
Simple, Exact Placement of Data in Containers
Thomas Schwarz, S.J.

Universidad Católica del Uruguay
Montevideo, Uruguay
tschwarz@calprov.org

Ignacio Corderı́ Darrell D.E. Long
University of California

Santa Cruz, CA
{icorderi, darrell}@cs.ucsc.edu

Jehan-François Pâris
University of Houston

Houston, TX
paris@cs.uh.edu

Abstract—Storage and other systems frequently need to dis-
tribute objects equally over several sites or devices. While this
is simple for a static system, organizing the distribution when
additional containers (for example, hard drives, or web content
delivery sites) become available is difficult. We present here a very
simple scheme based on the factorial number system that allows
equal, dynamic distribution of mirrored or replicated objects.

I. INTRODUCTION

Placing resources on servers is a perennial problem in
Computer Science. It is often modeled as the placing of balls
into bins. One example that arises is the allocation of replicated
resources to web servers. Here, the problem is not only the
efficient use of server storage space, but also quality of service
guarantees and a fit to the geographical distribution of demand.
Another important example is storage virtualization, where we
want to give the impression of an on-line, practically unlimited
storage space. A storage center will have many different disks,
often of different capacity and possibly with rather different
access times.

We propose a general solution to the specific problem of
how to evenly distribute k replicas of N objects among n
bins such that (a) each bin receives the same number of
objects, (b) two replicas never share the same bin, and (c)
equal distribution of reconstruction load, by which we mean
that if a bin fails and is replaced by a replacement bin, we can
regenerate the replicas of the objects on the failed bins from
the other bins in such a way that each bin receives the same
amount of load. Since we do not know a priori the objects
we will store and we allow insertion and deletion of objects,
these properties refer to expected values.

Our solution is based on the basic properties of the factorial
number system. Moving from an ordinary (binary, decimal, or
hexadecimal) number system to the factorial number system
is as simple and as fast as changing among ordinary number
systems. As we will see, the factorial number systems presents
a very simple way to randomly distribute objects among a
given number of bins. We later expand our solution – at the
cost of additional calculations – to containers of arbitrary sizes.

A first application of our technique is the distribution of
resources to cloud data centers. We rent the same amount of
storage space in different data centers and may want to be able
to acquire more storage space not only by extending the space

Supported in part by Grant CCF-1219163, by the Department of Energy
under Award Number DE-FC02-10ER26017/DE-SC0005417 and by the in-
dustrial members of the Storage Systems Research Center.

we rent in the centers that we already use, but also by renting
space on new centers. A second application is the storage of
metadata in the distributed RAM of a multicomputer. Here we
can assume that all machines have the amount of memory. A
third example is extensible hashing, where we want the buckets
to have the same size. In the first example, replication is critical
for data durability; in all three, it is essential for preventing
temporal bottlenecks due to the popularity of specific items.

The remainder is organized as follows: Section II reviews
previous work on resource placement; Section III introduces
the factorial number; Section IV introduces our technique and
Section V expands it to the case of containers with arbitrary
sizes; finally Section VI has our conclusions.

II. RELATED WORK

Litwin et al. extended linear hashing to resource placement
in a variable number of servers [10]. The goal of LH* and
its variants is constant time access to objects in a distributed
system, with little and possibly inaccurate knowledge of clients
over the state of the dynamic system. LH* schemes place
objects into buckets but are not concerned with achieving eq-
uitable distribution nor do they take the storage capacity of the
system nodes into account. LH* splits a predetermined bucket
whenever it detects a bucket overflow, but not necessarily the
overflowing bucket. If the total number of nodes used is not
a power of two, then there are two classes of buckets, with
the nodes in one class having twice the expected number of
buckets as the other.

Fagin [5] proposed extensible hashing with similar goals.
The difference is that in extensible hashing, any overflowing
hash bucket can split, whereas the distributed version of linear
hashing splits buckets in a fixed order. Both can be helpful
in devising placement schemes. Both implement Scalable
Distributed Data Structures (SDDS) [9], which allow files to
expand to new servers gracefully without central information
that limit access primitives such as search and insertion to only
update a single client.

