
USENIX Association 7th USENIX Conference on File and Storage Technologies 111

Sparse Indexing: Large Scale, Inline Deduplication Using
Sampling and Locality

Mark Lillibridge†, Kave Eshghi†, Deepavali Bhagwat‡, Vinay Deolalikar†, Greg Trezise,
and Peter Camble

†HP Labs ‡UC Santa Cruz HP Storage Works Division
first.last@hp.com

Abstract

We present sparse indexing, a technique that uses sam-
pling and exploits the inherent locality within backup
streams to solve for large-scale backup (e.g., hundreds of
terabytes) the chunk-lookup disk bottleneck problem that
inline, chunk-based deduplication schemes face. The
problem is that these schemes traditionally require a full
chunk index, which indexes every chunk, in order to de-
termine which chunks have already been stored; unfortu-
nately, at scale it is impractical to keep such an index in
RAM and a disk-based index with one seek per incoming
chunk is far too slow.

We perform stream deduplication by breaking up an
incoming stream into relatively large segments and dedu-
plicating each segment against only a few of the most
similar previous segments. To identify similar segments,
we use sampling and a sparse index. We choose a small
portion of the chunks in the stream as samples; our sparse
index maps these samples to the existing segments in
which they occur. Thus, we avoid the need for a full
chunk index. Since only the sampled chunks’ hashes are
kept in RAM and the sampling rate is low, we dramat-
ically reduce the RAM to disk ratio for effective dedu-
plication. At the same time, only a few seeks are re-
quired per segment so the chunk-lookup disk bottleneck
is avoided. Sparse indexing has recently been incorpo-
rated into number of Hewlett-Packard backup products.

1 Introduction

Traditionally, magnetic tape has been used for data back
up. With the explosion in disk capacity, it is now af-
fordable to use disk for data backup. Disk, unlike tape,
is random access and can significantly speed up backup
and restore operations. Accordingly, disk-to-disk backup
(D2D) has become the preferred backup option for orga-
nizations [3].

Deduplication can increase the effective capability of

a D2D device by one or two orders of magnitude [4].
Deduplication can accomplish this because backup sets
have massive redundancy due to the facts that a large pro-
portion of data does not change between backup sessions
and that files are often shared between machines. Dedu-
plication, which is practical only with random-access de-
vices, removes this redundancy by storing duplicate data
only once and has become an essential feature of disk-
to-disk backup solutions.

We believe chunk-based deduplication is the dedu-
plication method best suited to D2D: it deduplicates
data both across backups and within backups and does
not require any knowledge of the backup data format.
With this method, data to be deduplicated is broken
into variable-length chunks using content-based chunk
boundaries [20], and incoming chunks are compared
with the chunks in the store by hash comparison; only
chunks that are not already there are stored. We are inter-
ested in inline deduplication, where data is deduplicated
as it arrives rather than later in batch mode, because of
its capacity, bandwidth, and simplicity advantages (see
Section 2.2).

Unfortunately, inline, chunk-based deduplication
when used at large scale faces what is known as the
chunk-lookup disk bottleneck problem: Traditionally, this
method requires a full chunk index, which maps each
chunk’s hash to where that chunk is stored on disk, in or-
der to determine which chunks have already been stored.
However, at useful D2D scales (e.g., 10-100 TB), it is
impractical to keep such a large index in RAM and a
disk-based index with one seek per incoming chunk is
far too slow (see Section 2.3).

This problem has been addressed in the literature by
Zhu et al. [28], who tackle it by using an in-memory
Bloom Filter and caching index fragments, where each
fragment indexes a set of chunks found together in the
input. In this paper, we show a different way of solving
this problem in the context of data stream deduplication
(the D2D case). Our solution has the advantage that it

112 7th USENIX Conference on File and Storage Technologies USENIX Association

uses significantly less RAM than Zhu et al.’s approach.
To solve the chunk-lookup disk bottleneck problem,

we rely on chunk locality: the tendency for chunks in
backup data streams to reoccur together. That is, if the
last time we encountered chunk A, it was surrounded by
chunks B, C, and D, then the next time we encounter A
(even in a different backup) it is likely that we will also
encounter B, C, or D nearby. This differs from traditional
notions of locality because occurrences of A may be sep-
arated by very long intervals (e.g., terabytes). A derived
property we take advantage of is that if two pieces of
backup streams share any chunks, they are likely to share
many chunks.

