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ABSTRACT

As storage capacities increase, managing petabytes of data
becomes increasingly challenging. One reason is the POSIX
file system interface, originally designed in the 1970s in the
context of file collections many orders of magnitude smaller
than those found in today’s petabyte-scale storage systems.
We show the scalability problems of the naming language
imposed by POSIX, i.e. the language to identify an indi-
vidual file or a group of files. We identify common features
of popular applications that manage large file collections as
search, attributes, and relationships. The increasing size of
file collections has already motivated file system designers to
include support for these features, so highly optimized im-
plementations can be shared across all applications. Exist-
ing approaches treat these features as add-ons to the POSIX
naming language. One consequence of this lack of integra-
tion is that searches cannot be scoped to a fragment of a
file system name space, which makes search hard to scale
to very large file collections. We present a naming language
(Quasar) that offers operators for search and view specifi-
cation within file systems. Quasar supports scope limiting
by subtrees and by link distance. A Quasar name expands
into a collection of Quasar names that represent a connected
graph. We evaluate Quasar by contrasting its use with SQL
and XPath in scenarios that are typical for very large file
collections.

1. INTRODUCTION

The size of today’s largest file systems have grown to many
petabytes containing billions of files. The management of
such collections forces us to re-examine the effectiveness of
naming individual and groups of files. Current file systems
are using hierarchical name spaces, which have proven ef-
fective for small-scale file collections: the hierarchical struc-
ture offers simple establishment of name subspaces and its
static nature allows for a number of important performance
optimizations [20, 2]. As the number of files increase, the
need for a more flexible mechanism to identify individual
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and groups of files becomes more crucial [3, 22].

Since file systems have essentially not changed their name
space structure for the last 30 years, users have adopted
user-space applications to manage large collections of files
of a particular type, such as separate applications dedicated
to image, movie, or audio file collections. In addition to
hierarchical namespace structures, these applications take
advantage of the semi-structured nature of file collections,
in that they allow users to identify files by terms that are
occurring in unstructured content. They also allow for at-
tributes in structured content, such as header information
from various document types. Each of these applications
implements its own search engine and manages its own in-
dices over files and relationships between files.

The separate management of type-specific file collections
by user-space applications has a number of drawbacks: each
application has to re-implement search engines and meta-
data management with perhaps less optimized performance,
and the metadata cannot be easily shared among multiple
applications or be used for more general system services
that span file types, such as backup, provenance tracking, or
workflow. More recently, systems designers have started to
develop applications that are more tightly integrated with
file systems and are aiming to include all file types and work
across multiple file systems [4, 6].

It is difficult to scale search engines to petabyte-sized file
collections if the scope of searches cannot be effectively fo-
cused on subsets of these file collections. Existing file system
search engines support keyword-based queries that define a
flat namespace with a global scope over all files, or attribute-
based queries that reduce the scope to the names of the
terms in a query, but require the maintenance of attribute
name-specific indices over all files. We are not aware of file
namespaces that integrate scope as offered by hierarchical
namespaces with keyword- and attribute-based search.

We propose Quasar, a path-based naming language that is
designed for very large file collections and integrates hierar-
chical and attribute-based naming. We call Quasar a nam-
ing language instead of a query language because it defines
the namespace as opposed to being a separate language for
searching. By combining scope operators with operators for
attribute-based search, we define a namespace that allows
searching within a specified scope as well as attribute-based
naming. We evaluate our design by contrasting Quasar ex-
pressions of important retrieval scenarios with expressions
in common query languages: SQL, the standard query lan-
guage for relational databases, and XPath [38], the query
language preferred for hierarchically organized XML docu-



ments.
We make the following contributions:

e Proposal of a naming language (Quasar) that inte-
grates scope and searching

e Evaluation of this naming language against XPath and
SQL, two representative query languages for hierarchi-
cal and relational data, respectively.

The remainder of the paper is organized as follows. Sec-
tion 2 extends the motivation for this work. Section 3 presents
semantics and operators for our language (Quasar), section
4 evaluates the language by contrasting it to SQL and XPath
in terms of scenarios important in very large file collections,
and section 5 discusses the ramifications of our evaluation.
Section 6 presents related work, and in Section 7, we con-
clude.

2. MOTIVATION

The design of Quasar is motivated by the current limita-
tion of the POSIX file system interface, the emergent com-
mon features of applications that manage large file collec-
tions, the need for being able to limit the scope of search-
ing, and the emergence of the successful path-based language
XPath.

2.1 POSIX Namespace

Almost all common file systems in use today adhere at
least to some significant extent to POSIX or “Portable Op-
erating System Interface”, a set of standards specified by
IEEE in 1988 for any operating system [16]. In 2001 the
standard was revised to not only include the system calls
but also shell commands and utility interfaces [17]. For file
systems the standard defines a hierarchical namespace, in
which all non-terminal nodes are directories and all terminal
nodes are files. This namespace is queried and manipulated
with a set of system calls, shell commands, and a simple
naming language. This naming language specifies a file or
a directory by a path, either starting from the root or rel-
ative to the “current working directory” of the namespace.
The naming language contains operators to refer to the cur-
rent working directory and to the parent directory, which
allows the specification of paths from any directory in the
namespace to any other directory or file.

