
Magellan: A Searchable Metadata
Architecture for Large-Scale File Systems

Technical Report UCSC-SSRC-09-07
November 2009

Andrew W. Leung Ian F. Adams Ethan L. Miller

aleung@cs.ucsc.edu iadams@cs.ucsc.edu elm@cs.ucsc.edu

Storage Systems Research Center

Baskin School of Engineering

University of California, Santa Cruz

Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

Magellan: A Searchable Metadata Architecture for Large-Scale File Systems

Andrew W. Leung Ian F. Adams Ethan L. Miller

Storage Systems Research Center
University of California, Santa Cruz

Abstract
As file systems continue to grow, metadata search is becom-
ing an increasingly important way to access and manage
files. However, existing solutions that build a separate meta-
data database outside of the file system face consistency and
management challenges at large-scales. To address these is-
sues, we developed Magellan, a new large-scale file system
metadata architecture that enables the file system’s metadata
to be efficiently and directly searched. This allows Magellan
to avoid the consistency and management challenges of a
separate database, while providing performance comparable
to that of other large file systems.

Magellan enables metadata search by introducing several
techniques to metadata server design. First, Magellan uses
a new on-disk inode layout that makes metadata retrieval
efficient for searches. Second, Magellan indexes inodes in
data structures that enable fast, multi-attribute search and al-
low all metadata lookups, including directory searches, to be
handled as queries. Third, a query routing technique helps to
keeps the search space small, even at large-scales. Fourth,
a new journaling mechanism enables efficient update per-
formance and metadata reliability. An evaluation with real-
world metadata from a file system shows that, by combining
these techniques, Magellan is capable of searching millions
of files in under a second, while providing metadata per-
formance comparable to, and sometimes better than, other
large-scale file systems.

1. Introduction
The ever increasing amounts of data being stored in en-
terprise, cloud and high performance systems, is changing
the way we access and manage files. As modern file sys-
tems reach petabyte-scale, locating and managing files has
become increasingly difficult, leading to a trend towards

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

searchable file systems. File system search is appealing since
it is often easier to specifywhat one wants using file meta-
data and extended attributes rather than specifyingwhereto
find it [39]. Searchable metadata allows users and adminis-
trators to ask complex, ad hoc questions about the proper-
ties of the files being stored, helping them to locate, man-
age, and analyze their data. These needs have led to an in-
creasing demand for metadata search in high-end computing
(HEC) [20] and enterprise [13] file systems.

Unfortunately, current file systems are ill-suited for search
because today’s metadata designs still resemble those de-
signed over forty years ago, when file systems contained
orders of magnitude fewer files and basic namespace navi-
gation was more than sufficient [12]. As a result, metadata
searches can require brute-force namespace traversal, which
is not practical at large scale. To address this problem, meta-
data search is implemented with a search application—a
separate database of the file system’s metadata—as is done
in Linux (thelocate utility), personal computers [8], and
enterprise search appliances [18, 25].

Though search applications have been somewhat effec-
tive for desktop and small-scale servers, they face several
inherent limitations at larger scales. First, search applica-
tions must track all metadata changes in the file system, a
difficult challenge in a system with billions of files and con-
stant metadata changes. Second, metadata changes must be
quickly re-indexed to prevent a search from returning very
inaccurate results. Keeping the metadata index and “real”
file system consistent is difficult because collecting meta-
data changes is often slow [23, 40] and search applications
are often inefficient to update [1]. Third, search applications
often require significant disk, memory, and CPU resources
to manage larger file systems using the same techniques that
are successful at smaller scales. Thus, a new approach is nec-
essary to scale file system search to large-scale file systems.

An alternative solution is to build metadata search func-
tionality directly into the file system. This eliminates the
need to manage a secondary database, allowing metadata
changes to be searched in real-time, and enabling metadata
organization that corresponds to the users’ need for search
functionality. However, enabling metadata search within the
file system has its own challenges. First, metadata must be

organized so that it can be searched quickly, even as the sys-
tem scales. Second, this organization must still provide good
file system performance. Previous approaches, such as re-
placing the file system with a relational database [15, 31],
have had difficulty addressing these challenges.

To address the problem of search in large-scale file sys-
tems, we developed a new file system metadata design, Mag-
ellan, that enables metadata search within the file system
while maintaining good file system performance. Unlike
previous work, Magellan does not use relational databases
to enable search. Instead, its uses new query-optimized
metadata layout, indexing, and update techniques to ensure
searchability and high performance in a single metadata sys-
tem. In Magellan,all metadata lookups, including directory
lookups, are handled using a single search structure, elimi-
nating the redundant data structures that plague existing file
systems with search grafted on. Our evaluation of Magel-
lan shows that it is possible to provide a scalable, fast, and
searchable metadata system for large-scale storage, thus fa-
cilitating file system search without hampering performance.

The remainder of this paper is organized as follows.
Section 2 discusses the challenges for combining metadata
search and file systems and Section 3 describes related work.
The Magellan design is presented in Section 4 and our pro-
totype implementation is evaluated in Section 5. In Section6
we discuss lessons we learned while designing Magellan and
future work. We conclude in Section 7.

2. Background
Hierarchical file systems have long been the “standard”
mechanism for accessing file systems, large and small. As
file systems have grown in both size and number of files,
however, the need for metadata search has grown; this need
has not been adequately met by existing approaches.

2.1 Why Do We Need Metadata Search?

Large-scale file systems make locating and managing files
extremely difficult; this problem is sufficiently acute that
there is increasing sentiment that “hierarchical file systems
are dead” [39]. At the petabyte-scale and beyond, basic tasks
such as recalling specific file locations, finding which files
consume the most disk space, or sharing files between users
become difficult and time consuming. Additionally, there
are a growing number of complicated tasks such as regu-
latory compliance, managing hosted files in a cloud, and re-
locating files for maximum efficiency that businesses must
solve. Search helps to address these problems by allowing
users and administrators to state what they want and locate
it quickly.

Metadata search is particularly helpful because it not only
helps users locate files but also provides database-like ana-
lytic queries over important attributes. Metadata attributes,
which are represented as〈attribute, value〉 pairs, include
file inode fields (e.g.,size, owner, timestamps,etc.) and ex-

tended attributes (e.g.,document title, retention policy, and
provenance). Metadata search helps users to understand the
kinds of files being stored, where they are located, how they
are used, and where they should belong. In previous work,
we conducted a survey that found that metadata search was
being used for a variety of purposes, including managing
storage tiers, complying with legislation such as Sarbanes-
Oxley, searching scientific data, and capacity planning [26].

2.2 Search Applications

File system search is traditionally addressed with a separate
search application, such as the Linuxlocate program, Ap-
ple Spotlight [8] and Google Enterprise Search [18]. Search
applications re-index file metadata in a separate search-
optimized structure, often a relational database or informa-
tion retrieval engine. These applications augment the file
system, providing the ability to efficiently search metadata
without the need for file system modifications, making them
easy to deploy onto existing systems.