We perform stream deduplication by breaking up each
input stream into segments, each of which contains thou-
sands of chunks. For each segment, we choose a few
of the most similar segments that have been stored previ-
ously. We deduplicate each segment against only its cho-
sen few segments, thus avoiding the need for a full chunk
index. Because of the high chunk locality of backup
streams, this still provides highly effective deduplication.

To identify similar segments, we use sampling and a
sparse index. We choose a small portion of the chunks
as samples; our sparse index maps these samples’ hashes
to the already-stored segments in which they occur. By
using an appropriate low sampling rate, we can ensure
that the sparse index is small enough to fit easily into
RAM while still obtaining excellent deduplication. At
the same time, only a few seeks are required per segment
to load its chosen segments’ information avoiding any
disk bottleneck and achieving good throughput.

Of course, since we deduplicate each segment against
only a limited number of other segments, we occasion-
ally store duplicate chunks. However, due to our lower
RAM requirements, we can afford to use smaller chunks,
which more than compensates for the loss of dedupli-
cation the occasional duplicate chunk causes. The ap-
proach described in this paper has recently been incorpo-
rated into a number of Hewlett-Packard backup products.

The rest of this paper is organized as follows: in the
next section, we provide more background. In Section 3,
we describe our approach to doing chunk-based dedu-
plication. In Section 4, we report on various simula-
tion experiments with real data, including a comparison
with Zhu et al., and on the ongoing productization of this
work. Finally, we describe related work in Section 5 and
our conclusions in Section 6.

2 Background

2.1 D2D usage
There are two modes in which D2D is performed today,
using a network-attached-storage (NAS) protocol and us-

ing a Virtual Tape Library (VTL) protocol:
In the NAS approach, the backup device is treated as a

network-attached storage device, and files are copied to
it using protocols such as NFS and CIFS. To achieve high
throughput, typically large directory trees are coalesced,
using a utility such as tar, and the resulting tar file stored
on the backup device. Note that tar can operate either in
incremental or in full mode.

The VTL approach is for backward compatibility with
existing backup agents. There is a large installed base of
thousands of backup agents that send their data to tape
libraries using a standard tape library protocol. To make
the job of migrating to disk-based backup easier, ven-
dors provide Virtual Tape Libraries: backup storage de-
vices that emulate the tape library protocol for I/O, but
use disk-based storage internally.

In both NAS and VTL-based D2D, the backup data is
presented to the backup storage device as a stream. In
the case of VTL, the stream is the virtual tape image,
and in the case of NAS-based backup, the stream is the
large tar file that is generated by the client. In both cases,
the stream can be quite large: a single tape image can be
400 GB, for example.

2.2 Inline versus out-of-line deduplication
Inline deduplication refers to deduplication processes
where the data is deduplicated as it arrives and before
it hits disk, as opposed to out-of-line (also called post-
process) deduplication where the data is first accumu-
lated in an on-disk holding area and then deduplicated
later in batch mode. With out-of-line deduplication, the
chunk-lookup disk bottleneck can be avoided by using
batch processing algorithms, such as hash join [24], to
find chunks with identical hashes.

However, out-of-line deduplication has several disad-
vantages compared to inline deduplication: (a) the need
for an on-disk holding area large enough to hold an en-
tire backup window’s worth of raw data can substantially
diminish storage capacity,1 (b) all the functionality that a
D2D device provides (data restoration, data replication,
compression, etc.) must be implemented and/or tested
separately for the raw holding area as well as the dedupli-
cated store, and (c) it is not possible to conserve network
or disk bandwidth because every chunk must be written
to the holding area on disk.