The POSIX naming language provides no support for query-

ing. On the file system API level, the only query function
is the listing of directory entries: the command opendir
opens the directory for reading, and readdir returns one
entry per call. All pattern matching functionality provided
by shell commands require the listing of the entire contents
of a directory. In other words, the naming language only al-
lows the naming of files or directories where the location in
the hierarchical namespace is already known. To find files or
directories, users have to rely on shell commands or utilities
like find, which recursively retrieve directory contents and
try to match each file or directory to specified search crite-
ria. These methods do not rely on any kind of indexing and
are only viable when the search can be limited to a small
subtree of the overall hierarchy.

Due to this limited querying functionality, the POSIX file
system interface does not scale to very large file systems. Its
design emerged from work in the 1970s [36] in the context
of file collections with sizes multiple orders of magnitude

smaller than today’s collections. Now that file systems scale
up to billions of files, the process of searching for a file under
POSIX involves the listing of very large directories and the
traversal of very deep hierarchies.

2.2 Large File Collections

Organizing large amounts of information is an open chal-
lenge and an active area of research in the context of personal
information management, as well as information manage-
ment on the institutional or enterprise level. At this point,
there is wide agreement that the various requirements of
storing and retrieving information does not map sufficiently
well onto hierarchical namespaces. Lansdale identified two
important reasons for this [18]. First, both deciding which
categorization to use, and recalling or guessing the label of
that categorization is hard due to likely ambiguities in label
meaning and information generally falling into several cat-
egories [11]. Second, users remember far more about doc-
uments than can be used in strictly hierarchical retrieval
procedures.

As file collections grow larger, users are forced to rely on
increasingly sophisticated applications, which convert a file
system namespace to a namespace tailored to a particular
domain. For example, the number of files per directory can
reach millions to billions [15]. Some applications therefore
reduce the number of names in directories by compressing
subhierarchies into single files [13]. Applications also en-
hance manipulation and retrieval by their own metadata
management, including associations of domain-specific at-
tributes and relationships to files, and implementation of
search engines that search and index this metadata. Search-
ing frequently extends over domain-specific file header infor-
mation and unstructured file content.

Based on an informal survey of a number of applications
managing large file collections, we identified three common
features: search, attributes, and relationships [3]. Combined
with a hierarchical namespace these features imply the fol-
lowing fundamental retrieval scenarios: matching on file at-
tributes and relations between files, traversing file paths in
both directions, setting the scope for further retrieval oper-
ations, and defining views on retrieved data. In section 4
we will evaluate our proposed naming language using these
scenarios.

Perhaps the most important drawback of these applica-
tions is that their metadata and search engines are not avail-
able to other applications or the file system itself for general
tasks such as backup, archiving, or workflow among multiple
applications. Another drawback is that these applications
duplicate implementation and maintenance efforts of com-
mon metadata management and search functionality instead
of relying on shared file system service that perhaps would
focus efforts more on optimizations than on re-invention.
A third drawback is that applications cannot always tell
file system changes that would require updating their in-
dices. Popular file systems support notification mechanisms
that either allows applications to watch a particular directo-
ries [23, 21], or the entire file system but limited to directory
granularity [33]. It is not clear how scalable these notifica-
tion mechanisms are.

Many applications use relational databases with application-
specific schemas to manage their metadata because of the
convenient fact that a well-established query language (SQL)
already exists, and the assumption that a relational database



management system is a “one size fits all” database manage-
ment system. As shown in [8, 35, 34] specialized DBMS
can outperform RDBMS by at least one order of magnitude
in text processing, scientific intelligence applications, and
other cases that are relevant for searching semi-structured
data. Also, the relational namespace usually serves as an
alternative to the hierarchical namespace of the file system,
as opposed to being integrated into one namespace: even
though a search into the relational database might only be
targeted to a small fragment of the file system namespace,
the relational query processor has to always start with all
database entries.

2.3 Integrating Scope & Search

We are aiming for a naming language that integrates attribute-

based search with scope as provided by a hierarchical name
space in form of directories. Such a naming language can
identify files by their attributes and relationships to other
files and directories. This includes matching directories based
on attributes of files and directories they contain. The use
of attributes on related files allows us to name virtual direc-
tories such as: “web pages that link to bar-chart images” or
“directories owned by sasha that contain pdf files”. Names
that include attributes or relationships to other files always
refer to a virtual directory because attributes or relations
are not guaranteed to be unique.

The naming language can limit the scope of a name ex-
pression in three ways: (1) a single directory without its
subdirectories, (2) a directory with its transitive closure of
subdirectories (a subtree), and (3) a subtree up to a speci-
fied depth. Limiting scope to a subtree matches file system
access and query locality: recent investigation in file system
indexing [19] shows that attribute-based searching within
subtrees can be implemented efficiently by constructing in-
dices that exploit the locality inherent to hierarchical struc-
tures. Hence, limiting scope to subtrees is not only useful
but can also be implemented efficiently. Limiting scope to
a subtree up to a specified depth is useful when considering
arbitrary relationships between files, where the namespace
structure is properly characterized as a random graph and
where the notion of a subtree is not well-defined. In this
case, the notion of neighborhood within a specified link dis-
tance is more meaningful.