These applications have been very successful on desktop
and smaller scale file systems. However, they require that
two separate indexes of all metadata be maintained—both
the file system’s index and the search application’s index—
which presents several inherent challenges as a large-scale
and long-term solution:
1) Metadata must be replicated in the search application.
Metadata is replicated into the search appliance bypulling it
from the file system or having itpushedin by the file system.
A pull approach, as used by Google Enterprise, discovers
metadata change through periodic crawls of the file system.
These crawls are slow in file systems containing tens of
millions to billions of files that must be crawled. Worse,
the file system’s performance is usually disrupted during the
crawl because of the I/O demands imposed by a complete
file system traversal. Crawls cannot collect changes in real-
time, which often leads to inconsistency between the search
application and file system, thus causing incorrect (out-of-
date) search results to be returned.

Pushing updates from the file system into the application
allows real-time updates; however, the file system must be
aware of the search application. Unfortunately, search appli-
cations are search-optimized, which often makes update per-
formance notoriously slow [1]. Apple Spotlight, which uses
a push approach, does not apply updates in real-time for pre-
cisely these reasons. As a result, searches in Apple Spotlight
may not reflect the most recent changes in the file system,
though such files are often the ones desired by the user.
2)Search applications consume additional resources.Search
applications often rely on abundant hardware resources to
enable fast performance [18, 25], making them expensive
and difficult to manage at large-scales. Modern large file
systems focus on energy consumption and consolidation [6],
making efficient resource utilization critical.
3) Search appliances add a level of indirection.Building
databases on top of file systems has inefficiencies that have

been known for decades [41]; thus, accessing a file through
a search application can be much less efficient than through
a file system [39]. Accessing a file requires the search ap-
plication to query its index to find the matching files, which
will often require accessing index files stored in the file sys-
tem. Once file names are returned, the file names are copied
to the file system and the files are then retrieved from the
file system itself, which requires navigating the file system’s
namespace index for each file. Accessing files found through
searches in a search application require at least double the
number of steps, which is both inefficient and redundant.

2.3 Integrating Search into the File System

We believe that a more complete solution is for the file sys-
tem to organize its metadata to facilitate efficient search.
Search applications and file systems share the same goal:
organizing and retrieving files. Implementing the two func-
tions separately leads to duplicate functionality and inef-
ficiencies. With metadata search becoming an increasingly
common way to access and manage files, file systems must
provide this functionality as an integral part of their func-
tionality. However, organizing file system metadata so thatit
can efficiently be searched is not an easy task.

Because current file systems provide only basic directory
tree navigation, search applications are theonly option for
flexible, non-hierarchical access. The primary reason behind
this shortcoming is that, despite drastic changes in technol-
ogy and usage, metadata designs remain similar to those de-
veloped over 40 years ago [12], when file systems held less
than 10 MB. These designs make metadata search difficult
for several reasons.
1) Queries must quickly access large amounts of metadata.
File systems often have metadata scattered throughout the
disk [14]. Scanning the metadata for millions of files for a
search can require many expensive disk seeks.
2) Queries must quickly analyze large amounts of meta-
data.Metadata must be scanned to find files that match the
query. Because file systems do not directly index metadata
attributes, they must use linear search or similarly slow tech-
niques to find relevant files.
3) File systems do not know where to look for files.The file
system does not know where relevant files are located, thus
often searching a large portion of the file system. In large-
scale systems, searching the entire file system (or most of it)
can be impractical because of the sheer volume of files that
must be examined.

3. Related Work
While file systems have been hierarchically organized for
over four decades, there have been many attempts to pro-
vide a more searchable interface to them. Early search ap-
plications such asgrep andfind made brute force search
easier to use, but not faster. More recently, Diamond [23]
introduced early discard to improve brute force search

performance by quickly determining if a file was rele-
vant to a search. Diamond used brute force search because
they claimed that maintaining a separate search application
presents significant challenges at large-scales.

More recently, Spyglass [26], a search application that
we designed, showed that search performance can be im-
proved with an index specially tailored for metadata search,
rather than a general-purpose database. We leverage some of
its index designs in Magellan. However, a major drawback
was that it did not handle real-time updates which resulted
in stale search results. SmartStore [22] is a similar system
that indexes metadata in a distributed R-tree and uses La-
tent Semantic Indexing (LSI) to group correlated metadata.
SmartStore also does not handle real-time updates, and the
use of LSI limits its ability to perform index updates quickly.

Magellan is not the first file system to try to integrate
searching directly into the file system. Semantic file sys-
tems [17, 19, 32] replaced the hierarchical namespace with
a semantic, search-based one. In these file systems, queries
were the main method of file access and a dynamic names-
pace could be built usingvirtual directories, which con-
tained the results of a search. Semantic file systems indexed
both metadata and file content and aimed to provide real-
time updates. However, these systems had performance and
consistency issues that Magellan can help address by pro-
viding real-time metadata search and updates. File systems
such as LiFS [4] (and the Web itself) have moved away from
a purely hierarchical file tree towards a more flexible inter-
connection scheme, but such file systems either lack high
performance searchability at scale or require Google-scale
data centers to answer search queries rapidly.

Other file systems replaced the file system internals with a
relational database [15, 31], allowing database functionality,
such as search, to be provided by the file system. However,
databases were not designed to be file systems and are not
a “one size fits all” solution [42]; again, these file systems
experienced performance problems on both regular file ac-
cesses and metadata search.

PLDIR [30] and BeFS [16] provided better ways to inter-
nally represent metadata attributes in a file system. PLDIR
defined a general model for describing metadata using prop-
erty lists, which could be used to represent file search ab-
stractions. BeFS indexed extended attributes using B+-trees.
While its indexing capabilities were very basic, it did address
some index update and consistency issues.

4. Magellan Design
We designed Magellan with two primary goals. First, we
wanted a metadata organization that could be quickly searched.
Second, we wanted to provide the same metadata perfor-
mance and reliability that users have come to expect in
other high performance file systems. We focus on the prob-
lems that make current designs difficult to search, leaving
other useful metadata designs intact. Our design leverages

metadata specific indexing techniques we developed in Spy-
glass [26].

This section discusses the new metadata techniques that
Magellan uses to achieve these goals:

• The use of a search-optimized metadata layout that clus-
ters the metadata for a sub-tree in the namespace on disk
to allow large amounts of metadata to be quickly ac-
cessed for a query.

• Indexing metadata in multi-dimensional search trees that
can quickly answer metadata queries.

• Efficient routing of queries to particular sub-trees of the
file system using Bloom filters [10].

• The use of metadata journaling to provide good update
performance and reliability for our search-optimized de-
signs.

Magellan was designed to be the metadata server (MDS)
for Ceph, a prototype large-scale parallel file system [44].
In Ceph, metadata is managed by a separate metadata server
outside of the data path. We discuss issues specific to Ceph
where necessary, though our design is applicable to many file
systems; systems such as PVFS [11] use separate metadata
servers, and an optimized metadata system can be integrated
into standard Linux file systems via thevfs layer, since
Magellan’s interface is similar to POSIX though with the
addition of a query interface.

4.1 Metadata Clustering

In existing file systems, searches must read large amounts
of metadata from disk since file system searches require
traversing the directory tree and may need to perform mil-
lions of readdir() and stat() operations to access file
and directory metadata. For example, a search to find where
a virtual machine has saved a user’s virtual disk images may
read all metadata below/usr/ to find files withowner equal
to 3407 (the user’s UID) andfile type equal tovmdk.