2.3 The chunk-lookup disk bottleneck
The traditional way to implement inline, chunk-based
deduplication is to use a full chunk index: a key-value
index of all the stored chunks, where the key is a chunk’s
hash, and the value holds metadata about that chunk, in-
cluding where it is stored on disk [22, 14]. When an

USENIX Association 7th USENIX Conference on File and Storage Technologies 113

incoming chunk is to be stored, its hash is looked up in
the full index, and the chunk is stored only if no entry is
found for its hash. We refer to this approach as the full
index approach.

Using a small chunk size is crucial for high-quality
chunk-based deduplication because most duplicate data
regions are not particularly large. For example, for our
data set Workgroup (see Section 4.2), switching from 4
to 8 KB average-size chunks reduces the deduplication
factor (original size/deduplicated size) from 13 to 11;
switching to 16 KB chunks further reduces it to 9.

This need for a small chunk size means that the full
chunk index consumes a great deal of space for large
stores. Consider, for example, a store that contains 10 TB
of unique data and uses 4 KB chunks. Then there are
2.7 × 109 unique chunks. Assuming that every hash en-
try in the index consumes 40 bytes, we need 100 GB of
storage for the full index.

It is not cost effective to keep all of this index in
RAM. However, if we keep the index on disk, due to
the lack of short-term locality in the stream of incoming
chunk hashes, we will need one disk seek per chunk hash
lookup. If a seek on average takes 4 ms, this means we
can look up only 250 chunks per second for a process-
ing rate of 1 MB/s, which is not acceptable. This is the
chunk-lookup disk bottleneck that needs to be avoided.

3 Our Approach

Under the sparse indexing approach, segments are the
unit of storage and retrieval. A segment is a sequence
of chunks. Data streams are broken into segments in a
two step process: first, the data stream is broken into
a sequence of variable-length chunks using a chunking
algorithm, and, second, the resulting chunk sequence is
broken into a sequence of segments using a segmenting
algorithm. Segments are usually on the order of a few
megabytes. We say that two segments are similar if they
share a number of chunks.

Segments are represented in the store using their mani-
fests: a manifest or segment recipe [25] is a data structure
that allows reconstructing a segment from its chunks,
which are stored separately in one or more chunk con-
tainers to allow for sharing of chunks between segments.
A segment’s manifest records its sequence of chunks,
giving for each chunk its hash, where it is stored on disk,
and possibly its length. Every stored segment has a man-
ifest that is stored on disk.

Incoming segments are deduplicated against similar,
existing segments in the store. Deduplication proceeds
in two steps: first, we identify among all the segments in
the store some that are most similar to the incoming seg-
ment, which we call champions, and, second, we dedu-
plicate against those segments by finding the chunks they

ContainerÿstoreManifestÿstore

Diskÿstore

Chunker

Segmenter

byteÿstream

segments

chunks

Deduplicator

championÿptrs

Champion
chooser

Sparse
index

hooks

manifest
ptrs

champions newÿmanifests newÿchunks

newÿentries

Figure 1: Block diagram of the deduplication process

share with the incoming segment, which do not need to
be stored again.

To identify similar segments, we sample the chunk
hashes of the incoming segment, and use an in-RAM in-
dex to determine which already-stored segments contain
how many of those hashes. A simple and fast way to
sample is to choose as a sample every hash whose first n
bits are zero; this results in an average sampling rate of
1/2n; that is, on average one in 2n hashes is chosen as a
sample. We call the chosen hashes hooks.

The in-memory index, called the sparse index, maps
hooks to the manifests in which they occur. The mani-
fests themselves are kept on disk; the sparse index holds
only pointers to them. Once we have chosen cham-
pions, we can load their manifests into RAM and use
them to deduplicate the incoming segment. Note that al-
though we choose champions because they share hooks
with the incoming segment (and thus, the chunks with
those hashes), as a consequence of chunk locality they
are likely to share many other chunks with the incoming
segment as well.