2.4 XPath

XPath is a widely adopted path based language for use
with the hierarchical namespaces of XML documents [38].
Unlike other query languages, it functions more as a naming
language for nodes. It does not have other query language
features, such as data manipulations or relational-style joins.
XPath results are abstract lists of nodes that match the nam-
ing string i.e.,the XPath query. Unlike POSIX, these names
may contain attributes to match or filter, and results may
be from disparate parts of the hierarchy. XPath features
paths for descending through XML node hierarchies, which
are similar to file system hierarchies. Additionally, XPath
can treat all nodes as a flat namespace through the ”//”
operator.

XPath lacks a number of important features for managing
large file collections. It does not have fine-grained scope con-
trol: only entire subtrees under a particular node. It does
not have syntax to handle linkages between nodes, such as
XLink [37], which utilizes attributes to describe the link-

Figure 1: A graph of files, showing link distances
from an origin.

ages that overlay on top of the XML hierarchy. Moreover,
the XML data model only places attributes on the nodes
themselves and assumes a single hierarchy. Finally, XPath
cannot determine how the abstract results, i.e.,any nodes
that match an expression, appear in listings to the user.

3. Quasar

We have developed the naming language Quasar for iden-
tification of files and groups of files in very large file collec-
tions. Quasar expressions are designed to replace POSIX
paths in file system calls and used as names to manipulate
the metadata for single files (inodes) or collections of files
(directories).

We base the language syntax around XPath. XPath syn-
tax resembles file system paths and already integrates ex-
pressions for attribute-based search. The syntax provides a
convenient backward compatibility between Quasar names
and POSIX paths. POSIX paths are valid within Quasar,
provided that the language is configured to do so through a
small number of simple systems call-based settings. Quasar,
like XPath, supports direct search and navigation of hierar-
chical structures.

A major feature of Quasar is that it names files by at-
tributes or by relationships between files, e.g. expressions
that specify files based on attributes of parent or child files.
A second key feature of Quasar is the ability to express scope
by directory, subtree, and subtree up to a specified depth.
Finally, Quasar provides operators which help structure very
large virtual directories (see 4.6).

3.1 Data Model

Since we want to include arbitrary relationship between
files (“links”) we must characterize our namespace as ran-
dom directed graph, where the graph’s nodes represent files
and directories. Links fit emerging metadata structures such



as provenance, temporal locality, and established inter-file
references, such as hyperlinks, include directives, and bibli-
ographic citations. We do not assume any structure within
the content of files. Data models that combine richly struc-
tured metadata and unstructured data are referred to as
semi-structured.

We attach attributes, consisting of key-value pairs, to each
node of the graph. We assume no limits on the number of
attributes per node, including multiple values for any single
key, as some categories for document tagging (as represented
by keys) may deserve multiple labeling. The only required
attributes are the fields found within standard file system
metadata (similar to the inversion file system [26]) and a
unique identifier which is assigned by the system and im-
mutable.

As already mentioned, links are designed for arbitrary re-
lationships between files. There has been compelling work
regarding the value of maintaining provenance relationships
among files [24] within storage systems. Links are intended
for storing such relationships. However, links also repre-
sent the containment relationship between file and directory
nodes. Containment is therefore just a special application
of links. The data model allows for unlimited attributes on
links, and the only “required” attribute is a system-generated
unique link identifier akin to a file’s inode number.

3.2 Semantics

Our language maintains the use of the traditional ”/” as
the "namespace” separator for its pathnames. Each unit of
the namespace, the characters between each “/”, consists of
a series of query operations or presented terms. We add
units onto pathnames to change the current result set (one
or more files), through refinement, traversal operations, or
both. The “/” may represent a default language operator
if none is present. For virtual hierarchies (see section 4.6)
we may navigate using values as our pathname unit. Like-
wise, "Going up a level” or “..” means removing the right-
most unit from the query context. This feature might be
described as a lexicographic approach to the ”..” directory
entry, as many shell environments in modern OS employ
this approach today. However past experience in UNIX with
hard and symbolic links did not always “get dot-dot right”;
experience with Plan 9 recognized and employed a lexico-
graphic solution [28].

Under our system model, the only attribute key that the
system guarantees to be unique for each file is the file’s in-
ode number. Applications may recall the inode number as
part of custom directory listings or stat calls. Custom meta-
data transducers may provide other “unique” keys, but those
modules must provide the mechanism to enforce uniqueness,
as a file system utilizing Quasar makes no other enforcement
of unique values, with the exception of configurable POSIX
name enforcement. When such enforcement is not activated,
a directory may contain (link to) two or more files that have
the same value for the POSIX name field (the conventional
“name” found in a POSIX directory entry), but the pair of
files sharing the common value for “name” may differ by
other attributes (modification time, size, version number,
etc.) Of course, this means that a Quasar pathname can re-
sult in zero or more files, where zero files results in "file not
found”, one file is a single file, and multiple files is a virtual
directory.