Plaxton et al. [12] addressed the problem of dynamic
placement of replicated objects in the context of the web.
They propose a hashed-suffix routing structure. Karger et al.
[7] propose consistent hashing to improve on Plaxton’s result.
While their scheme yields a faithful distribution, it does not
allow for replica placement. Chen et al. [4] built on Plaxton’s
work to choose the number and placement of replicas while
satisfying QoS requirements and server capacity constraints.



In the context of storage virtualization, Brinkmann et al.
[2], [3] presented several schemes that present an excellent
compromise among various goals (see below), but that are not
absolutely faithful, i.e. are not expected to distribute objects
equally among containers. Schindelhauer similarly improves
on consistent hashing allowing storage containers of different
capacities [13]. Based on their target application, Brinkmann
and colleagues propose this list for an ideal placement scheme:

1) Faithfulness: The expected number of recourses placed
in a bin is between b(1−ε)di ·mc and d(1+ε)di ·me for
all containers i, where ε can be made arbitrarily small.

2) Time Efficiency: The scheme can calculate the position
of a resource efficiently.

3) Compactness: The amount of information needed to
calculate is small. In particular, it should only depend on
the number of containers and on the number of resources
in a logarithmic way.

4) Adaptivity: After a change in the number of containers,
the number of resources, or the storage capacities, the
distribution of the resources over the containers can
quickly adapt to recover faithfulness. A measure of
success in achieving this goal is competitiveness. A
placement strategy is called c-competitive if at most c
times the number of resources are moved than in an
optimal adaptive and perfectly faithful strategy.

5) Obliviousness: The placement of resources into con-
tainers only depends on the resource identifiers and the
number and sizes of containers, not on the history of the
system.

Honicky and Miller [6] proposed RUSH to place objects
in an object-based storage system. Their main insight is the
nature of updates in a storage system, since new storage
containers are added in clusters. In practice, even a highly
dynamic system will not undergo a great number of additions.
An improved version, CRUSH, removes issues that make
RUSH an insufficient scheme in practice [14].

In comparison to previous work, we propose a simpler
(and mathematically more elegant scheme) that is absolutely
faithful, time efficient, very compact, and oblivious, but not
always optimally adaptive unless we add or remove one
container from the ensemble.

III. FACTORIAL REPRESENTATION

The factorial number system [8] is a system with the mixed
radices 1!, 2!, 3!, 4!, . . .. We denote the expression of a number
x in this system with xf . If a number x is given in this system
as xf = (x1, x2, x3, . . . , xr−1, xr) then the digit xi with index
i, 1 ≤ i ≤ r, lies between 0 and i: 0 ≤ x ≤ i.

x =

r∑
ν=1

xν · ν!

As induction shows,
r∑

ν=1

ν · ν! = (r + 1)!− 1

def facRep(n, k=2):
if n == 0:

return []
else:

return [n % k] + facRep(n // k, k + 1)

Fig. 1. Algorithm to return the factorial representation of a non-negative
number as a list in little-endian (least significant digit first) order.

This relationship implies the uniqueness of the representation,
as we now prove via indirect proof. Assume that we have to
representations L =

∑r
ν=1 aνν! and R =

∑r
ν=1 bνν! of the

same number L = R and let µ be the highest index for which
they differ. This means that aν = bν for all ν > µ and that
aµ < bµ (or aµ > bµ, in which case we switch the roles of
L and R.) Then R − L = (bµ − aµ)µ! +

∑µ−1
ν=1(bν − aν)ν!.

According to the inequality, the second addend
∑µ−1
ν=1(bν −

aν)ν! has an absolute value strictly smaller than µ!. However,
bµ−aµ is not zero, and as an integer at least one. Therefore, the
first addend (bµ−aµ)µ! has absolute value at least µ!. If both
representations represent the same number, then of course the
sum should be zero, which is impossible. This contradiction
proves the uniqueness of representation.