We will now describe the deduplication process in
more detail. A block diagram of the process can be found
in Figure 1.

3.1 Chunking and segmenting

Content-based chunking has been studied at length in the
literature [1, 16, 20]. We use our Two-Threshold Two-
Divisor (TTTD) chunking algorithm [13] to subdivide
the incoming data stream into chunks. TTTD produces
variable-sized chunks with smaller size variation than
other chunking algorithms, leading to superior dedupli-
cation.

We consider two different segmentation algorithms in
this paper, each of which takes a target segment size as
a parameter. The first algorithm, fixed-size segmentation,
chops the stream of incoming chunks just before the first

114 7th USENIX Conference on File and Storage Technologies USENIX Association

chunk whose inclusion would make the current segment
longer than the goal segment length. “Fixed-sized” seg-
ments thus actually have a small amount of size varia-
tion because we round down to the nearest chunk bound-
ary. We believe that it is important to make segment
boundaries coincide with chunk boundaries to avoid split
chunks, which have no chance of being deduplicated.

Because we perform deduplication by finding seg-
ments similar to an incoming segment and deduplicating
against them, it is important that the similarity between
an incoming segment and the most similar existing seg-
ments in the store be as high as possible. Fixed-size seg-
mentation does not perform as well here as we would
like because of the boundary-shifting problem [13]: Con-
sider, for example, two data streams that are identical ex-
cept that the first stream has an extra half-a-segment size
worth of data at the front. With fixed-size segmentation,
segments in the second stream will only have 50% over-
lap with the segments in the first stream, even though the
two streams are identical except for some data at the start
of the first stream.

To avoid the segment boundary-shifting problem,
our second segmentation algorithm, variable-size seg-
mentation, uses the same trick used at the chunking
level to avoid the boundary-shifting problem: we base
the boundaries on landmarks in the content, not dis-
tance. Variable-size segmentation operates at the level
of chunks (really chunk hashes) rather than bytes and
places segment boundaries only at existing chunk bound-
aries. The start of a chunk is considered to represent a
landmark if that chunk’s hash modulo a predetermined
divisor is equal to -1. The frequency of landmarks—and
hence average segment size—can be controlled by vary-
ing the size of the divisor.

To reduce segment-size variation, variable-size seg-
mentation uses TTTD applied to chunks instead of data
bytes. The algorithm is the same, except that we move
one chunk at a time instead of one byte at a time, and
that we use the above notion of what a landmark is. Note
that this ignores the lengths of the chunks, treating long
and short chunks the same. We obtain the needed TTTD
parameters (minimum size, maximum size, primary di-
visor, and secondary divisor) in the usual way from the
desired average size. Thus, for example, with variable-
size segmentation, mean size 10 MB segments using 4
KB chunks have from 1,160 to 7,062 chunks with an av-
erage of 2,560 chunks, each chunk of which, on average,
contains 4 KB of data.

3.2 Choosing champions

Looking up the hooks of an incoming segment S in the
sparse index results in a possible set of manifests against
which that segment can be deduplicated. However, we

do not necessarily want to use all of those manifests to
deduplicate against, since loading manifests from disk is
costly. In fact, as we show in Section 4.3, only a few well
chosen manifests suffice. So, from among all the mani-
fests produced by querying the sparse index, we choose a
few to deduplicate against. We call the chosen manifests
champions.

The algorithm by which we choose champions is as
follows: we choose champions one at a time until the
maximum allowable number of champions are found, or
we run out of candidate manifests. Each time we choose,
we choose the manifest with the highest non-zero score,
where a manifest gets one point for each hook it has in
common with S that is not already present in any previ-
ously chosen champion. If there is a tie, we choose the
manifest most recently stored. The choice of which man-
ifests to choose as champions is done based solely on the
hooks in the sparse index; that is, it does not involve any
disk accesses.