Hence, the reality of pathnames mapping to multiple re-

sults implies that conflicts may arise when a user presents
a name for a file and retrieves a number of results. There
are a number of ways to resolve such conflicts. First, items
within virtual directories can be addressed by an entry num-
ber, as is possible when using XPath. When each item is
opened, applications may use fstat() or fgetxattr() us-
ing the open file’s handle to look up properties or add a new
attribute to the item. These operations work within vir-
tual directories, as well. Additionally for many pathnames,
it is possible to select the most recent matching file as an
alternate way to resolve conflicts.

A concern that may arise from a naming scheme that uti-
lizes attributes is that the names lack the same persistence
for sets of results as is the case with regular directory en-
tries. Such "results” in traditional file systems are only per-
sistent when the files are not being relocated or renamed.
Attribute-based searches could be more dynamic because
new files may consistently match existing names, while it is
much less likely to find files in directories changing so fre-
quently. How dynamic results appear depends on the Quasar
name, because some terms are more likely to match a wide
variety of results, especially if metadata on some particular
files changes frequently or from a constant stream of new
files. If a user would like to make their dynamic results ap-
pear persistent, the results can be copied to a static directory
or tagged with a particular identifier.

In the future, when we adequately address typing op-
tions for extended attributes, Quasar will fully support range
queries over extended attributes. Regular attributes are nu-
meric data-typed already. However, dates must be converted
to UNIX time in order to be compared against the standard
POSIX time stamp attributes.

3.3 Language Configuration

In order to allow the Quasar language interpreter to ac-
cept conventional POSIX path strings, we must be able to
configure the interpreter to do so. An added benefit of such
configuration is that we may present more brief language
syntax in pathnames. For a solution, we have devised some
configurable default settings:

e Global search term(s) to be applied to all traversals

e Default search operator, when none is specified follow-
ing a /. The operation could be a term-based refine-
ment or single traversal, matching all following terms

e A search field (attribute key) to apply to both traversal
or refinement operators.

e Constraint of returned items to single files, file not
found otherwise (see section 4.7).

The use of defaults allows Quasar to support POSIX com-
patible paths over multiple namespaces. Such configuration
is possible at a per-process granularity, as is shown by the
Plan 9 system [29, 30]. Of course, having multiple configu-
rations means that paths in one namespace will not produce
the same results in another. The same would happen if
users or administrators set up local environments with sep-
arate defaults. To deal with changing defaults, it should
be trivial to provide a utility that can translate shortened
paths, which provide results under a certain set of defaults,
to longer paths that utilize more Quasar complex syntax
and operators hidden by the default configurations. Then,



the fully expanded paths could be utilized within any envi-
ronment. Defaults are to be set and retrieved by a series of
systems calls, much like one may presently set or get the cur-
rent working directory for a given process. Hence, the utility
to expand a path need only to parse the shortened path and
expand based on retrieving the current default settings.

4. EXAMPLES

We present and evaluate the Quasar language in funda-
mental retrieval scenarios by by comparing its expressions
to SQL and XPath. The queries are examples of scenarios
that are typical for very large file collections We also include
an overview of miscellaneous Quasar operators, but do not
present examples or evaluation of those.

4.1 Compared Languages

We present the schemata we use for each of the compared
languages. In our comparison with XPath, we must ensure
that XML properly represents our file system metadata, in
particular non-hierarchical links. Non-hierarchical links be-
tween nodes within XML documents can be represented by
attributes using the XLink standard but XPath does not
support traversing such links. Therefore we represent both
files and links as XML elements. Files that contain other
files must have link elements that each contain a single file
node. We will use the element name to signify each and
use the element attributes to store the attributes for both
files and links (using F and L characters respectively in our
examples). Hence, the XML DTD would need to have the
following (recursive) definitions:

e The root node must be an "F” element.

e "F” element may contain any number of ”"L” element
(including none).

e "L element must have a single “F” child.

e “F” elements require traditional file system attributes
as XML attributes. They may have unlimited addi-
tional attributes as extended attributes. “L” elements
have no attribute requirements, but may also have any
number of XML attributes to represent attributes on
the links.

In contrasting Quasar with SQL, we need to represent the
file system metadata model as a set of tables:

files table (inodes):
inode # | mode | size | owner | group | ctime
mtime | atime

links table (links):
link id | source | destination

link attributes table (link_attr):
link id | key | value

file x-attributes table (file_attr):
inode # | key | value

Note that there are a variety of possible schemas for file
systems metadata representation. A more simple version
does not contain links and stores full paths in a single ta-
ble for all inodes. This enables more efficient lookups for

individual paths, provided that the database indexes that
particular column. Some file system indexing tools, such as
Spotlight [4] and Beagle [6] follow this approach in their use
of sqlite as a backing DB store. However, we must maintain
a separate table for links between files in order to attach
multiple attributes to links (see end of section 3.1. Another
problem with storing full paths for files is that it compli-
cates moving entire directory trees, since all full-path values
for files within the tree need to be renamed, in contrast to
simply changing a single row for the appropriate link.

4.2 Attribute-based Matching

By default and unless directed otherwise by a leading op-
erator a name always starts at the current working directory.
The @ character operator prefixes an attribute key/value
pair.