The calculation of the factorial representation can be done
most easily by successive divisions with remainder by 2, 3,
. . .. As an example, we take 1000. The least significant digit
of the factorial representation results from dividing 1000 by
2 with remainder, yielding 1000 = 2 · 500 + 0. Proceeding,
we divide by 3, giving us 500 = 3 · 166 + 2. The next step is
division by 4, giving us 166 = 4 · 41 + 2, then division by 5,
giving us 40 = 5 · 8 + 1, by 6, giving us 8 = 6 · 1 + 2 and
finally by 7, giving us 1 = 7 · 0 + 1. We assemble the digits
in ascending order in an array [0, 2, 2, 1, 2, 1]. We verify that

0 · 1! + 2 · 2! + 2 · 3! + 1 · 4! + 2 · 5! + 1 · 6! = 1000.

As Figure 1 shows, computing the factorial representation
of any positive integer uses the same iterative approaches the
algorithms for computing decimal and hexadecimal represen-
tations of numbers. There are two differences: First, our divisor
changes at each iteration step; second, our result starts with
the least significant digit contrary to the custom for most other
representations of numbers.

IV. ALGORITHM

We have to distribute k replicas among N containers. We
treat first the case of a single replica (k = 1), since it is easier
to understand. We then generalize to an arbitrary number of
replicas.

A. Single Replica

We describe the placement using a system that starts with
one container, bin 0, and adds successively other containers of
equal size, bin 1, bin 2, . . . The number of containers is the
state of the system. The location of a resource is a function that
only depends on the state and the Resource Identifier (RID)



def assign (RID, nrBin):
retval = 0
for i, digit in enumerate(facRep(RID)):

if digit == 0:
retval = i

if i >= nrBin:
break

return retval

Fig. 2. Algorithm to calculate placement of a resource with RID and nrBin
containers.

of the resource to be stored. We assume that RIDs behave like
random numbers. For example, they could be SHA-1 or even
MD5 hashes of the unique name of the resources.

In State 1, we have only one container and all resources
are located in bin 0. If we add a second container, we enter
State 2 and will have to move (about) half of the resources
to bin 1 in order to rebalance the load. To decide which
resources should be moved, we consult the first digit x1 of
the factorial representation of all RIDs. As we obtained this
digit by computing the RID modulo 2, its sole possible values
are zero and one. If the value is 0, then we move the resource
to bin 1, otherwise we leave it in bin 0.

Adding a third container bring us to State 3. We need to
move (about) one third each of the objects in bin 0 and bin
1 to bin 2. We select them based on the second digit x2 of
the factorial representation of their RID, which can only be
equal to 0, 1, or 2. As long as RIDs behave as a random
number (which would be the case if they were hashes of the
resource names), each of these digits will be selected with
equal probability and independently of the previous digit. If
x2 equals 0, then we move the resource to bin 2.

Should a fourth container become available, we would enter
State 4. Since the third digit x3 of the factorial representation
of each RID can only be equal to 0, 1, 2, or 3, moving to new
bin all objects whose RID is equal to 0, would move about
one fourth of the contents of bins 1 to 3 into the bin 4.

In general, we assign an object with RID x to bin i, if
the index of the last occurrence of 0 in the list representation
〈x0, x1, x2, x3, . . .〉 is equal to i.

By induction, we conclude that the expected values of the
number of resources in each container are equal. We also
note that each addition of a container leads to the minimum
number of movements necessary in order to balance the load,
as we only move to the new container, but not among the
old containers. When we lower the number of containers, we
undo the previous extensions, as the assignment of resources
to containers depends only on state and RID. We give the
algorithm as pseudo-code in Figure 2.

B. Several Replicas

We now treat the case of k replicas. Each replica has a
replica number r (rep in Figure 3) from 0 to k−1. We never
want to store replicas of the same object in the same container

def assignK (RID, rep, nrBin, nrRep):
retVal = rep
for i, digit in enumerate(facRep(RID)):

if digit == rep and i >= nrRep:
retVal = i

if i >= nrBin:
break

return retVal

Fig. 3. Algorithm to calculate placement of replicas. The parameters are
RID, the identity of the resource, rep, the identity of the replica, nrBin,
the number of containers, and nrRep, the total number of replica.

and need therefore at least k containers to start. If we are in
this situation, we assign the replica with replica number r to
bin r. Clearly, in this initial state, all containers have the same
number of things to store, namely one replica per object.

