization problem and a multi-
objective optimization problem. A single objective op-
timization problem can be expressed as in Equation 1.
Here, f(x) refers to the objective function to be mini-
mized over x. In a single objective optimization problem,
you have a single objective function that you’re minimiz-
ing (or maximizing). For example, consider optimizing a
system for energy savings. We would formulate a func-
tion that represented the system’s energy consumption,
and attempt to minimize it as much as possible. While
this is beneficial when that single objective is all you
care about, if there are other objectives that are impor-
tant, Equation 1 has no way to take those into account.

minimize
x

f(x) (1)

The solution to this is to use a multi-objective op-
timization problem. The standard form of a multi-
objective optimization problem is shown in Equation 2.
This is extremely similar to Equation 1; in fact only one
thing has changed. Instead of trying to optimize a single
objective function f(x), we now have a vector of objec-
tive functions, Fi(x), that we are attempting to minimize.

minimize
x

F(x) = [F1(x), F2(x), . . . Fk(x)] (2)

Multi-objective optimization problems occur when
there are multiple objectives that need to be optimized,
with no clear indication of a preferred objective relative
to the others. In a multi- objective optimization, often
there is no single global solution. This is especially true
when objectives conflict with each other: consider two
objectives that are inversely proportional to each other.
For our purposes this is extremely beneficial, as it allows
us to pick a solution that best fits the current system and
users.

2.1 Example Optimization Objectives
Before we can begin to develop metrics it is also nec-
essary to know what performance objectives we are us-
ing for optimization. The three objectives we are ini-
tially focusing on are load balancing, system responsive-
ness, and energy savings. Optimizing for load balancing
and system responsiveness has been important since the
early days of distributed systems [19]. Load balancing
addresses the need to keep popular data evenly spread
across the system, in order to not overload any device.
It is closely related to system responsiveness, which is

concerned with how quickly the system responds to a re-
quest. Energy savings is particularly an issue in backup
systems, where disks can be spun down in order to save
power and money [4, 3, 16], but is also beginning to be
addressed in primary systems where spinning disks down
is not always an option.
Very few optimization techniques go beyond optimiz-

ing for one objective; those that do typically consider no
more than two, and in a very specific context. The work
mentioned below all have features that make them unique
in their specific single optimization problem. However,
since we are looking at these objectives as part of a multi-
objective optimization problem, the nature of our work
differs from that below.

Load Balancing One of the more common methods
to achieve load balancing is through replication of the
popular data. A good example of this technique is
CRUSH [20], which is a pseudo-random data distribu-
tion algorithm. CRUSH distributes object replicas across
a storage cluster by mapping an input value to a list of
devices on which to store object replicas. Distribution is
pseudo-random in that there is no apparent correlation
between resulting output from similar inputs or items
stored on any device. Another example is MMPack-
ing [10], a load and storage balancing method that uses
a combination of replication and a weighted scheduling
algorithm in order to achieve load balancing. The work
done by Ma et al. [13] extends MMPacking, using best
fit bin packing in order to find the optimal bin capacity
in order to minimize the required disk capacity.
Load balancing is also used in the file allocation prob-

lem, as a way to minimize disk utilization. One popu-
lar algorithm is the Greedy algorithm, which originated
from the Longest Processing Time algorithm (LPT) [9].
The LPT algorithm is a simple greedy algorithm de-
signed for multiprocessor load balancing and can oper-
ate on- or off-line. At each step, LPT greedily assigns a
process to the processor that has the least accumulated
load. When LPT is running online, processes are as-
signed in the order of their arrival; in offline mode, pro-
cesses are ordered by their load and assignment is done
in decreasing load order. When applied to the file allo-
cation problem, the LPT algorithm becomes the Greedy
algorithm [12], where the load of each file is defined as
the product of the file access rate and the access service
time. Our metric for load balancing uses the same defi-
nition of load.