Here, we present the Quasar syntax for a simple exam-
ple query: "@Author=Ames”. The ”@” opens the query space
to all files. The “=” separates the key-value pair compo-
nents. To refine the query, we add a second term to make it
appear as "@Author=Ames;Year=2008" The ; separates the
two terms. An alternate way to write the query would be
”/Author=Ames/Year=2008" if we set “matching” as our de-
fault operator. The approach taken here follows the original
semantic file system approach to paths [12].

The translation of this query into XPath is trivial:
//F[@Author="Ames"]. Note that we use “F” to denote that
we wish to match an attribute attached to the file as opposed
to the link.

SQL queries can match basic file metadata through simple
?AND xxx=123” predicates added to the WHERE clause.
For matching extended attributes on files, we require an in-
ner join with the file_attr table.

SELECT ino FROM inodes WHERE inodes.ino =
file_attr.ino AND file_attr.key = ’Author’ AND
file_attr = ’Ames’

The !'filter: operator may be used for refinement and
also to begin naming strings. Specified terms carry over for
each subsequent traversal. For instance,
!filter:username=sasha will constrain all to only files per-
taining to that user ID, regardless of which directory might
be specified following the expression.

4.3 Link Traversal

Our link traversal operator resembles the operation for
path resolution in today’s file systems, which traverses hard
links from directory entries. We traverse links from actual
directory entries, links conveying inter-file relationships, or
virtual links. We expect that many files will still be placed
in directory hierarchies and may not have searchable ex-
tended attributes. The traversal operation is necessary for
browsing of directory contents. Given the locality exhibited
in hierarchies, it should be more convenient to browse for
nearby relevant files, rather than rely on an attribute-based
search [5]. Virtual links are the entries within virtual di-
rectories (collections of query results) and following those
either arrive at a file, or another virtual subdirectory con-
taining subsequent virtual links.

In the following examples: we denote“linktype” of “con-
tainment” for the links that place files within directories and
“linkname” is the traditional POSIX directory entry.



XPath:

/F/L[@linktype=’containment’ AND @linkname=’usr’]
/F/L[@linktype=’containment’ AND @linkname=’bin’]
/F/L[@ linktype=’containment’]/F[NOT @filetype=executable]

SQL:

SELECT i.ino FROM inodes i, 1links 11, links 12, links 13,
link_attr lal_1, link_attr lal_2, link_attr la2_1,
link_attr la2_2, link_attr la3_1, file_attr fa3_1

WHERE

11.source = O AND 1l1.target = 12.source AND

12.target = 13.source AND 13.target = i.ino AND

11.id = lal_1.id AND lal_1.key = ’linktype’ AND

lal_1.value = ’containment’ AND 11.id = lal_2.id AND
lal_2.key = ’linkname’ AND lal_2.value = ’usr’ AND

12.id = 1a2_1.id AND la2_1.key = ’linktype’ AND

lal_1.value = ’containment’ AND 12.id = la2_2.id AND
la2_2.key = ’linkname’ AND lal_2.value = ’bin’ AND

13.id = la3_1.id AND la3_1.key = ’linktype’ AND

la3_1.value = ’containment’ AND (NOT (fa3_1.ino = 13.target
AND fa3_1.key = ’filetype’ AND fa3_1.value = ’executable’))

Example 1: Queries to traverse multiple links

$"linktype=containment; “linkname=usr
$"linktype=containment; “linkname=bin
$"linktype=containment;-filetype=executable

Such a query appears way too verbose. Fortunately, using
the language configuration features of Quasar, we can set:
“linktype=containment for a global match on all links; a
default field to match of ~linkname; and default operation
of traversal. (" indicates attribute on a link) With these
settings, we may instead present
/usr/bin/-filetype=executable as our query string. While
the string resembles a POSIX path, it still uses the minus
and equal signs to provide enhanced search functionality (as
found in some search engine syntax, - means exclude from
results).

As shown in Example 1, for XPath, we initially match
the root inode without any qualification. Subsequently, we
match each L and file node with the pertinent attributes
to match for each step along the way. In SQL, because we
traverse three links, we require two self-joins over the links
relation. Additionally, we join the file_attr and link_attr re-
lations to account for the attributes in the queries. To com-
pose queries programmatically, we label the reference vari-
ables respectively for each traversal and attribute requested
in the query.

4.4 Matching Related Files

These operators are related to traversal, but function dif-
ferently than "walking a path”. The goal of their use is
to narrow down specific results based on attributes on files
explicitly linked to those in the current result set. It is im-
portant to retain these operators, as otherwise, we would
only have intrinsic attributes and content available as the
basis for searches. Under our data model, we have two
categories: parent/ancestor matching or child/descendent
matching. Consider the following request: find me a Pow-
erPoint file that includes a .png bar graph and a jpg photo
authored by "Ames”. Such a query requires we locate the
children matching the criteria for both those types of images.
Figure 4.4 shows appropriate syntax in each language.