If an additional container becomes available, we need to
either let the replicas of a certain object stay in their current
location or move one of the replicas into the new bin. In
order to balance the load of the containers, we need to move
1/(k + 1) of the contents of each old container to the new
container. Thus, for a given object, we should not move any
of the replicas with probability 1/(k+1) and we should move
exactly one replica, but not more, with probability k/(k+1).
In the later case, we need to pick the replica to be moved
with equal probability. We use the digit xk of the factorial
representation of the RID of the object to make the decision.
This digit corresponds to the radix (k)! and has a value in
{0, . . . , k}. If this digit has a value xk = k, then we do not
move any replica. Otherwise, we move the replica with replica
number xk.

Now assume an additional container, bin k + 1 becomes
available. Again, we need to move an equal proportion, in this
case 1/(k+2), of the contents of the old containers to the new
container. We use the digit xk+1 of the factorial representation
of the RID of a resource. If xk+1 ≥ k, then we leave the
replicas of the resource where they currently are. Otherwise,
we move the replica with replica number xk+1 to the new
container, bin k + 1.

In general, when we introduce bin l, we consult the digit xl
in the factorial representation of the RID of the resource. If the
digit is smaller than k, we move the replica with replica num-
ber xl to the new bin, otherwise, we do not move any replicas.
As at most one replica is moved to a certain container when
that container becomes available, and as initially, replicas of
the same object are in different containers, our algorithm never
places two replicas of the same object into the same bin.

As an example, consider an object with RID 12345678910.
Its factorial representation is [0, 2, 3, 2, 1, 3, 3, 3, 1, 3, 9, 12, 1].
(These digits form the upper row of numbers in Figure 4).
We assume that we place three replicas, starting out with 3
containers. We place the replicas 0, 1, and 2 in bins 0, 1
and 2, respectively (Figure 4, upper row). When we add one
container, bin 3, we use the fourth-least significant digit of



Fig. 4. Replica distribution for RID 12345678910 for three to eleven
containers.

the factorial representation, namely 2. Since this is a replica
number, we place replica 2 in the new bin. (Figure 4, second
row). The next digit, 1 corresponds to introducing the fifth
container. It leads us to place replica 1 into bin 4. The three
digits 3 that follow mean that for this object, no replica
changes container for the next three extensions. However,
when we introduce bin 8, we have 1 as the corresponding digit,
and we switch that replica to bin 8. The last row of Figure 4
shows the distribution of replicas with eleven containers.

The average number of objects in each container is equal,
as we now argue. If we have k replicas and k containers,
then each container contains the same number of objects. For
an inductive step, we assume that our algorithm distributes
the objects evenly over N containers and that we add a new
container to the ensemble. If the new container is bin N + 1,
we see that it contains the first, second, third, etc. replica in
equal proportions. In the general case, the new container will
contain objects with RID identifier whose N th factorial digit is
in the set {0, 1, . . . k− 1}. This places a replica of k/(N +1)
of all objects into the new container. As there are k replica
per container, 1/(N + 1) of the contents of the system is
placed in the new container. Furthermore, the proportion of
first, second, third, etc. replica of objects is still the same.
One of the first k containers (bins 0, 1, . . ., k − 1) looses
an object to the new container with probability 1/(N + 1),
moving 1/N · 1/(N + 1) of all contents, and reducing its
share of total contents from 1/N to 1/(N + 1). Another
previous container (bins k, . . ., N − 1) looses a first replica
(with replica number 0) to the new container with probability
1/(N +1), and with the same probability a second, third, etc.
replica. Consequentially, it looses 1/(N + 1) of its contents,
amounting to 1/N ·1/(N+1) of total contents. We have shown
by induction that each container contains (in expectation) the
same number of objects. Additionally, we have shown that the
contents of each added container (bins k, k + 1, . . .) contains
replicas in the same proportion. For a specific replica with
replica number s, it will be located with probability s/N in
bin s and with probability 1/N in one of the bins k, k + 1,
. . ., N − 1 (Figure 5).