Accessing metadata often requires numerous disk seeks
to access the file and directory inodes, limiting search per-
formance. Though file systems attempt to locate inodes near
their parent directory on disk, inodes can still be scattered
across the disk. For example, FFS stores inodes in the same
on disk cylinder group as their parent directory [29]. How-
ever, prior work has shown that inodes for a directory are
often spread across multiple disk blocks. Furthermore, di-
rectory inodes are not usually adjacent to the first file in-
ode they name, nor are file inodes often adjacent to the next
named inode in the directory [14]. We illustrate this concept
in the top part of Figure 1, which shows how a sub-tree can
be scattered on disk.

Magellan addresses this problem by grouping inodes
into large groups calledclusters. Each cluster contains the
metadata for a sub-tree in the namespace and is stored se-
quentially in a serialized form on disk, allowing it to be
quickly accessed for a query. For example, a cluster may

Disk
Layout

Dir.

A

Dir.

D

Dir.

B

Dir.

C

F1 F2

F3 F4

F6 F7

F9 F5

DA F1 F2 DB F5 DC F6 F4 F9 F7 DD F3

Standard File System Metadata Layout

Magellan Metadata Layout

A File System Sub-tree

Disk
Layout

DA F2 DB F5 F6 F7 F3 F4 F9F1 DC DD

Metadata Cluster

Figure 1. Metadata clustering. Each block corresponds to
an inode on disk. Shaded blocks labeled ’D’ are directory
inodes while non-shaded blocks labeled ’F’ are file inodes.
In the top disk layout, the indirection between directory
and file inodes causes them to be scattered across the disk.
The bottom disk layout shows how metadata clustering co-
locates inodes for an entire sub-tree on disk to improve
search performance. Inodes reference their parent directory
in Magellan; thus, the pointers are reversed.

store inodes corresponding to the files and directories in the
/projects/magellan/ sub-tree. The bottom part of Fig-
ure 1 shows how clusters are organized on disk. Retrieving
all of the metadata in this sub-tree can be done in a single
large sequential disk access. Conceptually, metadata clus-
tering is similar to embedded inodes [14] which store file
inodes adjacent to their parent directory on disk. Metadata
clustering goes further and stores a group of file inodes and
directories adjacent on disk. Co-locating directories andfiles
makes hard links difficult to implement. We address this with
a table that tracks hard linked files whose inodes are located
in another cluster.

Metadata clustering exploits several file system proper-
ties. First, disks are much better at sequential transfers than
random accesses. Metadata clustering leverages this to pre-
fetch an entire sub-tree in a single large sequential access.
Second, file metadata exhibitsnamespace locality: meta-
data attributes are dependent on their location in the names-
pace [3, 26]. For example, files owned by a certain user are
likely to be clustered in that user’s home directory or their
active project directories, not randomly scattered acrossthe
file system. Thus, queries will often need to search files and
directories that are nearby in the namespace. Clustering al-
lows this metadata to be accessed more quickly using fewer
I/O requests. Third, metadata clustering works well for many
file system workloads, which exhibit similar locality in their
workloads [27, 35]. Often, workloads access multiple, re-
lated directories, which clustering works well for.

Cluster organization. Clusters are organized into a hier-
archy, with each cluster maintaining pointers to itschild
clusters—clusters containing sub-trees in the namespace. A
simple example is a cluster storing inodes for/usr/ and
/usr/lib/ and pointing to a child cluster that stores inodes
for /usr/include/ and/usr/bin/, each of which points
to its own children. This hierarchy can be navigated in the
same way as a normal directory tree. Techniques for index-
ing inodes within a cluster are discussed in Section 4.2.

While clustering can improve performance by allowing
fast pre-fetching of metadata for a query, it can negatively
impact performance if it becomes too large, since clusters
that are too large waste disk bandwidth by pre-fetching
metadata for unneeded files. Magellan prevents clusters from
becoming too large by using a hard limit on the number of di-
rectories a cluster can contain and a soft limit on the number
of files. While a hard limit on the number of directories can
be enforced by splitting clusters with too many directories,
we chose a soft limit on files to allow each file to remain in
the same cluster as its parent directory. Our evaluation found
that clusters with tens of thousands of files provide the best
performance, as discussed in Section 5.
Creating and caching clusters. Magellan uses a greedy
algorithm to cluster metadata. When an inode is created, it
is assigned to the cluster containing its parent directory.File
inodes are always placed in this cluster. If the new inode is
a directory inode, and the cluster has reached its size limit,
a new cluster is created as a child of the current directory
and the inode is inserted into it. Otherwise, it is inserted into
the current cluster. Though this approach works fairly wellin
practice, it does have drawbacks. First, a very large directory
will result in a very large cluster. Second, no effort is made
to achieve a uniform distribution of cluster sizes. We plan
to address these issues with a clustering algorithm that re-
balances cluster distributions over time.

Magellan manages memory using acluster cachethat is
responsible for paging clusters to and from disk, using a
basic LRU algorithm to determine which clusters to keep
in the cache. Clusters can be flushed to disk under five
conditions: (1) the cluster cache is full and needs to free
up space; (2) a cluster has been dirty for too long; (3) there
are too many journal entries and a cluster must be flushed
to free up journal space (as discussed in Section 4.4); (4) an
application has requested that the cluster be flushed (e.g.,via
sync()); or (5) it is being flushed by a background thread
that periodically flushes clusters to keep the number of dirty
clusters low. Clusters index inodes using in-memory search
trees that cannot be partially paged in or out of memory, so
the cache is managed in large, cluster-sized units.

4.2 Indexing Metadata

Searches must quickly analyze large amounts of metadata
to find the files matching a query. However, current file
systems do not index the metadata attributes that need to be
searched. For example, searching for files withowner equal

D

F F

F F D F

File inode
Ino: 18921

Parent ino: 18256

Owner: 115

Title: 'magellan'

Type: PDF

Directory inode
ino: 18256,

Parent ino: 8568,

Owner: 115

...

...

Figure 2. Inode indexing with a K-D tree. A K-D tree is
shown with nodes that are directory inodes are shaded with a
’D’. File inodes are not shaded and labeled ’F’. K-D trees are
organized based on attribute value not namespace hierarchy.
Thus, a file inode can point to other file inodes,etc. The
namespace hierarchy is maintained by inodes containing the
inode number of their parent directory. Extended attributes,
such atitle andfile type are included in the inode.

to UID 3047 and modification time earlier than7 days

ago, requires linearly scanning every inode because it is not
known which may match the query.
Indexing with K-D trees. To address this problem, each
cluster indexes its inodes in aK-D tree: ak-dimensional bi-
nary search tree [9]. Inode metadata attributes (e.g.,owner,
size) are dimensions in the tree and any combination of
these can be searched using point, range, or nearest neighbor
queries. K-D trees are similar to binary trees, though differ-
ent dimensions are used to pivot at different levels in the
tree. K-D trees allow a single data structure to index all of
a cluster’s metadata. A one-dimensional data structure, such
as a B-tree, would require an index for each attribute, mak-
ing reading, querying, and updating metadata more difficult.

Each inode is a node in the K-D tree, and contains basic
attributes and any extended attributes (e.g.,file type, last

backup date, etc.) that are indexed in the tree, as shown in
Figure 2. Figure 2 shows that inodes are organized based
on their attribute values, not their order in the namespace.
For example, a file inode’s right pointer points to another
file inode because it has a lower value for some attribute. It
is important to note that inodes often store information not
indexed by the K-D tree, such as block pointers.