Similar queries, in which we want to match attributes on
two parents, cannot be performed in XPath within a sin-

Quasar:

@filetype=PowerPoint!matchchild:"linkttype=include;+filetype=png;
+imagetype=bar_graph!matchchild:“linktype=include;+filetype=jpg;
+Author=Ames

XPath:

//F[@filetype="PowerPoint"] [L[@linktype="include"]
/F[@imagetype="bar_graph" AND @filetype="png"]]
[L[@linktype="include"]/F[@filetype="jpg" AND @Author="Ames"]]

SQL:

SELECT i.ino FROM inodes i, links 11, links 12, file_attr faO_1,
file_attr fal_1, file_attr fal_2, file_attr fa2_1,
file_attr fa2_2, link_attr lal, link_attr la2

WHERE

lal.id = 11.id AND la2.id = 12.id AND

lal.key = ’linktype’ AND la2.key = ’linktype’ AND
lal.value = ’include’ AND la2.value = ’include’ AND
11.source = i.ino AND 12.source = i.ino AND
11.target = fal_1.id AND 1l1.target = fal_2.id AND
fa0_1.id = i.ino AND faO_1.key = ’filetype’ AND
fa0_1.value = ’PowerPoint’ AND

fal_1.key = ’filetype’ AND fal_1.value = ’png’ AND
fal_2.key = ’imagetype’ AND fal_2.value = ’bar_graph’ AND
12.target = fa2_1.id AND 12.target = fa2_2.id AND
fa2_1.key = ’filetype’ AND fa2_1.value = ’jpg’ AND
fa2_2.key = ’Author’ AND fa2_2.value = ’Ames’

Example 2: Syntax for finding files using related files.
With SQL we join two child to the primary inode table.

gle query (provided we are using some construct within the
scope of XML that can provide additional linkages between
nodes). Under Quasar, matching the first parent is accom-
plished through a traversal from that parent. For the second,
we use the !matchparent: operator, followed by the terms
we wish to match. SQL queries of this class take a very sim-
ilar form as they do for matching children, except that the
column references to join the links table with the inodes ta-
ble are switched from source to target, and the joins oflinks
with file_attr are switched from target to source. Hence:

11.source = i.ino AND 12.source = i.ino AND
11.target fal_1 AND 11.target = fal_2 AND

becomes

11.target = i.ino AND 12.target = i.ino AND
11.source = fal_1 AND 11.source = fal_2 AND

4.5 Scope

The first type of scope controlled naming that we present
is based on use of a link distance parameter. Through
this operator we hope to down large search spaces where
attribute-based search alone may not be so reliable. In
Quasar, a link distance-based search uses the following form
(N is a positive integer specifying the link distance param-
eter and xx-criteria are key=value pairs of attributes to
match):

@<origin-criteria>$[N]<link-criteria>;
<target-criteria>

The Quasar form must be translated into other query lan-
guages, as we show in example X, employing UNION oper-
ators to combine results present at various link distances
within the scope of the query. The following shows the




XPath:

//Florigin-criterial /L[link-criterial] /F[target-criteria]
| //Florigin-criterial /L[link-criterial /F/L[link-criteria]l
/F[target-criterial | ...

SQL:

SELECT il.ino FROM inodes il, file_attr origini_[1..n],
links 11_1, links_attr lal_[1..n], file_attr targeti_[1..n]
WHERE

linksl_1.target = il.ino AND

links1_1.id = links_attri_[1..n].id AND
links_attri_[1..n].[key|value] = <link-criteria> AND
originl_[1..n].ino = linksl_1.source AND
origini_[1..n].[keyl|value] = <origin-criteria> AND
targetl1_[1..n].id = linksl_1.target AND
target1_[1..n].[key|value] = <target-criteria>

UNION

SELECT i2.ino from inodes i2, file_attr origin2_[1..n],
links 12_1, links 12_2, links_attr la2_[1..n],
file_attr target2_[1..n]

WHERE

links2_2.target = il.ino AND

links2_2.source = links2_1.target

links2_1.id = links_attri_[1..n].id AND

links2_2.id = links_attri_[1..n].id AND
links_attr2_[1..n].[keyl|value] = <link-criteria> AND
origin2_[1..n].ino = links2_1.source AND
origin2_[1..n].[keylvalue] = <origin-criteria> AND
target2_[1..n].id = links2_2.target AND
target2_[1..n].[key|value] = <target-criteria>

UNION

Example 3: Syntax for queries with link distance-based
scoping

equivalent in XPath, where no N-levels-deep operator ex-
ists. It is possible to traverse N levels deep to nodes using
multiple 7/*” calls, and combine each with the | operator
(union). For SQL, we abbreviate some of the expressions
where multiple criteria may exist. Moreover, the origin may
be a known file, where an inode number could be set in the
query. SQL has the similar problem as XPath, requiring
UNION operators to combine multiple distances.

The second type of scope considered, subtrees, can uti-
lize any type of link within the file collection in addition
to directories, such as a ”"provenance” subtree, in which we
may consider all files that have a traceable origin. Nonethe-
less, it is important to note that there are limitations to
solely relying on finding files within directory subtrees, as
what were once manageable subtrees eventually contain too
many files to be useful. As we utilize storage, files are con-
tinuously added to the hierarchy over time, and the subtrees
also grow when new subdirectories are added, as well.