The amount of data movement during an expansion from
N − 1 to N containers is expected to be 1/N of the contents

Fig. 5. Distribution of the s-th replica among N bins.

of each old container to the new container. This is optimal.
Assume that the system requests contents by randomly

selecting a replica number and then ask for the replica at
the container storing it and assume now that a container is
inaccessible. If our strategy selects replica r for a certain object
and that copy is located on the failed bin, and if we then
select another replica number s, then the request will go with
probability k/N to bin s and with probability 1/N to one
of bin k, bin k + 1, . . ., bin N − 1. Thus, if we select the
second replica number at random, the request will be served
by a certain bin with equal probability 1/(N − 1). With other
words, our system divides load equally in the presence of an
inaccessible server.

If we want to lower the total number of containers, we
remove the last one, undoing the last expansion. This gives
optimal reallocation traffic, where each remaining bin receives
traffic worth 1/(N − 1) of the total size of the system.

The solution is more involved if we are forced to remove
an arbitrary container. Assume that container bin i has to be
removed. We rename the last added container, bin N − 1 to
bin i. A portion of 1/(N−1) of the contents of the former bin
N − 1 came from bin i and stay there. The former bin N − 1
sends (N − 2)/N − 1) of its contents to the other containers
in equal shares. As the new bin i, it needs to recoup the other
(N − 2)/(N − 1) of the contents of the old bin i, namely
those that were not sent to the then new bin N − 1 in the
last extension. Of the total contents, we need to ship N−2

N−1 ·
1
N

from the old bin N − 1 to other containers and we need to
ship 1

N from the other containers to the old bin N − 1, which
has become the new bin i. This means we move 2N−3

N(N−1) of
the contents. While not optimal by a factor of 2− 3

N , at least
the work is equally distributed over the remaining containers
due to our previous observation.

In order to use our scheme, our resource identifiers need
to yield all possible values for the digits in the factorial
representation we use. Since the digits correspond to the
containers, this gives a relationship between the maximum
number of bins and the number of binary digits in the RID
(Table I). If RIDs are hash values of unique identifiers, then
the maximum number of containers is relatively small, but
sufficient for the purposes where we propose our scheme
instead of the more involved versions in the literature.



TABLE I
RELATIONSHIP BETWEEN MAXIMUM NUMBER OF BINS AND LENGTH
(NUMBER OF BINARY DIGITS) OF THE RECORD IDENTIFIER (RID).

Maximum Number of Bins Binary Digits in RID

12 32
20 64
34 128 (MD5)
40 160 (SHA-1)
57 256

One simple possibility to overcome the size limitation is to
use the RID in order to seed a good, but cheap random number
generator, such as a Mersenne twister or a simple congruential
random number generator with a Bays-Durham shuffle [1],
[11] in order to generate more digits pseudo-randomly.

V. EXTENSION TO ARBITRARY SIZES

We use the factorial representation of RIDs as a way to
encode the decision when to move a recourse to a new
container. We can extend this method (at the cost of additional
calculations) to containers of arbitrary sizes. Assume that the
sizes are s0, s1, s2, . . .. We mimic the calculation of the
factorial digit by using hash functions. We observe that we
need to move objects from the existing containers to a new
container, bin N , with probability

pN =
sN∑N
ν=0 sν

.

If this is the case, then our scheme and its properties hold. We
assume that we have k replica of each object and that the first
k containers (bins 0 to k − 1) have equal size.

To organize the moves, we associate the RID of an object to
a decision list L as follows. We use the RID as the seed of a
random number generator and assume that the generator yields
the random number sequence (rk, rk+1, . . .). We partition the
unit interval [0, 1] into two parts [0, pk) and (pk, 1] and the
left part into k equally sized subparts, giving us a partition
(decomposition into mutually non-intersecting subsets)

[0,
pk
k
) t [

pk
k
,
2pk
k

) t . . . t [
(k − 1)pk

k
, pk) t [pk, 1].