To maintain namespace relationships, each inode stores
its own name and the inode number of its parent directory, as
shown in Figure 2. Areaddir() operation simply queries
the directory’s cluster for all files withparent inode equal
to the directory’s inode number. Storing names with their in-
odes allows queries forfilename to not have to locate the par-
ent directory first. In fact,all file system metadata operations
translate to K-D tree queries. For example, anopen() on
/usr/foo.txt is a query in the cluster containing/usr/’s
inode for a file withfilename equal tofoo.txt, parent in-

ode equal to/usr/’s inode number, and with the appropriate
mode permissions.
Index updates. As a search-optimized data structure, K-D
trees provide the best search performance when they are
balanced. However, adding or removing nodes can make it
less balanced. Metadata modifications must do both: remove

the old inode and insert an updated one. While updates are
fast O(log N) operations, many updates can unbalance the
K-D tree. The cluster cache addresses this problem by re-
balanceing a K-D trees before it is written to disk. Doing
so piggybacks theO(N log N) cost of rebalancing onto the
bandwidth-limited serialization back to disk, hiding the de-
lay. This approach also ensures that, when a K-D tree is read
from disk, it is already optimized.
Caching inodes. While K-D trees are good for multi-
attribute queries, they are less efficient for some common
operations. Many file systems, such as Apple’s HFS+ [7],
index inodes using just the inode number, often in a B-tree.
Operations such as path resolution that perform lookups us-
ing just an inode number are done more efficiently in a B-
tree than a K-D tree that indexes multiple attributes, since
searching just one dimension in a K-D tree uses a range
query that requiresO(kN1−1/k) time, wherek is the num-
ber of dimensions andN is the size of the tree as compared
to a B-tree’sO(log N) look up.

To address this issue, each cluster maintains aninode
cache that stores pointers to inodes previously accessed
in the K-D tree. The inode cache is a hash table that
short-circuits inode lookups, avoiding K-D tree lookups for
recently-used inodes. The inode cache usesfilename and
parent inode as the keys, and is managed by an LRU al-
gorithm. The cache is not persistent; it is cleared when the
cluster is evicted from memory.

4.3 Query Execution

Searching through many millions of files is a daunting task,
even when metadata is effectively clustered out on disk and
indexed. Fortunately, as we mentioned earlier in Section 4.1,
metadata attributes exhibit namespace locality, which means
that attribute values are influenced by their namespace loca-
tion and files with similar attributes are often clustered inthe
namespace.

Magellan exploits this property by usingBloom fil-
ters[10] to describe the contents of each cluster and toroute
queriesto only the sub-trees that contain relevant metadata.
Each cluster stores a Bloom filter for each attribute type that
it indexes. Bits in the Bloom filters are initialized to zero
when they are created. As inodes are inserted into the clus-
ter, metadata values are hashed to positions in the bit array,
which are set to one. In a Bloom filter, a one bit indicates
that a file with that attributemay be indexed in the clus-
ter, while a zero bit indicates that the cluster contains no
files with that attribute. A one bit is probabilistic becauseof
hash collisions; two attribute values may hash to the same
bit position causing false-positives. A query only searches a
cluster whenall bits tested by the query are set to one, elim-
inating many clusters from the search space. False positives
cause a query to search clusters that do not contain relevant
files, degrading performance but not leading to incorrect re-
sults. Magellan keeps Bloom filters small (a few kilobytes)
to ensure that they fit in memory.

Unfortunately, deleting values from Bloom filters is dif-
ficult, since when removing or modifying an attribute, the
bit corresponding to the old attribute value cannot be set to
zero because the cluster may contain other values that hash
to that bit position. However, not deleting values will cause
false positives to increase. To address this, Magellan clears
and recomputes Bloom filters when a cluster’s K-D tree is
being flushed to disk. Writing the K-D tree to disk visits each
inode, allowing the Bloom filter to be rebuilt.

4.4 Cluster-based Journaling

Search-optimized systems organize data so that it can be
read and queried as fast as possible, often causing update
performance to suffer [1]. This is a difficult problem in a
search-optimized file system because updates are very fre-
quent, particularly for file systems with hundreds of mil-
lions of files. Moreover, metadata must be kept safe, requir-
ing synchronous updates. Magellan’s design complicates ef-
ficient updates in two ways. First, clusters are too large to be
written to disk every time they are modified. Second, K-D
trees are in-memory structures; thus, information cannot be
inserted into the middle of the serialized stream on disk.

To address this issue, Magellan uses acluster-based jour-
naling technique that writes updates safely to an on disk
journal and updates the in-memory cluster, but delays writ-
ing the cluster back to its primary on disk location. This
technique provides three key advantages. First, updates in
the journal are persistent across a crash since they can be
replayed. Second, metadata updates are indexed and can be
searched in real-time. Third, update operations are fast be-
cause disk writes are mostly sequential journal writes that
need not wait for the cluster to be written. This approach
differs from most journaling file systems that use the jour-
nal as a temporary staging area and write metadata back
to its primary disk location shortly after the update is jour-
naled [33, 38]. In Magellan, the journal is a means to recreate
the in memory state in case of a crash; thus, update perfor-
mance is closer to that of a log-structure file system [36].

Cluster-based journaling allows updates to achieve good
disk utilization; writes are either streaming sequential writes
to the journal or large sequential cluster writes. Since clus-
ters are managed by the cluster cache, it can exploit temporal
locality in workloads [27], allowing it to keep frequently-
updated clusters in memory, updating them on disk only
when they become “cold”. This approach also allows many
metadata operations to be reflected in a single cluster opti-
mization and write, and allows many journal entries to be
freed at once, further improving efficiency.

Since metadata updates are not immediately written to
their primary on-disk location, the journal can grow very
large. Magellan allows the journal to grow to hundreds of
megabytes before requiring that clusters be flushed. Since
journal writes are a significant part of update performance,
staging the journal in non-volatile memory such as flash

Attribute Description Attribute Description
ino inode number ctime change time
pino parent inode number atime access time
name file name owner file owner
type file or directory group file group
size file size mode file mode

mtime modification time

Table 1. Inode attributes used. The attributes that inodes
contained in our experiments.

memory or phase change memory could significantly boost
performance.

5. Experimental Results
Our evaluation seeks to examine the following questions:
(1) How does Magellan’s metadata indexing impact perfor-
mance? (2) How does our journaling technique affect meta-
data updates? (3) Does metadata clustering improve disk
utilization? (4) How does our prototype’s metadata perfor-
mance compare to other file systems? (5) What kind of
search performance is provided?

Our evaluation shows that Magellan can search millions
of files, often in under a second, while providing perfor-
mance comparable to other file systems for a variety of
workloads.

5.1 Implementation Details

We implemented our prototype as the metadata server
(MDS) for the Ceph parallel file system [44], for several rea-
sons. First, parallel file systems often handle metadata and
data separately [11, 44]: metadata requests are handled by
the MDS while data requests are handled by separate storage
devices, allowing us to focus solely on MDS design. Sec-
ond, Ceph targets the same large-scale, high-performance
systems as Magellan. Third, data placement is done with a
separate hashing function [45], freeing Magellan from the
need to manage data block pointers. Like Ceph, our proto-
type is a Linux user process that uses a synchronous file in a
localext3 file system for persistent storage.