System Responsiveness System responsiveness refers
to the amount of time it takes for the system to respond
to a request, be it a query for data from the user or a sim-
ple ls. This is closely related to load balancing, as dis-
tributing the load often results in an increase of system
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responsiveness. This is not always true, however, as one
of the best load balancing algorithms, the Greedy algo-
rithm [9], results in very poor system responsiveness ac-
cording to the comparisons performed by Lee et al. [12].
Likewise, the best algorithm for average response time,
Sort Partition, does very poorly in load balancing.
Lee et al. [12] present two different algorithms, Sort

Partition (SP) and Hybrid Partition (HP), and evaluate
against the Greedy algorithm using average response
time as a performance metric. SP tries to optimize the
response time by minimizing the service time variance at
each disk, but is an offline algorithm that requires com-
plete knowledge of the files. HP is the online version of
SP, and attempts to reconcile minimizing the load vari-
ance across disks and minimizing service time variance
at each disk by giving priority to minimizing service time
variance when overall disk utilization is low. This is be-
cause when disk utilization is low, the load imbalance
does not have a significant effect on the response time.
Not content with trading optimal load balancing for re-

sponse time, and vice versa, Zhu et al. [23] propose two
algorithms that optimize both response time and load bal-
ancing in parallel I/O systems. The first, Balanced Allo-
cation with Sort (BAS), is an offline algorithm for static
file assignment and needs full knowledge of the service
times and access rates for all files. The second, Balanced
Allocation with Sort for Batch (BASB), is an online algo-
rithm, which uses information about the coming batch of
files and the previously assigned files rather than needing
complete knowledge like BAS. Files in a batch are sorted
in descending order of their service times, with no cor-
relation between service times in other batches, and then
assigned to disks based on the average disk load.

Energy Savings Energy savings has been a concern
with archival systems for some time: as systems add
more storage capacity, the amount of power needed in-
creases along with the cost of cooling. Since in some
situations, disks and the power to cool them consume
more energy than the rest of the system combined [2, 8],
enabling more disks to remain idle is a big part of this
research [4, 3, 16]. While HPC workloads are not ideal
candidates for techniques which exploit idle disks [3],
there has been work which indicates that significant idle
periods exist in enterprise workloads [14].
Grouping data on disk to help improve response time

is a well-researched topic [1, 11, 18]. Building off this
work, Essary and Amer [7] present a theoretical frame-
work that aims to reduce energy consumption as well
as improve response time. This is accomplished using
a predictive grouping algorithm, called OE ME which
stands for optimized expansion, maximized expectation.
OE ME uses first order successors to build groups, com-
bining breadth first and depth first expansion strategies

to create a balanced expansion to find successors.
The work done by Wildani et al. [21] extends this

by providing a realistic prediction mechanism and semi-
permanent groupings, which reduces the need for con-
stant prediction. Wildani et al. show that by grouping
data likely to be accessed within a short period of time
together, the number of times disks have to spin up is re-
duced. This is supported by other research showing that
data arrangement can have an impact on energy savings
in single-disk systems [6, 17, 7].

3 Experimental Design

Having identified the objectives we are initially focusing
on, we can begin to develop the framework necessary
for JACK, our approach to multi-objective data alloca-
tion optimization. If you recall Equation 2, we need a set
of objective functions in order to have a multi-objective
optimization problem. These objective functions take the
form of the metrics outlined in the following sections.
We have defined three different observable metrics,

under specific constraints. It was imperative to us that
the file (or object) management system be able to main-
tain control, so the first constraint was that the metrics
had to be in units under the direct control of the manage-
ment system. In addition, we required that the metrics
be in units that can be observed or measured by the man-
agement system. Finally, the metric has to have some
influence on the objective. The three metrics we’ve de-
fined are similarity, popularity, and coverage.

3.1 Metric Definitions
Similarity influences system responsiveness, and de-
pends on the probability that similar data will be ac-
cessed together. By accessed together, we mean accessed
near each other within a certain time frame. While there
are many ways to define similarity, such as comparing
metadata, file or object content, or provenance, we are
focusing on metadata for the purposes of this paper. Us-
ing other definitions of similarity will be done in future
work.
Coverage influences energy savings, and measures the

percentage of data on the disk that is “covered” by other
disks in the system. This allows us to identify redun-
dant devices: devices that are 100% covered by the rest
of the system can be spun down with few repercussions.
It is necessary to keep in mind that energy savings for
reading is not the same as energy savings for writing. If
you are trying to optimize for writing, the simplest en-
ergy savings technique is to place the data on the nearest
active disk. When optimizing for reading, however, the
data should be placed on the device with the most similar
data. For the purposes of this paper, we are optimizing
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Fields Used Fields Unused
file permissions unique identifier
file size (in bytes) block size (in bytes)

user ID path to file
group ID

creation time
modification time

Table 1: Metadata fields in the Los Alamos National
Laboratory data sets.

for reading; optimizing for writing, and optimizing for
both reading and writing, is future work.
Popularity influences load balancing, and is our term

for the more frequently used term “heat”. It relates to
the frequency or recency of access. Frequency of access
refers to the number of times an object was accessed;
recency of access refers to when the object was last ac-
cessed. A combination of recency and frequency is a bet-
ter metric: this object was accessed x times in the past y
days.