We don’t give points for hooks belonging to already
chosen manifests because those chunks (and the chunks
around them by chunk locality) are most likely already
covered by the previous champions. Consider the fol-
lowing highly-simplified example showing the hooks of
S and three candidate manifests (m1–m3):

S b c d e m n

m1 a b c d e f

m2 z a b c d f

m3 m n o p q r

The manifests are shown in descending order of how
many hooks they have in common with S (common
hooks shown in bold). Our algorithm chooses m1 then
m3, which together cover all the hooks of S, unlike m1

and m2.

3.3 Deduplicating against the champions

Once we have determined the champions for the incom-
ing segment, we load their manifests from disk. A small
cache of recently loaded manifests can speed this process
up somewhat because adjacent segments sometimes have
champions in common.

The hashes of the chunks in the incoming segment
are then compared with the hashes in the champions’
manifests in order to find duplicate chunks. We use the
SHA1 hash algorithm [15] to make false positives here
extremely unlikely. Those chunks that are found not to
be present in any of the champions are stored on disk in
chunk containers, and a new manifest is created for the
incoming segment. The new manifest contains the loca-

USENIX Association 7th USENIX Conference on File and Storage Technologies 115

tion on disk where each incoming chunk is stored. In
the case of chunks that are duplicates of a chunk in one
or more of the champions, the location is the location of
the existing chunk, which is obtained from the relevant
manifest. In the case of new chunks, the on-disk location
is where that chunk has just been stored. Once the new
manifest is created, it is stored on disk in the manifest
store.

Finally, we add entries for this manifest to the sparse
index with the manifest’s hooks as keys. Some of the
hooks may already exist in the sparse index, in which
case we add the manifest to the list of manifests that are
pointed to by that hook. To conserve space, it may be
desirable to set a maximum limit for the number of man-
ifests that can be pointed to by any one hook. If the max-
imum is reached, the oldest manifest is removed from the
list before the newest one is added.

3.4 Avoiding the chunk-lookup disk bottle-
neck

Notice that there is no full chunk index in our approach,
either in RAM or on disk. The only index we maintain
in RAM, the sparse index, is much smaller than a full
chunk index: for example, if we only sample one out of
every 128 hashes, then the sparse index can be 128 times
smaller than a full chunk index.

We do have to make a handful of random disk accesses
per segment in order to load in champion manifests, but
the cost of those seeks is amortized over the thousands of
chunks in each segment, leading to acceptable through-
put. Thus, we avoid the chunk-lookup disk bottleneck.

3.5 Storing chunks

We do not have room in this paper, alas, to describe how
best to store chunks in chunk containers. The scheme de-
scribed in Zhu et al. [28], however, is a pretty good start-
ing point and can be used with our approach. They main-
tain an open chunk container for each incoming stream,
appending each new (unique) chunk to the open con-
tainer corresponding to the stream it is part of. When a
chunk container fills up (they use a fixed size for efficient
packing), a new one is opened up.

This process uses chunk locality to group together
chunks likely to be retrieved together so that restoration
performance is reasonable. Supporting deletion of seg-
ments requires additional machinery for merging mostly
empty containers, garbage collection (when is it safe to
stop storing a shared chunk?), and possibly defragmen-
tation.

3.6 Using less bandwidth
We have described a system where all the raw backup
data is fed across the network to the backup system and
only then deduplicated, which may consume a lot of
network bandwidth. It is possible to use substantially
less bandwidth at the cost of some client-side process-
ing if the legacy backup clients could be modified or
replaced. One way of doing this is to have the backup
client perform the chunking, hashing, and segmenta-
tion locally. The client initially sends only a segment’s
chunks’ hashes to the back-end, which performs cham-
pion choosing, loads the champion manifests, and then
determines which of those chunks need to be stored. The
back-end notifies the client of this and the client sends
only the chunks that need to be stored, possibly com-
pressed.