To handle naming within entire subtrees within a names-
pace, Quasar provides a single operator to select the current
subtree and filter based on a global !filter: or on any sub-
sequent attributes or keywords to match. The syntax style
is almost the same as for link distance scoping queries. The
same operator as used for traversals takes “-1” as a param-
eter to specify an entire subtree, i.e.,$[-1], or we may use
the !subtree: operator in its place, which should appear
more clearly.

For subtrees, XPath queries that utilize the "descendant::”
axis or “//” in XPath 2.0 can successfully search indefinitely
through a subtree. However, this operation is not parame-
terized as is with Quasar, so it is not possible to limit depth.
We should assume under XML documents that such searches

are safe under XPath.

On the other hand, SQL cannot handle this form of search
in a single query. In order to perform such a search, a proce-
dure is required to issue SQL queries, which must repeatedly
check the stop condition if it has reached the bottom of the
tree, retrieve any matching results for the current level, and
merge results from all levels.

4.6 Results Presentation

The presentation operators determine whether results should
be listed as tuples within directory entries, in virtual hier-
archical views, or a combination of both. For virtual views,
our functionality performs group by or roll up on requested
fields (each a dimension), and makes the space browseable
using navigation, as opposed to issuing repeated declarative
queries.

Directory listings under Quasar may also present attributes
as tuples: simple lists containing multiple values. For each
file, this functionality presents more meaningful naming in-
formation than a single file name. For instance, consider the
images cataloged with the cryptic file names generated by
the camera. When images are amassed from cameras that
use the same naming scheme, there are bound to be colli-
sions. Using other metadata items should be sufficient to
differentiate between the different files. Consider listing by
?Author” (or photographer), location (tagged manually or
by spacial coordinate match, day/time, and sequence num-
ber (either in the query or for the attributes). Of course,
using Quasar we can roll up these fields into virtual directo-
ries for browsing. iPhoto has some of this capability already,
but it presents a fixed interface and the images it maintains
are limited in their portability.

We revisit the example above for both presentation modes.
If we want to roll up each value as a virtual hierarchy, we
use the syntax: &Author&Location&Date&Sequence
Alternatively, if we wish to show all values within each tuple
for the listing name, we use the syntax:
&Author;Location;Date;Sequence
The & character represents the ”"ListBy” operator. In con-
junction, ; denotes that additional fields should be used for
each tuple. Additionally, we could also have shorter tuples
with two levels of roll up, instead of four, using:
&Author;Location&Date;Sequence

As XPath is a selection language, it does not handle pre-
sentation of results, i.e.,. values from which fields to return.
While XQuery does, its syntax is procedural, which is too
heavy-handed to be adopted in a naming language. Instead,
we prefer to directly specify only the field names to minimize
required syntax.

SQL queries that select from only single table make the
specification of values presentation for results simple, in
that we expect each column to reflect the requested val-
ues. However, queries that join multiple tables, as are the
ones we would require for file system metadata management
are likely to cross other tables. In our case, the table name
and column names are generic. The key name field specifies
which property we would like to see.

One issue that we must handle is missing attribute val-
ues on files. Tagging is likely to be inconsistent, especially
when end-users are responsible, but also system agents that
tag files with attribute metadata might be missing their con-
text field due to extenuating circumstances. When encoding
.mp3 files for example, if an external database for tagging



cannot be contacted, the .mp3 files may be likely to be miss-
ing many of the fields that the software may read from that
service. Users may enter the artist and album name, as that
information pertains to several tracks, but do not wish to
take the time to enter additional information.

Our experience with SQL showed that we cannot use our
general file system metadata schema to properly outer join
to account for missing attributes. Thus, we need to create a
SQL VIEW on demand for new attributes when requested. A
query writer interface would need to perform that function.
First, it must check if the view exists. If not, create it. Then,
issue a query utilizing the view(s). The query must use a
number of outer joins (one less than the number of requested
fields) so null values may be represented in the result set.
To compose the query, the query contains the SQL UNION
operation of N subqueries. Each subquery has N — 1 LEFT
OUTER JOIN operations to attach the subsequent field. The
query writer must keep the columns consistent between the
sub-queries, but rotate the views from each sub-query as
to ensure complete coverage of all possible missing values.
We learned through mistakes in code to generate the proper
SQL statements programmatically that this procedure must
be followed or some missing rows may not appear or we may
end up with duplicates.

Presenting attributes on links adds some additional com-
plexity to names presentation. The rule is that any final
links traversed (at the end of a series of traversals) to tar-
get files that match the criteria may present their attribute
values within the returned directory listings.

Under SQL, as with the file attributes, views must be cre-
ated for each requested field that resides on links. These
views must join the links table with the links attributes ta-
ble, such that a user may query by inode number and be
able to retrieve the right value. So SQL syntax would look
like:

CREATE VIEW <name> AS

SELECT link_attr.value, links.target
WHERE link_attr.key = <field> AND
link_attr.link_id = links.id

The problem with these views is that the joins will be
performed constantly if there is a frequently used field for
viewing. A key example is in POSIX emulation, where the
“name” field resides on the link to each file from the en-
closing directory, as opposed to residing on the file itself.
Thus, we should expect a view for that field to be referred
to frequently.