If ak falls into the first interval, we put 0 into L, if it falls
into the second interval, we put 1, and if it falls into the
last interval, we put k. We call this the quasi-digit xk. We
similarly proceed with k + 1, generating a list of quasi-digits
L = [xk, xk+1, . . .].

We then apply our scheme using the quasi-digits in L
instead of the digits of the factorial representation. If we have
N containers, we place the replica r of an object with RID
R into the container b if the maximum index of the digit r in
the list L generated by R up to and including index N − k is
b, or, if the quasi-digit r does not appear, the replica is stored
in bin r. The same analysis as before applies.

VI. CONCLUSIONS

We have presented a general solution to the problem of
evenly distributing k replicas of N objects among n bins of
equal size. Our solution assumes that all objects are identified
by a random resource ID and makes all its allocation decisions
based on the factorial representation of that resource ID. Its
outcome is a replica-to-bin mapping such that (a) each bin re-
ceives the same number of objects, (b) two replicas never share
the same bin, and (c) the task of reconstituting the contents of
a lost bin is equally distributed among the surviving bins. In
addition, our technique handles gracefully any change in the
number of bins. Since computing the factorial representation
of an integer is a fairly simple operation, there is no need to
store these representations anywhere.

In addition, we have presented two extensions of our
methods. A first extension eliminates any restriction on the
maximum number of bins N . The second applies to bins of
arbitrary size.

REFERENCES

[1] C. Bays and S. Durham, “Improving a poor random number generator,”
ACM Transactions on Mathematical Software (TOMS), vol. 2, no. 1, pp.
59–64, 1976.

[2] A. Brinkmann, S. Effert, C. Scheideler et al., “Dynamic and redundant
data placement,” in Distributed Computing Systems, 2007. ICDCS’07.
27th International Conference on. IEEE, 2007, pp. 29–29.

[3] A. Brinkmann, K. Salzwedel, and C. Scheideler, “Compact, adaptive
placement schemes for non-uniform requirements,” in Proceedings of
the fourteenth annual ACM symposium on Parallel algorithms and
architectures. ACM, 2002, pp. 53–62.

[4] Y. Chen, R. Katz, and J. Kubiatowicz, “Dynamic replica placement for
scalable content delivery,” Peer-to-Peer Systems, pp. 306–318, 2002.

[5] R. Fagin, J. Nievergelt, N. Pippenger, and H. Strong, “Extendible
hashing — a fast access method for dynamic files,” ACM Transactions
on Database Systems (TODS), vol. 4, no. 3, pp. 315–344, 1979.

[6] R. Honicky and E. Miller, “Replication under scalable hashing: A
family of algorithms for scalable decentralized data distribution,” in Pro-
ceedings of the 18th International Parallel and Distributed Processing
Symposium. IEEE, 2004, p. 96.

[7] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing.
ACM, 1997, pp. 654–663.

[8] C.-A. Laisant, “Sur la numération factorielle, application aux permuta-
tions,” Bulletin de la S. M. France, vol. 16, 1888.

[9] W. Litwin, M. Neimat, and D. Schneider, “RP*: A family of order
preserving scalable distributed data structures,” in Proceedings of the
International Conference on Very Large Data Bases, 1994, pp. 342–
342.

[10] ——, “LH*, a scalable, distributed data structure,” ACM Transactions
on Database Systems (TODS), vol. 21, no. 4, pp. 480–525, 1996.

[11] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[12] C. Plaxton, R. Rajaraman, and A. Richa, “Accessing nearby copies of
replicated objects in a distributed environment,” Theory of Computing
Systems, vol. 32, no. 3, pp. 241–280, 1999.

[13] C. Schindelhauer and G. Schomaker, “Weighted distributed hash tables,”
in Proceedings of the seventeenth annual ACM symposium on Paral-
lelism in algorithms and architectures. ACM, 2005, pp. 218–227.

[14] S. Weil, S. Brandt, E. Miller, and C. Maltzahn, “Crush: Controlled,
scalable, decentralized placement of replicated data,” in Proceedings of
the 2006 ACM/IEEE conference on Supercomputing. ACM, 2006, p.
122.


