
A Realistic Evaluation of Consistency Algorithms 
for Replicated Files 

Jehan-Francois P&s 
Darrell D. E. Long 

Alexander Glockner 

Computer Systems Research Group 
Department of Computer Science and Engineering 

University of California, San Diego 
La Jolla, CA 92093 

Abstract: Data are often replicated in distributed systems to protect them against site failures and network 
malfunctions. When this is the case, an access policy must be chosen to insure that a consistent view of the 
data is always presented. Voting protocols guarantee consistency of replicated data in the presence of any 
scenario involving non-Byzantine site failures and network partitions. While Static Majority Consensus Voting 
protocols use static quorums, Dynamic Voting protocols, like Dynamic Voting and Lexicographic Dynamic Vot- 
ing, dynamically adjust quorums to changes in the status of the network of sites holding the copies. 

The availabilities of replicated data managed by these three protocols are compared using a simulation 
model with realistic parameters. Dynamic Voting is found to perform better than Majority Consensus Voting 
for all files having more than three copies while Lexicographic Dynamic Voting performs much better than the 
two other protocols for all eleven configurations under study. 

Keywords: discrete-event simulation, file consistency, fault-tolerant systems, replicated files, batch-means. 

1. INTRODUCTION 

In a distributed system, the data are often replicated for protection against site failures and network partitions. 

By maintaining several copies of the same file on different sites, increased availability and reliability of access 

can be obtained. Recent technological improvements in computer networks and reductions in the cost of 

storage media have made the replication of important files a viable proposition. 

When files are replicated, an access policy must be chosen to insure that a consistent view of the data is 

always presented. Several methods have been discussed in the literature, including token based schemes, 

active copy schemes and schemes based on quorum consensus. This paper focuses on protocols that are 

based on quorum consensus because of their simplicity and their tolerance of network partitions. 

Static consensus protocols, like Majority Consensus Voting [Giff79], do not provide the highest availability 

possible. 

Dynamic Voting [DaBu&] improves upon majority consensus voting by allowing quorums to be adjusted 

automatically during system operation. An extension [Jajo87] to Dynamic Voting improves file availability by 

imposing a total ordering on the sites in order to break ties. Until now there has been no comparative study of 

these three protocols. 

tThis work was sponsored in part by grants from U.C. MICRO Program and NCR Corporation. 

Annual Simulation Symposium 

121 



122 Jehan-Franpls Piiris, Darrell D.E. Long and Alexander Glockner 

Stochastic process models have been widely used to evaluate consistency protocols. Unfortunately, 

many difficulties prevent relying solely upon them. Stochastic models quickly become extremely complex 

when general (non-exponential) time distributions are considered; site repair times are better represented by a 

general distribution. The problem of modeling network partitions and site failures simultaneously is intractable 

for all but the most basic cases [NKT87]. Algebraic expressions for file reliability are difficult to obtain, even 

for the simplest algorithms and site configurations. For these and other reasons simulation has been chosen 

as a method to evaluate the performance of the consistency protocols. 

The remainder of this paper is organized as follows: in Section 2, the three quorum consensus protocols 

to be evaluated are reviewed; in Section 3, the network model is described; and in Sections 4 and 5, results 

and conclusions are presented. 

2. SURVEY OF CONSISTENCY ALGORITHMS 

In its simplest form, /IIajority Consensus Voting [Elli77, Giff79, EIFl83] assumes that the current state of a 

replicated file is the state of the majority of its copies. Different quorums can be defined and different weights, 

including none, allocated to each copy. Consistency is guaranteed so long as the quorum is high enough to 

forbid access to two disjoint subsets of the copies. 

Majority Consensus Voting has the disadvantage that it only allows access to a replicated file when a 

majority of its copies are available. Dynamic Voting [DaBu85, BGS86] and Lexicographic Dynamic Voting 

[Jajo87] overcome this limitation by adjusting the quorum to reflect changes in the number of accessible physi- 

cal copies. It has been shown [PaEIu86] that dynamic voting protocols significantly improve the availability of 

replicated files over static consensus protocols. 