4 Experimental Results

In order to test our approach, we built a simulator that
allows us to experiment with a number of important pa-
rameters, including some parameter values that are infea-
sible in practice (e.g., using a full index). We apply our
simulator to two realistic data sets and report below on
locality, overall deduplication, RAM usage, and through-
put. We also report briefly on some optimizations and an
ongoing productization that validates our approach.

4.1 Simulator
Our simulator takes as input a series of (chunk hash,
length) pairs, divides it into segments, determines the
champions for each segment, and then calculates the
amount of deduplication obtained. Available knobs in-
clude type of segmentation (fixed or variable size), mean
segment size, sampling rate, maximum number of cham-
pions loadable per segment, how many manifest IDs to
keep per hook in the sparse index, and whether or not to
use a simple form of manifest caching (see Section 4.7).

We (or others when privacy is a concern) run a small
tool we have written called chunklite in order to produce
chunk information for the simulator. Chunklite reads
from either a mounted tape or a list of files, chunking
using the TTTD chunking algorithm [13]. Except where
we say otherwise, all experiments use chunklite’s default
4 KB mean chunk size,2 which we find a good trade-off
between maximizing deduplication and minimizing per-
chunk overhead.

The simulator produces various statistics, including
the sum of lengths of every input chunk (original size)
and the sum of lengths of every non-removed chunk
(deduplicated size). The estimated deduplication factor
is then original size/deduplicated size.

116 7th USENIX Conference on File and Storage Technologies USENIX Association

4.2 Data sets

We report results for two data sets. The first data set,
which we call Workgroup, is composed of a semi-regular
series of backups of the desktop PCs of a group of 20
engineers taken over a period of three months. Although
the original collection included only an initial full and
later weekday incrementals for each machine, we have
generated synthetic fulls at the end of each week for
which incrementals are available by applying that week’s
incrementals to the last full. The synthetic fulls replace
the last incremental for their week; in this way, we sim-
ulate a more typical daily incremental and weekly full
backup schedule. We are unable to simulate file deletions
because this information is missing from the collection.

Altogether, there are 154 fulls and 392 incrementals
in this 3.8 TB data set, which consists of each of these
backup snapshots tar’ed up without compression in the
order they were taken. We believe this data set is repre-
sentative of a small corporate workgroup being backed
up via tar directly to a NAS interface. Note that because
these machines are only powered up during workdays
and because the synthetic fulls replace the last day of the
week’s back up, the ratio of incrementals to fulls (2.5) is
lower than would be the case for a server (6 or 7).

The second data set, which we call SMB, is intended,
by contrast, to be representative of a small or medium
business server backed up to virtual tape. It contains
two weeks (3 fulls, 12 incrementals) of Oracle & Ex-
change data backed up via Symantec’s NetBackup to vir-
tual tape. The Exchange data was synthetic data gener-
ated by the Microsoft Exchange Server 2003 Load Simu-
lator (LoadSim) tool [19], while the Oracle data was cre-
ated by inserting rows from a real 1+ TB Oracle database
belonging to a compliance test group combined with
a small number of random deletes and updates. This
data set occupies 0.6 TB and has less duplication than
one might expect because Exchange already uses sin-
gle instance storage (each message is stored only once
no matter how many users receive it) and because Net-
Backup does true Exchange incrementals, saving only
new/changed messages.