4.7 Miscellaneous Operators

To add to the operators, we adopt a number of existing
database operators, including "TOP N”, "ORDER BY”, and
introduce a constraint within expressions to the count of the
items returned from the current search (default of 1). More
complex queries add flexibility to finding stuff. It is mean-
ingless to perform a TOP N unless the results are properly
ordered (by an attribute).

While it may be argued that sorting and retrieving the
“TOP N” are better left to the front end, we choose to place
within the query processing, because the results of these op-
erations may factor into additional query operations, (specif-
ically traversal, but others may be possible) For example, we
might want to find images included by ten most recent pre-
sentations. The equivalent in SQL would be the so-called

"nested” query, where the results become a set for the next
queries. Secondly, we expect that ordering of results will be
a commonly used feature and so, it should consistently be
part of the language.

Finally, (count = N) constraints allows the system to
mimic POSIX compliance for directories, since we require
only a single match to traverse. As the language parser pro-
cesses a name string from left to right, if the parser encoun-
ters the count constraint operator, the system must check
the current count of file results based on the name string pro-
cessed up to the point of the operator. If the result count
is greater than the constraint, the system should return an
error. The constraint default value is a single result, as uti-
lized for the name attribute within directory entries in order
to comply with POSIX.

S. DISCUSSION

The examples above show that SQL requires rather ex-
tensive syntax for query concepts that are preferable to keep
simple. XPath is more comparable to our needs, yet it lacks
some of the needed features and those it makes up cost it in
some additional verbosity, i.e.,. handling attributes on links
vs files.

As queries increase in their complexity, the number of
joins will increase as well. The impact that the increase
has on query performance depends much on the back-end
implementation. Search engines and relational databases
take different approaches to optimization for joins. Because
search engines are optimized around document retrieval and
build their indices accordingly, they may better optimize
joins (intersections) of multiple postings lists. Relational
databases—given a more general approach to treating struc-
tured data—do not have the same luxury, thus all the joins
we present are computed at the same rate as any other,
based on general optimizing principles. For instance, a query
for all files with a particular owner and within 3 links of the
“Presentations” directory is likely to be a large intersect, and
proves to be inefficient for the relational database to com-
pute. The database, in this case, will need to go through the
processing of computing the set of all rows that match the
“within 3 links” part of the query, through the long recursive
query we present in section 4.5.

6. RELATED WORK

There has been a good amount of research focused on en-
hancing file systems through attribute-based paths or view
definitions. The Semantic File System [12] and the Logic
File System [27] utilized path-based interfaces for views of
files, the latter incorporating a series of logical operators
into path expressions. Other solutions had a separate sys-
tems interface to handle searching and views of files, namely
the Property List DIRectory system [22], Nebula [7], and
attrF'S [39]. Some additional systems have attempted to re-
tain hierarchies, either based on attributes attributes [32,
25] or mixing directories with content [14]. While some of
these systems try to unite attribute-based naming with hi-
erarchies, we contend that they were not successful because
the interface that they chose was not sufficient in combining
the use of the two approaches. Also, these approaches had
not considered the use of different classes of scope.

Additional approaches focus on interfaces outside of the
file system. Presto [10] allowed for the interaction with doc-



uments as sets based in attributes in a fluid, GUI environ-
ment. Spotlight [4] provides a separate interface for file sys-
tem search that includes keyword search and smart folder
(virtual directory) creation that involves multiple orthogo-
nal search categories. Spotlight’s search indices are not part
of the file system, but are integrated through the operating
system. Phlat is an experimental interface for personal in-
formation management that attempted to provide a smooth
continuum between search and browsing [9]. These systems,
in addition to the file systems above, utilize search to present
conventional file names. Instead, Quasar shows files in lists
based on choosing appropriate attributes. Furthermore, the
above-mentioned search tools and file systems only consider
based on attributes placed on files directly, not utilizing re-
lationships.

The Linking File System [3] showed how relational links
between files might be stored and maintained, given stor-
age class memories for which to store metadata. For it, we
proposed a simple search interface to search for files based
on attributes on links, but in conjunction with traditional
paths. This work is a precursor to our present language work
with Quasar.

The OLAP-Object Query Language [31] combines paths
with attribute based filtering or search terms. Unlike file sys-
tem paths, these object-oriented paths follow relationships
of classes of objects that refer to other classes.

Additionally, we consider how the semantic web standard
might also be applied to describe file system metadata via
RDF, ontology definition languages, and use of SPARQL to
query. Such an approach has disadvantages as well. While
it may tightly wrap up data into classes like object-oriented
data models, and handle relationships via tuples that are
akin to links, it appears to be generally isomorphic to the
relational model [1]. This means traversal-based searches
using SPARQL succumb to similar problems that we have
encountered in observing SQL queries.

7. CONCLUSION

For very large file collections, the use of hierarchical or
attribute-based namespaces alone are not adequate. We
have discussed the use of a language that combines the ad-
vantages of both approaches. We introduce the use of scope
and view definition as part of the naming language. Our
contrast with other languages shows that use of specialized
language for file collections is promising.
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