Dynamic Voting protocols guarantee file consistency as long as all sites not operating correctly immedi- 

ately cease operation. Sequenced, reliable message delivery is assumed. To keep track of the status of the 

replicated file, every physical copy of a replicated file will maintain some state information. This information will 

include a version number and a partition vector. The version number xi of a physical copy on site i is a posi- 

tive integer that identifies the last successful update recorded by that copy. The partition vector zi of a physi- 

cal copy on site i is a vector whose elements Z’j are equal to zero if sites i and jcan communicate and have 

otherwise the value xi of the version number of the physical copy on i at the time i and j became unable to 

communicate. All Zii will always be zero. Partition vectors will be automatically updated on every site at the 

time of every network failure. They will be used by the dynamic voting protocol to check if a set of current phy- 

sical copies that can communicate amongst themselves are a majority of the previous quorum of copies. For 

this reason, that set is referred to as a majority block. Once such a set is established, writing to any disjoint 

set of copies is forbidden, so the set can become the new quorum. 

To illustrate these concepts, consider a replicated file consisting of three physical copies located at sites 

A, B and C. Assuming that all sites and all links are operational, the initial version numbers Xi are 1 and the 

partition vectors zi are (O,O, 0) for all three copies: 

Annual Simulation Symposium 



A Realistic Evaluation of Consistency Algorithms for Replicated Files 123 

A B C 

XA = 1 XB = 1 xc = 1 

ZA = (0 0 0) I I zB = (O,O,O) zc= (000) # 9 

The initial majority block consists of all three copies A, B and C. After five update operations are successfully 

completed, the state of the replicated file is represented by: 

A B C 

X,L, = 6 XB = 6 xc = 6 

ZA = (0 0 0) I I zB = (O.O,O) zc = (O,O,O) 

The majority block still consists of all three copies A, B and C. Suppose now that site B fails. The state of the 

replicated file is now: 

A C 
XA = 6 xc = 6 

ZA = (0,6,0) Zc = (0.6,O) 

The block consisting of sites A and C contains a majority of the sites included in the previous majority block, 

and A and C can communicate. That block will therefore become the new majority block. 

Assume that the link between A and C fails after three additional update operations have taken place. 

The network is now partitioned into the two disjoint subsets (A) and {c). The file will then be in the following 

configuration: 

A B C 

&, = 9 XB = 6 xc = 9 

zA = (0.6.9) zB = (O,O,O) Zc = (9,6,0) 

There is exactly one site of the previous majority block on each side of the partition. When such ties 

occur, dynamic voting cannot proceed and declares that the replicated file is nof available as long as a new 

majority block including a majority of sites from the last majority block cannot be created. To return to the 

example, A and C need to be able to communicate again before the file becomes available. 

Such situations, where the number of current physical copies within a group of mutually communicating 

sites is equal to the number of current copies not in communication, are not infrequent. Lexicographic 

Dynamic Voting [Jajo87] accommodates these situations by introducing a tie breaking rule. The sites are 

given a static linear ordering. Then, when the largest group of communicating sites contains exactly one-half 

of the current copies in the last majority block, it will be declared the new majority block if and only if it contains 

the “largest” site in the previous majority block. 

In the previous example, suppose the sites had been ordered so A <B <C. Then, after the link between 

A and C failed, site C by itself could be the new majority block. Site C can determine this itself by consulting 

its partition vector for the file. It can determine that it cannot communicate with site A and that the previous 

Annual Simulation Symposium 



124 Jehan-Fran@s P&is, Darrell D.E. Long and Alexander Glockner 

majority block consists of the subset {A , C }. Since C ranks higher than A, the group containing C is the 

majority block. By the same reasoning, site A determines that it is not the majority block. 

I I 
csvax bedwulf grendel wizard amos 

gremlin 

rip mangle 

Figure 1: Network Topology 

3. THE SIMULATION MODEL 

The goal of this study was to model as accurately as possible the behavior of consistency protocols in a file 

replication scheme involving several sites on a local area network. The model consists of eight sites and three 

linked CSMA/CD subnets from the UCSD Computer Science Department to capture the realism of such an 

environment. Each of the sites is able to store and manipulate copies of a file. 

Site failure and repair data are summarized in Table 1. Individual values for mean time to failure, percen- 

tage of hardware faults, repair times for hardware and software failures, and preventive maintenance 

schedules were chosen to reflect as accurately as possible the true behavior of the sites modeled. Exponen- 

tial failure distributions were chosen for all eight sites. Hardware failures normally need human intervention 

and often require a service call. Hardware repair times were modeled by a constant term representing the 

minimum service time plus an exponentially distributed term representing the actual repair process. Since 

software failures only require a system restart, constant recovery times are assumed. 