In our prototype, each cluster has a maximum of 2,000 di-
rectories and a soft limit of 20,000 inodes, keeping them fast
to access and query. We discuss the reasoning behind these
numbers later in this section. The K-D tree in each cluster is
implemented usinglibkdtree++ [28], version 0.7.0. Each
inode has eleven attributes that are indexed, listed in Ta-
ble 1. Each Bloom filter is about 2 KB in size—small enough
to represent many attribute values while not using signifi-
cant amounts of memory. The hashing functions we use for
the file size and time attributes allow bits to correspond to
ranges of values. Each cluster’s metadata cache is 100 KB in
size. While our prototype implements most metadata server
functionality, there are a number of features not yet imple-
mented. Among these are hard or symbolic links, handling
of client cache leases, and metadata replication. None of

0 50000 100000 150000 200000
Cluster size (in files)

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

L
a
te

n
c
y
 (

s
e
c
)

Unbalanced query
Balanced query
Traversal
Insert

(a) Query and insert performance.

0 50000 100000 150000 200000
Cluster size (in files)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L
a
te

n
c
y
 (

s
e
c
)

Write
Balance

(b) Write and optimize performance.

Figure 3. Cluster indexing performance. Figure 3(a)
shows the latencies for balanced and unbalanced K-D tree
queries, brute force traversal, and inserts as cluster sizein-
creases. A balanced K-D tree is the fastest to search and in-
serts are fast even in larger clusters. Figure 3(b) shows laten-
cies for K-D tree rebalancing and disk writes. Rebalancing
is slower because it is requiresO(N × log N) time.

present a significant implementation barrier, and none sig-
nificantly impact performance; we will implement them in
the future.

All of our experiments were performed on an Intel Pen-
tium 4 machine with dual 2.80 GHz CPUs and 3.1 GB of
RAM. The machine ran CentOS 5.3 with Linux kernel ver-
sion 2.6.18. All data was stored on a directly attached Max-
tor ATA 7Y250M0 7200 RPM disk.

5.2 Microbenchmarks

We begin by evaluating the performance of individual Mag-
ellan components using microbenchmarks.
Cluster Indexing Performance. We evaluated the update
and query performance for asinglecluster in order to un-
derstand how indexing metadata in a K-D tree affects per-
formance. Figure 3(a) shows the latencies for creating and
querying files in a single cluster as the cluster size increases.
Results are averaged over five runs with the standard devi-
ations shown. We randomly generated files because differ-
ent file systems have different attribute distributions that can
make the K-D tree un-balanced and bias results in different
ways [2]. We used range queries for between two and five
attributes.

We measured query latencies in a balanced and unbal-
anced K-D tree, as well as brute force traversal. Querying an

unbalanced K-D tree is5 − 15× faster than a brute force
traversal, which is already a significant speed up for just
a single cluster. Unsurprisingly, brute force traversal scales
linearly with cluster size; in contrast, K-D tree query perfor-
mance scales mostly sub-linearly. However, it is clear that
K-D tree organization impacts performance; some queries in
a tree with 70,000 files are 10% slower than queries across
140,000 files. A balanced cluster provides a 33–75% query
performance improvement over an unbalanced cluster. How-
ever, when storing close to 200,000 files, queries can still
take longer than 10 ms. While this performance may be ac-
ceptable for “real” queries, it is too slow for many metadata
look ups, such as path resolution. Below 50,000 files, how-
ever, all queries require hundreds of microseconds, assuming
the cluster is already in memory.

The slow performance at large cluster sizes demonstrates
the need to keep cluster sizes limited. While an exact match
query in a K-D tree (i.e., all indexed metadata values are
known in advance) takesO(log N) time, these queries typi-
cally aren’t useful because it is rarely the case thatall meta-
data values are known prior to accessing a file. Instead, many
queries are range queries that use fewer thank-dimensions.
These queries requiresO(kN1−1/k) time, whereN is the
number of files, andk is the dimensionality, meaning that
performance increasingly degrades with cluster size.

In contrast to query performance, insert performance re-
mains fast as cluster size increases. The insert algorithm is
similar to the exact match query algorithm, requiring only
O(log N) time to complete. Even for larger K-D trees, in-
serts take less than 10 us. The downside is that each in-
sert makes the tree less balanced, degrading performance for
subsequent queries until the tree is rebalanced. Thus, while
inserts are fast, there is a hidden cost being paid in slower
queries and having to rebalance the tree later.

Figure 3(b) shows latencies for writing a cluster to disk
and rebalancing, the two major steps performed when a dirty
cluster is written to disk. Surprisingly, rebalancing is the
more significant of the two steps, taking3 − 4× longer than
writing to disk. The K-D tree rebalancing algorithm takes
O(N×log N) time, accounting for this difference. However,
even if we did not rebalance the K-D tree prior to flushing
it to disk, K-D tree write performance is not fast enough to
be done synchronously when metadata is updated as they
can take tens to hundreds of milliseconds. Since a K-D tree
is always written asynchronously, its performance does not
affect user operation latencies, though itcan impact server
CPU utilization.
Update Performance. To evaluate how our cluster-based
journaling impacts update performance, we used a create
benchmark that creates between 100,000 and 2,000,000 files,
and measured the throughput at various sizes. To do this, we
used metadata traces that we collected from three storage
servers deployed at NetApp [27]. We used different traces
because each has different namespace organizations that im-

0 500000 1000000 1500000 2000000
Number of files

0

500

1000

1500

2000

2500

3000

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Web
Eng
Home

Figure 4. Create performance. The throughput (cre-
ates/second) is shown for various system sizes. Magellan’s
update mechanism keeps create throughput high because
disk writes are mostly to the end of the journal, which yields
good disk utilization. Throughput drops slightly at larger
sizes because more time is spent searching clusters.

pact performance (e.g.,having few very large directories or
many small directories). The servers were used by differ-
ent groups within NetApp: a web server (Web), an engineer-
ing build server (Eng), and a home directory server (Home).
Files were inserted in the order that they were crawled; since
multiple threads were used in the original crawl, the traces
interleave around ten different crawls each doing depth-first
search order.

Figure 4 shows the throughput averaged over five runs
and standard deviations as the number of creates increases.
We find that, in general, throughput is very high, between
1,500 and 2,500 creates per second, because of Magellan’s
cluster-based journaling. Each create appends an update en-
try to the on-disk journal and then updates the in memory
K-D tree. Since the K-D tree write is delayed, this cost is
paid later as the benchmark streams largely sequential up-
dates to disk.

However, create throughput drops slightly as the number
of files in a cluster increases because the K-D tree itself
is larger. While only a few operations experience latency
increases due to waiting for a K-D tree to be flushed to
disk, larger K-D trees also cause more inode cache misses,
more Bloom filter false positives, and longer query latencies,
thus increasing create latencies (e.g.,, because a file creation
operation must check to see if the file already exists). In most
cases, checking Bloom filters is sufficient; again, though, the
higher rate of false positives causes more K-D tree searches.
Metadata Clustering. We next examined how different
maximum cluster sizes affects performance and disk utiliza-
tion. To do this, we evaluated Magellan’s create and query
throughputs as its maximum cluster size increases. The max-
imum cluster size is the size at which Magellan tries to cap
clusters. If a file is inserted, it is placed in the cluster of its
parent directory, regardless of size. For a directory, however,
Magellan creates a new cluster if the cluster has too many
directories or total inodes. Maximum cluster size refers to
the maximum inode limit; we set the maximum directory
limit to 1/10th of that.