3.2 Metric Development
In order to develop metrics for each of these objec-
tives, we worked with data sets from the Los Alamos
National Laboratory (LANL). These data sets are static
anonymized metadata snapshots, with a subset of meta-
data fields shown in Table 1. We focused on the anon-
lnfs-fs4 data set, which is 163, 267 files over 12 nodes.
For the purposes of these experiments, we looked at as-
signing files to nodes both sequentially and in a round
robin manner. Sequential assignment simply assigned
files in the order they appeared in the data set until a node
filled; round robin distributed them across nodes.

3.2.1 Similarity

Similarity is measured using Shannon Entropy, as seen
in Equation 3. What this tells us is that given a specific
metadata attribute, we can calculate the probability of
each value occurring on a node. A low entropy means
that there are many similar values, a high entropy means
that there are many diverse values. Since we’re currently
looking only at static metadata, entropy works well as a
metric, as shown by Parker-Wood et al. [15].

H(X) = −

n∑

i=1

p(xi) logb p(xi) (3)

As you can see in Figure 1, similarity is dependent on
the assignment strategy. The reason the entropy values
in both assignment strategies are fairly large is due to the

nature of the LANL data set. Despite the large values,
it is still possible to see the difference between the two
strategies.
When data is assigned sequentially, files in a direc-

tory are assigned to the same node, resulting in many of
the metadata fields having the same value and lower en-
tropy. When data is assigned in a round robin fashion,
files in a directory are spread across the nodes, result-
ing in the metadata fields having diverse values on each
node and higher entropy. This supports the findings of
Parker-Wood et al. [15] that entropy is a good metric for
comparing the similarity of files on a node.

3.2.2 Coverage

The original design of the coverage metric was to com-
pare the number of different values (on average) for each
metadata attribute on each node. The first problem that
arose was that this technique resulted in as many values
as devices, when a single value was needed. To resolve
this, we took the average of the values. The problem with
that, however, was that if two nodes covered each other
very well, but had little in common with the rest of the
system, the average was highly skewed.
Our next approach was to count the number of other

nodes that covered the current node, but a simple count
doesn’t tell you which node is covered by which. Since
the goal is to identify which nodes can be down with
little to no loss of data, this was not a valid metric either.
We needed a metric that rewarded skew, since that was a
good indicator that there were two highly similar nodes,
and we needed to know which node covered which. So
we developed the current metric for coverage, which is
the percent of the node that is covered by the rest of the
system. Nodes that have the exact same percentage as
the current node are the ones that cover it.
As with similarity, coverage is highly dependent upon

the assignment strategy, as can be seen in Figure 2. When
all the files in one folder are stored on a single node, the
coverage is poor as seen in Figure 2(b). However, when
the files of a folder are spread evenly across the nodes,
coverage increases by close to 65% (Figure 2(a)). This
drastic difference, due to the assignment strategy, mimics
what we would expect, and supports our coverage metric.

3.2.3 Popularity

Originally, we intended to look only at recency, since
we were using static metadata and had no measure of
frequency. However, since using both recency and fre-
quency is a better metric, we were going to try to estimate
popularity by assuming that a more recent access meant
more frequent access. However, having developed two
solid metrics, we decided to instead see if we could use
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(a) Round Robin Assignment (b) Sequential Assignment

Figure 1: Similarity: Measured by entropy. Y-axis begins at 6 to show variation.