The three subnets are assumed not to fail; gateway sites may fail resulting in network partitions. Mes- 

sage delivery is guaranteed to all active sites in the current partition when a file access request is made. Local 

experience justifies these assumptions. 

Five of the sites are connected on the main subnet. One of these sites is the gateway to the second sub- 

net, to which the sixth site is connected; another of the five sites is the gateway to the third subnet, to which 

the seventh and eighth sites are connected. 

Access to the replicated file is modeled as a single user that can access any of the eight sites. The 

access requests are granted or refused based solely on the current state of the sites containing copies and the 

capability of the protocol to guarantee file consistency. 

The model was programmed in SIMSCRIPT II.5 and run on a VAX 11/780. The process interaction 

approach [Fish781 was chosen, since the sites and the user are easily described as independent processes. 

Annual Simulation Symposium 



A Realistic Evaluation of Consistency Algorithms for Replicated Files 125 

Site Name Mean Time 

To Fail 

(days) 
1 csvax 36.5 
2 beowulf 10 
3 grendel 365 
4 wizard 50 
5 amos 365 
6 gremlin 50 
7 rip 50 
8 mangle 50 

Table 1: Site Characteristics 

Hardware Restart 

Failures Time 

W) (min.) 

10 20.0 
10 15 
90 10 
50 15 
90 10 
50 15 
50 15 
50 15 

I Hardware RE 

Constant Part 
(hours) 

0 
4 
0 

168 
0 

168 
168 
168 

Note: Sites 1, 3 and 5 are unavailable for 3 hours every 90 days for preventive maintenance. 

All simulations were started with all sites operating and a time-to-steady-state interval of 360 days; these 

were considered acceptable by noting the time spent in each state and by examining graphs of the measured 

values in the early history of the simulations. The simulations were run for 400 simulated years, long enough 

to establish a 95% confidence interval for all file unavailabilities with an interval size listed in Table 2. 

To analyze the output data, batch-means analysis was chosen for its simplicity and its general applicabil- 

ity [LaMi8T]. After the initial bias was removed by ignoring the statistics gathered during the time-to-steady- 

state interval, a very long simulation run was divided into time segments of equal size called batches. Pairs of 

batches were then merged until the resulting batches could be considered statistically independent of each 

other. The final batch size was chosen using a heuristic developed by Law and Carson [LaCa79]; after finding 

a batch size m where the batches have a correlation of 0.4 or less, the batches of size 10m could be con- 

sidered uncorrelated. 

4. DISCUSSION OF THE RESULTS 

Eleven configurations were considered in the study. The first four consist of three copies. Configuration A is 

comprised of copies on sites 1, 2 and 4, which allows for no partitions. Configuration B consists of copies on 

sites 1, 2 and 6 with a single partition point at site 4. Configuration C has copies on sites 1, 2 and 8 with one 

partition point at site 4 and another at site 5. Configuration D is comprised of copies on sites 6, 7 and 8; either 

site 4 or 5 can cause a partition. Four other configurations consist of four copies distributed as follows. 

Configuration E has copies on sites 1, 2, 3 and 4, which allows for no partitions. Configuration F is comprised 

of copies on sites 1, 2, 4 and 6 with a partition point at site 4. Configuration G has copies on sites 1, 2, 6 and 

8 with partition points at sites 4 and 5. Configuration H consists of two pairs of copies at sites 1 and 2 and 

sites 7 and 8 separated by a single partition point at site 5. The last three configurations have five copies. 

Configuration I is comprised of copies on sites 1, 2, 3, 4 and 5, which allows for no partition. Configuration J 

consists of copies on sites I, 2, 3, 7 and 8 separated by a single partition point at site 5. Finally, configuration 

Annual Simulation Symposium 



126 Jehan-Franwis Paris, Darrell D.E. Long and Alexander Glockner 

Table 2: Confidence Intervals for File Unavailability 

unavailability interval width 

< 0.0001 * 0.00002 
< 0.001 f 0.0004 Ill < 0.01 f 0.0002 
< 0.1 f 0.005 
< 1.0 f 0.01 

K has copies on sites 1, 2, 6, 7 and 8 with partition points at sites 4 and 5. 