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Maximum cluster size (in files)

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

T
h

ro
u

g
h

p
u

t
(c

re
a
te

s
/s

e
c
)

(a) Create latencies

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Maximum cluster size (in files)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
h

ro
u

g
h

p
u

t
(q

u
e
ri

e
s
/s

e
c
)

(b) Query latencies.

Figure 5. Metadata clustering. Figure 5(a) shows cre-
ate throughput as maximum cluster size increases. Perfor-
mance decreases with cluster size because inode caching and
Bloom filters become less effective and K-D tree operations
become slower. Figure 5(b) shows that query performance is
worse for small and large sizes.

Figure 5(a) shows the total throughput for creating 500,000
files from the Web trace over five runs as the maximum
cluster size varies from 500 to 40,000 inodes. As the fig-
ure shows, Create throughput steadily decreases as maxi-
mum cluster size increases. While the throughput at cluster
size 500 is around 2,800 creates per second, at cluster size
40,000, which is an80× increase, throughput drops roughly
50%. Disk utilization is not the issue, since both use mostly
sequential disk writes; rather, the decrease is primarily due
to having to operate on larger K-D trees. Smaller clusters
have more effective metadata caching (less data to cache per
K-D tree) and Bloom filters (fewer files yielding fewer false
positives). Additionally, queries on smaller K-D trees are
faster. Since journal writes and K-D tree insert performance
do not improve with cluster size, a larger maximum cluster
size has little positive impact.

Figure 5(b) shows that query performance scales quite
differently from create performance. We used a simple query
that represented a user search for a file she owns with a
particular name (e.g.,filename equal tomypaper.pdf and
owner id equal to3704). We find that query throughputin-
creases7 − 8× as maximum cluster size varies from 500 to
25,000. When clusters are small, metadata clustering is not
as helpful because many disk seeks may still be needed to
read the metadata needed. As clusters get larger disk utiliza-
tion improves. However, throughput decreases 15% when

Name Application Metadata Operations

Multiphysics A Shock physics 70,000
Multiphysics B Shock physics 150,000
Hydrocode Wave analysis 210,000
Postmark E-Mail and Internet 250,000

Table 2. Metadata workload details.

Multiphysics A Multiphysics B Hydrocode Postmark
Application workload

0

20

40

60

80

100

120

140

160

180

R
u

n
 t

im
e
 (

s
)

Magellan
Ceph

Figure 6. Metadata workload performance comparison.
Magellan is compared to the Ceph metadata server using
four different metadata workloads. In all cases, both provide
comparable performance. Performance differences are often
do to K-D tree utilization.

maximum cluster size increases from 30,000 to 40,000 files.
When clusters are too large, time is wasted reading unneeded
metadata, which can also displace useful information in the
cluster cache. In addition, larger K-D trees are slower to
query. The sweet spot seems to be around 20,000 files per
cluster, which we use as our prototype’s default.

5.3 Macrobenchmarks

We next evaluated general file system and search perfor-
mance using a series of macrobenchmarks.
File System Workload Performance. We compared our
prototype to the original Ceph MDS using four different ap-
plication workloads. Three workloads are HPC application
traces from Sandia National Laboratory [37] and the other
is the Postmark [24] benchmark. Table 2 provides additional
workload details. We used HPC workloads because they rep-
resent performance critical applications. Postmark was cho-
sen because it presents a more general workload, and is a
commonly used benchmark. While the benchmarks are not
large enough to evaluate all aspects of file system perfor-
mance (many common metadata benchmarks are not [43]),
they are able to highlight some important performance dif-
ferences. We modified the HPC workloads to ensure that
directories were created before they were used. We used
Postmark version 1.51 and configured it to use 50,000 files,
20,000 directories, and 10,000 transactions. All experiments
were performed with cold caches.

Figure 6 shows the run times and standard errors av-
eraged over five runs, with the corresponding throughputs
shown in Table 3. Total run times are comparable for both,
showing that Magellan is able to achieve similar file system

Multiphysics A Multiphysics B Hydrocode Postmark
Magellan 3041 2455 10345 1729

Ceph 2678 2656 14187 1688

Table 3. Metadata throughput (ops/sec). The Magellan
and Ceph throughput for the four workloads.

0.0 20.0 40.0 60.0 80.0 100.0
Percent of clusters queried

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
to

ta
l
q
u
e
ri

e
s

Web
Eng
Home

Figure 8. Fraction of clusters queried. A CDF of the frac-
tion of clusters queried for query set 1 on our three data sets
is shown. Magellan is able to leverage Bloom filters to ex-
ploit namespace locality and eliminate many clusters from
the search space.

performance to the original Ceph MDS. However, perfor-
mance varies between the two; at most, our prototype ranges
from 13% slower than Ceph to 12% faster. As in the pre-
vious experiments, a key reason for performance decreases
was K-D tree performance. The Multiphysics A and Mul-
tiphysics B traces have very similar distributions of opera-
tions, though Multiphysics B creates about twice as many
files. Table 3 shows that between the two, our prototype’s
throughput drops by about 20% from about 3,000 operations
per second to 2,500, while Ceph’s throughput remains close
to consistent. This 20% overhead is spent almost entirely do-
ing K-D tree searches.

Our prototype yields a 12% performance improvement
over Ceph for the Postmark workload. Postmark creates a
number of files consecutively which benefit from out cluster-
based journaling. Throughput for these operations can be up
1.5 − 2× faster than Ceph. Additionally, the ordered nature
of the workload produces good inode cache hit ratios.

These workloads show differences and limitations (e.g.,
large K-D tree performance) with our design, though they
indicate that it can achieve good file system performance. A
key reason for this is that, while Magellan makes a number
of design changes, it keeps the basic metadata structure (e.g.,
using inodes, not rows in a database table). This validates
an important goal of our design: address issues with search
performance while maintaining many aspects that current
metadata designs do well.
Search Performance. To evaluate search performance, we
created three file system images using the Web, Eng, and
Home metadata traces with two, four, and eight million files,
respectively. The cluster cache size is set to 20, 40, and
80 MB for each image, respectively, so that searches are not

performed solely in memory. Before running the queries, we
warmed the cluster cache with random cluster data.

Unfortunately, there are no standard file system search
benchmarks. Instead, we generated synthetic query sets
based on queries that we believe represent common meta-
data search use cases. The queries and the attributes used are
given in Table 4. Query attributes are populated with random
data from the traces, which allows the queries to follow the
same attribute distributions in the data sets while providing
some randomness.

Figure 8 shows the cumulative distribution functions
(CDF) for our query sets run over the three different traces.
Our prototype is able to achieve search latencies that are less
than a second in most cases, even as size increases. In fact,
all queries across all entire traces are less six seconds, with
the exception of several in the Home trace that were between
eight and fifteen seconds. A key reason is that Magellan is
able to leverage namespace locality by using Bloom filters
to eliminate a large fraction of the clusters from the search
space. Figure 8 shows a CDF of the fraction of clusters ac-
cessed for a query using query set 1 on all three of our
traces. We see that 50% of queries access fewer than 40% of
the clusters in all traces. Additionally, over 80% of queries
access fewer than 60% of the clusters.