(a) Round Robin Assignment (b) Sequential Assignment

Figure 2: Coverage: Measured by the percent of node covered by other nodes.

the definition for “heat” [5, 12, 22, 23].
What we developed was an estimate for popularity,

based on the definition of heat seen in Equation 4 where
you’re looking at the access rate and the expected service
time. Disk accesses to a file can be modeled as a Poisson
process with mean access rate of λ. Service time of a file
is assumed to be fixed as si.

hi = λi × si (4)

We started by looking at the access rate λi, which is
the popularity weight times the aggregate access rate.
The aggregate access rate can be seen in Equation 5,
where N is the number of files. We found that the aggre-
gate access rate was fixed between 100 [5] and 200 [22],
and varied from 20 to 240 or 1000 [22, 23]. For these ex-
periments we present results for a rate of 200. Evaluation
of varied rates is not considered for this work.

N∑

i=1

λi (5)

The other half of the access rate is the popularity
weight, which gives us an idea of the frequency of re-
quests for that file. Equation 6 shows us a definition for
the popularity rate of a file, pi, given a Zipf-like file dis-
tribution. Here, rank refers to the rank of the file (starting
at 1), and c = 1

H1−θ

N

. The denominator of c is the N th
harmonic number of order 1− θ, which means that c can
also be written as seen in Equation 7. A common theme
here is 1− θ, but we have no definition for θ.

pi =
c

rank1−θ
i

(6)

c =
1

∑N
k=1

1
k1−θ

(7)

Most of the current work assumes that the file ac-
cess request rate distribution is Zipfian with a skew of
θ = logA/100

log B/100 , where A% of accesses are directed at B%
of files. Given the Zipfian nature, generally the param-
eters are set as A= 70 and B= 30. However, since we
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(a) Round Robin Assignment (b) Sequential Assignment

Figure 3: Popularity: Measured by the average heat of files on each node.

have a static data set, we don’t actually know our access
request rate distribution. That being said, the denomina-
tor of c is incredibly similar to the denominator of the
Zipf distribution (Equation 8). Here, s is the value of the
exponent characterizing the distribution, N is the num-
ber of elements, and k is the rank.

1
ks∑N

n=1
1
ns

(8)

The value of the exponent characterizing the distribu-
tion can be calculated, as s is the slope of the log-log
graph of the data set. However, calculating s still re-
quires knowing the file access request rates. So instead
we make the common assumption that file sizes are in-
versely correlated with file access request rates. This al-
lows us to say that the file size distribution is an inverse
Zipf distribution with the same skew of theta. Since we
have the file size distribution, as long as it follows an in-
verse Zipf distribution, the file access request rate can be
calculated. We found that our file size distribution does
indeed follow an inverse Zipf distribution, allowing us to
calculate file access request rates.
However, if you recall Equation 4, the file access re-

quest rate is only one half of the equation. The other half
is service time, which is comprised of seek time, rota-
tional time, and transfer time. Seek time and rotational
time are negligible compared to the transfer time, which
is heavily influenced by the size of the file. We use an es-
timated service time metric equivalent to the size of the
file in Mbytes. Thus we are able to calculate popularity
based on a definition of “heat” used previously, using the
static metadata available to us.
Since file popularity does not change regardless of

where the file is placed, it is calculated before placement.
Since we are dealing with simply static metadata to de-
termine popularity and are using the size of the file in

megabytes, the resulting values are extremely small. As
a result, once the average heat of the files on each node
is calculated, we have multiplied by 1013 for readabil-
ity in Figure 3. As you can see, the results consistently
vary depending on the assignment strategy as with our
previous two metrics.

4 Conclusions and Future Work

We have introduced the concept of addressing the data al-
location problem as a multi-objective optimization prob-
lem, and explained how multi-objective optimizations
give us the flexibility to find solutions that are applicable
to the system and its users. We identified load balancing,
system responsiveness, and energy savings as the objec-
tives we are initially addressing, and defined a set of ob-
servable metrics to measure these objectives: popularity,
similarity, and coverage. These metrics provide us with a
foundation to construct JACK, a data allocation strategy
phrased as a multi-objective optimization problem. We
intend to explore the usefulness of these metrics in both
full optimization problems as well as in approximation
algorithms.
It is also a goal of the authors that the metrics de-

scribed in this paper will be adopted by others needing a
way to measure these objectives. When designing these
metrics, we purposefully used only elements controlled
by the file or object management system. This was to en-
sure that they would be useful regardless of the amount
of information known about the underlying devices and
components of the system.
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