Configurations with six or more sites were not considered as it was assumed that the update traffic costs 

associated with such configurations would make them highly unlikely in the kind of environment under investi- 

gation. 

In Table 3, the unavailabilities of replicated files for all eleven configurations and all three consistency pro- 

tocols are summarized. It was decided to measure and display unavailabilities since they indicate more 

clearly the differences among the protocols. 

The first finding was that Dynamic Voting (DV) performed worse than Majority Consensus Voting (MCV) 

for three copies. This is not surprising since the same conclusion had already been reached by Paris and Bur- 

khard using Markov chains [PaBu86]. Dynamic Voting requires at least two copies from the previous majority 

block to form a new majority block and is more restrictive than Majority Consensus Voting which only requires 

only two copies in this case. The same is not true of Lexicographic Dynamic Voting (LDV), which clearly out- 

performs MCV for three copies. 

For four copies, it was found that Dynamic Voting performed much better than Majority Consensus Voting 

in configurations E and G where partitions are either not allowed or not likely to cause ties. The situation was 

different for configurations F and G where the failure of a single site could result in a tie. For instance, the 

failure of site 5 in configuration G will normally leave the system with two operational groups of the same size. 

The unavailability of the configuration is not essentially different from the unavailability of a replicated file con- 

sisting of a single copy at site 5. Lexicographic Dynamic Voting, which resolves ties, outperforms Majority 

Consensus Voting and Dynamic Voting for all four configurations with four copies. 

Similar conclusions were also found for five copies. The only real surprise was the bad performance of 

Majority Consensus Voting for configuration K. Comparing the unavailabilities obtained by Majority Con- 

sensus Voting in configurations H and K, it was found that this protocol performs worse when site 6 is added 

to sites 1, 2, 7 and 8. The reason for this apparent paradox is simple: configuration K has three relatively 

unreliable sites, 6, 7 and 8, and two partition points, 4 and 5, the first of which is also relatively unreliable. 

Since three copies are now needed to obtain a quorum, the failure of sites 7, 8, and 4 or 6 is now sufficient to 

make the file unavailable. A lower bound for the unavailability of configuration K under Majority Consensus 

Voting is then given by 

Annual Simulation Symposium 



127 A Realistic Evaluatlon Of Consistency Algorithms for Replicated Files 

u7 u* (U4 + U,) = 0.003595 

where Ui designates the unavailability of site i. 

The mean length of time that a replicated file was unavailable for every protocol and every configuration 

were also measured. These figures are summarized in Table 4. 

Table 3: Replicated File Unavailabilities 

- 

- 

Sites 

A: 1, 2, 4 
B:1,2,6 
C:1,6,8 
D: 6, 7, 8 
E: 1, 2,3,4 
F: 1, 2, 4,6 
G: 1, 2, 6, 8 
H:1,2,7,8 
I: 1, 2, 3, 4, 5 
J: 1, 2, 3, 7, 8 
K: 1, 2, 6, 7, 8 

Con 

MCV 

0.002130 
0.003871 
0.031127 
0.069342 
0.000608 
0.002761 
0.002027 
0.001408 
0.000025 
0.000388 
0.005310 

sistencv Policv , 
DV 

0.004348 
0.008281 
0.056428 
0.117683 
0.000018 
0.108034 
0.001510 
0.004275 
0.000000 
0.000057 
0.001094 

LDV 

0.000668 
0.001214 
0.001707 
0.053592 
0.000010 
0.002154 
0.000151 
0.000365 
0.000000 
0.000000 
0.000018 

Table 4: Mean Duration of Unavailable Periods 

Sites T 

A: 1, 2, 4 
8: 1, 2, 6 
C:1,6,8 
D: 6, 7, 8 
E: 1, 2.3, 4 
F: 1, 2,4,6 
G:1,2,6,8 
H:1,2,7,8 
I: 1, 2, 3, 4, 5 
J: 1, 2, 3, 7, 8 
K: 1, 2, 6, 7, 8 

MCV 

0.101968 
0.101059 
0.944336 
3.000469 
0.071134 
0.102001 
0.084714 
0.078933 
0.06231 
0.079213 
0.260999 

Consistency P 

DV 

0.210651 
0.217369 
1.868895 
5.850864 
0.063630 
5.962853 
0.297879 
0.142206 

0.118580 
0.149210 

I 

CY 
LDV 

0.077353 
0.078867 
0.085960 
7.850864 
0.062950 
0.275006 
0.077870 
0.245300 

0.06880 

- 

5. CONCLUSION 

This paper presented a simulation model aimed at comparing the performance of several consistency proto- 

cols for replicated files in reaf-life situations. The model was based on an extant system allowing for network 

partitions. Failure and recovery parameters for individual sites were selected to reflect several years of experi- 

ence with this network. Unlike previous studies, non-exponential repair times were considered as it was found 

that they modeled more accurately the life cycles of actual machines. 