While queries typically run in under a second, some
queries take longer. For example, latencies are mostly be-
tween 2 and 4 seconds for query set 1 on our Web data set
in Figure 7(a). In these cases, many of the clusters are ac-
cessed from disk, which increases latency. The Web trace
contained a lot of common file names (e.g.,index.html
andbanner.jpg) that were spread across the file system.
We believe these experiments show that Magellan is capa-
ble of providing search performance that is fast enough to
allow metadata search to be a primary way for users and
administrators to access and manage their files.

6. Discussion and Future Work
Our experience in designing, building and testing Magellan
has provided valuable insights regarding current and future
searchable file system designs. Early on in our design, we
noticed how close file systems already are to being able to
provide metadata search. Many of Magellan’s designs, such
as clustering metadata nearby in the namespace on disk, are
already to done to some degree by file systems. We believe
that this shows there is a low barrier to enabling search in
more file systems.

While K-D trees introduce some design challenges such
as rebalancing, and large cluster performance, we were actu-
ally surprised by how effective they proved to be. Given that
they were neither designed for file systems nor previously
used in file systems, they turned out to make inode indexing
relatively straightforward. We are now looking at new ben-
efits other structure can provide. For example, FastBit [46]

Set Query Metadata Attributes
Set 1 Where is this file located? Retrieve files usingfilename andowner.
Set 2 Where, in this part of the system, is this file located? Use query 1 with an additional directorypath.
Set 3 Which of my files were modified near this time and at least this size? Retrieve files usingowner, mtime, andsize.

Table 4. Query Sets. A summary of the searches used to generate our evaluation query sets.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
to

ta
l
q
u
e
ri

e
s

Query set 1
Query set 2
Query set 3

(a) Web server.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
to

ta
l
q
u
e
ri

e
s

Query set 1
Query set 2
Query set 3

(b) Engineering server.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
to

ta
l
q
u
e
ri

e
s

Query set 1
Query set 2
Query set 3

(c) Home server.

Figure 7. Query execution times. A CDF of query latencies for our three query sets. In most cases, query latency is less than
a second even as system size increases. Query set 2 performs better than query set 1 because it includes a directory path from
where Magellan begins the search, which rules out files not inthat sub-tree from the search space.

can provide high compression ratios and K-D-B-trees [34]
can provide partially in-memory K-D trees.

A major challenge that we do not address, but are exam-
ining, is the metadata search interface. Magellan’s searchin-
terface, which used complex, SQL-like queries was cumber-
some and it is unlikely users will want to frequently access
their data this way. However, a simple Google-like search
box may be too simplistic. If search is to become effective
enough for daily use a good interface is needed, perhaps sim-
ilar to that provided by QUASAR [5] or PQL [21].

Content-based search supporting queries such as “find all
files containing the termeurosys” shares some similarities
with metadata search: searching file content requires reading
file data, extracting and analyzing keywords, and indexing
them, which file systems do not do and which can be difficult
at large-scales. However, combining metadata search with
the file system is more straightforward because file systems
already store and index metadata. Regardless, content-based
search provides a powerful tool, and we are looking at new
ways to enable improved content search in large-scale file
systems.

7. Conclusions
The rapid growth in data volume is changing how we access
and manage our files. Large-scale systems increasingly re-
quire metadata search to better locate and utilize data. While
search applications that are separate from the file system are
adequate for small-scale systems, they have inherent limita-
tions when used as large-scale, long-term metadata search
solutions. We believe that a better approach is to build meta-
data search directly into the file system itself.

In this paper, we presented the design of a new file system
metadata architecture called Magellan that enables meta-
data to be efficiently searched while maintaining good file
system performance. Unlike previous solutions that relied
on relational databases, Magellan uses several novel search-
optimized metadata layout, indexing, and update techniques.
Using real-world data, our evaluation showed that Magellan
can search over file systems with millions of files in less than
a second and provide file system performance comparable
to other systems. While Magellan’s search-optimized design
does have limitations, it demonstrates that metadata search
and file systems can be effectively combined, representing
a key stepping stone in the path to enabling better ways to
locate and manage our data.

References
[1] A BADI , D. J., MADDEN, S. R.,AND HACHEM, N. Column-stores

vs row-stores: How different are they really? InProceedings of the
2008 ACM SIGMOD International Conference on Management of
Data (Vancouver, Canada, June 2008).

[2] A GRAWAL , N., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Generating realisticimpressionsfor file-system benchmarking.
In Proceedings of the 7th USENIX Conference on File and Storage
Technologies (FAST)(Feb. 2009), pp. 125–138.

[3] A GRAWAL , N., BOLOSKY, W. J., DOUCEUR, J. R.,AND LORCH,
J. R. A five-year study of file-system metadata. InProceedings of
the 5th USENIX Conference on File and Storage Technologies (FAST)
(Feb. 2007), pp. 31–45.

[4] A MES, S., BOBB, N., GREENAN, K. M., HOFMANN, O. S.,
STORER, M. W., MALTZAHN , C., MILLER , E. L., AND BRANDT,
S. A. LiFS: An attribute-rich file system for storage class memories.
In Proceedings of the 23rd IEEE / 14th NASA Goddard Conference
on Mass Storage Systems and Technologies(College Park, MD, May
2006), IEEE.

[5] A MES, S., MALTZAHN , C., AND M ILLER , E. L. Quasar: A scalable
naming language for very large file collections. Tech. Rep. UCSC-

SSRC-08-04, University of California, Santa Cruz, Oct. 2008.
[6] A NDERSEN, D. G., FRANKLIN , J., KAMINSKY, M., PHANISHAYEE,

A., TAN , L., AND VASUDEVAN, V. Fawn: A fast array of wimpy
nodes. InProceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP ’09)(2009).

[7] A PPLE. HFS Plus volume format.http://developer.apple.
com/mac/library/technotes/tn/tn1150.html, 2009.

[8] A PPLE. Spotlight Server: Stop searching, start finding.http://www.

apple.com/server/macosx/features/spotlight/, 2009.
[9] BENTLEY, J. L. Multidimensional binary search trees used for as-

sociative searching.Communications of the ACM 18, 9 (Sept. 1975),
509–517.

[10] BLOOM, B. H. Space/time trade-offs in hash coding with allowable
errors.Communications of the ACM 13, 7 (July 1970), 422–426.

[11] CARNS, P. H., LIGON, W. B., ROSS, R. B., AND THAKUR , R.
PVFS: a parallel file system for Linux clusters. InProceedings of the
4th Annual Linux Showcase and Conference(Atlanta, GA, Oct. 2000),
pp. 317–327.

[12] DALEY, R., AND NEUMANN , P. A general-purpose file system for
secondary storage. InProceedings of the Fall Joint Computer Confer-
ence, Part I(1965), pp. 213–229.

[13] ENTERPRISESTRATEGY GROUPS. ESG Research Report: storage
resource management on the launch pad, 2007.