Annual Simulation Symposium 



128 Jehan-Franpls P&Is, Darrell D.E. Long and Alexander Glockner 

Since network partitions were taken into account, cases were found where ties degraded the performance 

of Dynamic Voting below that of Majority Consensus Voting. Lexicographic Dynamic Voting was found to out- 

perform its two competitors in all situations. All these results confirm and extend the results obtained by Bur- 

khard, Long and Paris using Markov chains as described in (BuPa86] and (LoPa87]. They confirm that Lexico- 

graphic Dynamic Voting is a superior protocol and constitute a prime motivation for research into efficient 

implementations. 

Many tasks remain to be completed. One of them is a better definition of file availability. As in previous 

papers [LoPa87, CLP87], we assumed that a replicated file was available as long as it could be accessed from 

at least one location on the net. This definition does not take into account the fact that a network partition 

might have left some users without access to the sites in the current majority; the replicated file is effectively 

unavailable for them although it is still available for others. A possible alternative would be to define file availa- 

bility as the the fraction of attempted file accesses that are successfully completed. The measured availability 

of a replicated file would then be an estimate of the perceived availability of the file and would be dependent 

on user locations and file access patterns. 

Availability measurements should also have been concerned with the transient behavior of the systems 

instead of their steady-state performance. Distributed file systems are essentially evolving entities. The data 

we gathered concerned the behavior of file systems operating without disturbances for very long periods of 

time. 

A more practical problem is the lack of reliable data on machine failures and repairs. Failure rates and 

repair time distributions used in this study were estimates instead of direct measurements as they should have 

been. To address this issue, we are currently developing distributed tools to gather data about site individual 

failures and recoveries in a local area network of UNIX machines. 

Finally, our model did not address the issue of the overhead incurred by consistency protocols in terms of 

message traffic overhead and time delays. It is not clear however that simulation is the best tool to gather 

such data. Message traffic overheads are easy to estimate by standard probabilistic methods [CLP87]. Time 

delays can be more accurately assessed by direct measurements on a property instrumented testbed, like the 

Gemini replicated file testbed system [BMP87]. 

Within these limitations, discrete event simulation nevertheless constitute the tool of choice for analyzing 

the behavior of replicated data objects in distributed environments. Unlike stochastic models, it sets no restric- 

tions on the sizes, topologies and repair modes of the systems under study. Unlike direct measurements, it 

allows the rapid gathering of information over system behaviors stretching over long periods of time. We plan 

therefore to continue to make discrete simulation an integral part of our current study of managment schemes 

for replicated data objects [PaLo88]. 

Annual Simulation Symposium 



A Reallstlc Evaluation of Consistency Algorithms for Replicated Files 129 

Acknowledgements 

The authors wish to thank Walter A. Burkhard and all the other members of the Gemini group for their help 

and their encouragement. We are grateful to Robb Mills for providing us with the code used to compute batch 

averages, and we wish to acknowledge the assistance of Keith Muller, Rick Ord, and Greg Hidley in the 

specification of our model. 

References 

[BGS86] D. Barbara, H. Garcia-Molina and A. Spauster, “Policies for Dynamic Vote Reassignment,” Proc. 
Sixth International Conference on Distributed Computing Systems (1986), pp. 37-44. 

[BMP87] W.A. Burkhard, B. E. Martin and J.-F. PZrris, “The Gemini Fault-Tolerant File System: the Manage- 
ment of Replicated Files,” Proc. Third International Conference on Data Engineering, (1987), pp. 
441-448. 

[CLP871 J.L. Carroll, D. Long and J.-F. Paris, “Block-Level Consistency of Replicated Files,” Proc. Seventh 
International Conference on Distributed Computing Systems, (1987), pp. 146-l 53. 

[DaBu85] D. Davcev and W.A. Burkhard, “Consistency and Recovery Control for Replicated Files,” Proc. 
Tenth ACM Symposium on Operating System Principles, (1985), pp. 87-96. 

[Elli77] C. A. Ellis, “Consistency and Correctness of Duplicate Database Systems,” Operating Systems 
Review, 11, 1977. 

[EIFl83] C. S. Ellis and R. A. Floyd, “The Roe File Systems,” Proc. Third Symposium on Reliability in Dis- 
tributed Software and Database Systems, (1983). 

[Fish781 G. S. Fishman Principles of Discrete Event Simulation. New York: Wiley and Sons, Inc., 1978. 
[Giff79] D. K. Gifford, “Weighted Voting for Replicated Data,” Proc. Seventh ACM Symposium on Operat- 

ing System Principles, (1979), pp. 150-l 61. 
[Good831 N. Goodman, D. Skeen, A. Chan, U. Dayal, R. Fox and D. Ries, “A Recovery Algorithm for a Distri- 

buted Database System,” Proc. Second ACM Symposium on Principles of Database Systems, 
(1983), pp. 8-15. 

[Jajo87] S. Jajodia, “Managing Replicated Files in Partitioned Distributed Database Systems,” Proc. Third 
International Conference on Data Engineering, (1987). 

[JaMu87] S. Jajodia and D. Mutchler, “Dynamic Voting,” Proc. ACM SlGMOD 7987 Annual Conf., San Fran- 
cisco, Calif. (May 1987), pp. 227-238. 

[LaCa79] A. Law and J. Carson, A Sequential Procedure for Determining the Length of a Steady-State Simu- 
lation, Operations Research, Vol. 27 (1979), 101 l-1 125. 

[LaMi88] A. Law and R. Mills, Statistical Analysis of Simulation Output Data Using SlMSCRlPT 11.5, Los 
Angeles: CACI, Inc., 1988. 

[LoPa87] D.D.E. Long and J.-F. Paris, “On Improving the Availability of Replicated Files,” Proc. Sixth Sym- 
posium on Reliability in Distributed Systems and Database Systems, (1987), pp. 77-83. 

[NKT87j V. F. Nicola, V. G. Kulkarni and K. S. Trivedi, “Queueing Analysis of Fault-Tolerant Computer Sys- 
tems,” IEEE Trans. Software Engineering, Vol. SE-13, No. 3 (March 1987), 363-375. 

[PaLo88] J.-F. P&is and D.D.E. Long, “Efficient Dynamic Voting Algorithms,” Proc. Fourth International 
Conference on Data Engineering, Los Angeles, Calif. (February 1988), to appear. 

(Pari86] J.-F. Paris, “Voting with Witnesses: A Consistency Scheme for Replicated Files,” Proc. Sixth Inter- 
national Conference on Distributed Computing Systems, (1986), pp. 606-612. 

[PaBu86] J.-F. Paris and W. A. Burkhard, “On the Availability of Dynamic Voting Schemes,” Computer Sci- 
ence Technical Report, Department of Computer Science and Engineering, University of California, 
San Diego, 1986. 

[PaLo66] J.-F. Paris and D.E. Long, “Efficient Dynamic Voting Algorithms. Proc. Fourth international Confer- 
ence on Data Engineering, Los Angeles, Calif. (February 1988). 

Annual Simulation Symposium 



130 Jehan-Franpls PiNs, Darrell D.E. Long and Alexander Glockner 

[Pope811 G. Popek, 6. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin and G. Thiel, “LOCUS: A Network 
Transparent, High Reliability Distributed System,” Proc. Eighth ACM Symposium on Operating 
System Principles, (1981), pp. 169-l 77. 

[SkSt83] D. Skeen and M. Stonebraker, “A Formal Model of Crash Recovery in a Distributed Systems,” 
IEEE Transactions on Software Engineering, Vol. SE-g, No. 3 (May 1983), 219-228. 

[Thorn791 R. H.Thomas, “A Majority Consensus Approach to Concurrency Control,” ACM Transactions on 
Database Systems, Vol. 4, (1979), 180-209. 

[ScSc83] Schlichting, R. D., and F. 6. Schneider, “Fail Stop Processors: An Approach to Designing Fault- 
Tolerant Computing Systems,” ACM Transactions on Computer Systems, 1983, 222-238. 

Annual Simulation Symposium 