[14] GANGER, G. R., AND KAASHOEK, M. F. Embedded inodes and
explicit groupings: Exploiting disk bandwidth for small files. In
Proceedings of the 1997 USENIX Annual Technical Conference(Jan.
1997), USENIX Association, pp. 1–17.

[15] GEHANI , N., JAGADISH, H., AND ROOME, W. D. Odefs: A file
system interface to an object-oriented database. InProceedings of the
20th Conference on Very Large Databases (VLDB)(Santiago de Chile,
Chile, 1984), pp. 249–260.

[16] GIAMPALO , D. Practical File System Design with the Be File System,
1st ed. Morgan Kaufmann, 1999.

[17] GIFFORD, D. K., JOUVELOT, P., SHELDON, M. A., AND O’TOOLE,
JR., J. W. Semantic file systems. InProceedings of the 13th ACM
Symposium on Operating Systems Principles (SOSP ’91)(Oct. 1991),
ACM, pp. 16–25.

[18] GOOGLE, INC. Google enterprise. http://www.google.com/
enterprise/, 2008.

[19] GOPAL, B., AND MANBER, U. Integrating content-based access
mechanisms with hierarchical file systems. InProceedings of the 3rd
Symposium on Operating Systems Design and Implementation (OSDI)
(Feb. 1999), pp. 265–278.

[20] GRIDER, G., NUNEZ, J., BENT, J., ROSS, R., WARD, L., POOLE,
S., FELIX , E., SALMON , E., AND BANCROFT, M. Coordinating
government funding of file system and I/O research through the High
End Computing University Research Activity.Operating Systems
Review 43, 1 (Jan. 2009).

[21] HOLLAND , D. A., BRAUN, U., MACLEAN , D., MUNISWAMY-
REDDY, K.-K., AND SELTZER, M. I. A data model and query lan-
guage suitable for provenance. InProceedings of the 2008 Interna-
tional Provenance and Annotation Workshop (IPAW)(June 2008).

[22] HUA , Y., JIANG , H., ZHU, Y., FENG, D., AND T IAN , L. SmartStore:
A new metadata organization paradigm with metadata semantic-
awareness for next-generation file systems. InProceedings of SC09
(Portland, OR, Nov. 2009).

[23] HUSTON, L., SUKTHANKAR , R., WICKREMESINGHE, R., SATYA -
NARAYANAN , M., GANGER, G. R., RIEDEL, E., AND A ILAMAKI ,
A. Diamond: A storage architecture for early discard in interactive
search. InProceedings of the Third USENIX Conference on File
and Storage Technologies (FAST)(San Francisco, CA, Apr. 2004),
USENIX, pp. 73–86.

[24] KATCHER, J. PostMark: a new file system benchmark. Technical
Report TR-3022, NetApp, Sunnyvale, CA, 1997.

[25] KAZEON. Kazeon: Search the enterprise.http://www.kazeon.
com/, 2008.

[26] LEUNG, A., SHAO, M., BISSON, T., PASUPATHY, S.,AND M ILLER ,
E. L. Spyglass: Fast, scalable metadata search for large-scale storage
systems. InProceedings of the 7th USENIX Conference on File and

Storage Technologies (FAST)(Feb. 2009), pp. 153–166.
[27] LEUNG, A. W., PASUPATHY, S., GOODSON, G., AND M ILLER ,

E. L. Measurement and analysis of large-scale network file system
workloads. InProceedings of the 2008 USENIX Annual Technical
Conference(June 2008).

[28] libkdtree++.http://libkdtree.alioth.debian.org/, 2009.
[29] MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J.,AND FABRY, R. S.

A fast file system for UNIX.ACM Transactions on Computer Systems
2, 3 (Aug. 1984), 181–197.

[30] MOGUL, J. C. Representing Information About Files. PhD thesis,
Stanford University, Mar. 1986.

[31] OLSON, M. A. The design and implementation of the Inversion
file system. InProceedings of the Winter 1993 USENIX Technical
Conference(San Diego, California, USA, Jan. 1993), pp. 205–217.

[32] PADIOLEAU , Y., AND RIDOUX , O. A logic file system. InProceed-
ings of the 2003 USENIX Annual Technical Conference(San Antonio,
TX, June 2003), pp. 99–112.

[33] PRABHAKARAN , V., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Analysis and evolution of journaling file systems.
In Proceedings of the 2005 USENIX Annual Technical Conference
(2005).

[34] ROBINSON, J. T. The K-D-B-tree: a search structure for large mul-
tidimensional dynamic indexes. InProceedings of the 1981 ACM
SIGMOD International Conference on Management of Data(1981),
pp. 10–18.

[35] ROSELLI, D., LORCH, J.,AND ANDERSON, T. A comparison of file
system workloads. InProceedings of the 2000 USENIX Annual Tech-
nical Conference(San Diego, CA, June 2000), USENIX Association,
pp. 41–54.

[36] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and im-
plementation of a log-structured file system.ACM Transactions on
Computer Systems 10, 1 (Feb. 1992), 26–52.

[37] SANDIA NATIONAL LABORATORIES. PDSI SciDAC released trace
data. http://www.cs.sandia.gov/Scalable_IO/SNL_Trace_

Data/index.html, 2009.
[38] SELTZER, M., GANGER, G., MCKUSICK, M. K., SMITH , K.,

SOULES, C., AND STEIN, C. Journaling versus soft updates: Asyn-
chronous meta-data protection in file systems. InProceedings of the
2000 USENIX Annual Technical Conference(June 2000), pp. 18–23.

[39] SELTZER, M., AND MURPHY, N. Hierarchical file systems are dead.
In Proceedings of the 12th Workshop on Hot Topics in Operating
Systems (HotOS-XII)(2009).

[40] SOULES, C. A., KEETON, K., AND III, C. B. M. SCAN-Lite:
Enterprise-wide analysis on the cheap. InProceedings of EuroSys
2009(Nuremberg, Germany, 2009).

[41] STONEBRAKER, M. Operating system support for database manage-
ment.Communications of the ACM 24, 7 (1981).

[42] STONEBRAKER, M., AND CETINTEMEL, U. “One Size Fits All”:
An idea whose time has come and gone. InProceedings of the 21st
International Conference on Data Engineering (ICDE ’05)(Tokyo,
Japan, 2005), pp. 2–11.

[43] TRAEGER, A., ZADOK , E., JOUKOV, N., AND WRIGHT, C. P. A
nine year study of file system and storage benchmarking.ACM
Transactions on Storage 4, 2 (May 2008).

[44] WEIL , S. A., BRANDT, S. A., MILLER , E. L., LONG, D. D. E.,
AND MALTZAHN , C. Ceph: A scalable, high-performance distributed
file system. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI)(Seattle, WA, Nov. 2006),
USENIX.

[45] WEIL , S. A., BRANDT, S. A., MILLER , E. L., AND MALTZAHN , C.
CRUSH: Controlled, scalable, decentralized placement of replicated
data. InProceedings of the 2006 ACM/IEEE Conference on Super-
computing (SC ’06)(Tampa, FL, Nov. 2006), ACM.

[46] WU, K., OTOO, E. J., AND SHOSHANI, A. Optimizing bitmap
indices with efficient compression.ACM Transactions on Database
Systems 31, 1 (Mar. 2006), 1–38.