We have chosen data sets with daily incrementals and
weekly fulls rather than just daily fulls because such data
sets are harder to deduplicate well, and thus provide a
better test of any deduplication system. Incrementals are
harder to deduplicate because they contain less duplicate
material and because they have less locality: any given
incremental segment likely contains files from many seg-
ments of the previous full whereas a full segment may
only contain files from one or two segments of the pre-
vious full. Series of all fulls do generate higher dedupli-
cation factors, beloved of marketing departments every-
where, however.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
maximumÿ#ÿofÿsegmentsÿcompactedÿagainstÿ(M)

%
ÿo
fÿd
up
lic
at
eÿ
ch
un
ks
ÿn
ot
ÿre
m
ov
ed

1ÿMBÿmeanÿsegmentÿsize
2.5ÿMBÿmeanÿsegmentÿsize
5ÿMBÿmeanÿsegmentÿsize
10ÿMBÿmeanÿsegmentÿsize
20ÿMBÿmeanÿsegmentÿsize

Figure 2: Conservative estimate (GREEDY) of dedu-
plication effectiveness obtainable by deduplicating
each segment against up to M prior segments for data
set Workgroup. Shown are results for 5 different seg-
ment sizes, with all segments chosen via variable-size
segmentation.

4.3 Locality

In order for our approach to work, there must be suffi-
cient locality present in real backup streams. In particu-
lar, we need locality at the scale of our segment size so
that most of the deduplication possible for a given seg-
ment can be obtained by deduplicating it against a small
number of prior segments. The existence of such local-
ity is a necessary, but not sufficient condition: the exis-
tence of such segments does not automatically imply that
sparse indexing or any other method can efficiently find
them.

Whether or not such locality exists is an empirical
question, which we find to be overwhelmingly answered
in the affirmative. Figures 2 and 3 show a conservative
estimate of this locality for our data sets for a variety
of segment sizes. Here, we show how well segment-
based deduplication could work given near-perfect seg-
ment choice when each segment of the given data set
can only be deduplicated against a small number M of
prior segments. We measure deduplication effectiveness
by the percentage of duplicate chunks that deduplication
fails to remove; the smaller this number, the better the
deduplication.

Because computing the optimal segments to dedupli-
cate against is infeasible in practice, we instead estimate
the deduplication effectiveness possible by using a sim-
ple greedy algorithm (GREEDY) that chooses the seg-
ments to deduplicate a given segment S against one at a
time, each time choosing the segment that will produce
the maximum additional deduplication. While GREEDY

USENIX Association 7th USENIX Conference on File and Storage Technologies 117

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
maximumÿ#ÿofÿsegmentsÿcompactedÿagainstÿ(M)

%
ÿo
fÿd
up
lic
at
eÿ
ch
un
ks
ÿn
ot
ÿre
m
ov
ed

1ÿMBÿmeanÿsegmentÿsize
2.5ÿMBÿmeanÿsegmentÿsize
5ÿMBÿmeanÿsegmentÿsize
10ÿMBÿmeanÿsegmentÿsize
20ÿMBÿmeanÿsegmentÿsize

Figure 3: Conservative estimate (GREEDY) of dedu-
plication effectiveness obtainable by deduplicating
each segment against up to M prior segments for data
set SMB. Shown are results for 5 different segment sizes,
with all segments chosen via variable-size segmentation.

does an excellent job of choosing segments, it consumes
too much RAM to ever be practical.

As you can see, there is a great deal of locality at
these scales: deduplicating each input segment against
only 2 prior segments can suffice to remove all but 1% of
the duplicate chunks (0.1% requires only 3 more). Not
shown is the zero segment case (M= 0) where 93-98%
of duplicate chunks remain due to duplication within seg-
ments (segments are automatically deduplicated against
themselves). Larger segment sizes yield slightly less lo-
cality, presumably because larger pieces of incrementals
include data from more faraway places.

Likely sources of locality in backup streams include
writing out entire large items even when only a small part
has changed (e.g., Microsoft Outlook’s mostly append-
only PST files, which are often hundreds of megabytes
long), locality in the order items are scanned (e.g., al-
ways scanning files in alphabetical order), and the ten-
dency for changes to be clustered in small areas.

4.4 Overall deduplication
How much of this locality are we able to exploit using
sampling? Figure 4 addresses this point by showing for
data set Workgroup and 10 MB variable size segments
how much of the possible deduplication efficiency we
obtain. Even with a sampling rate as low as 1/128, we
remove all but 1.4% of the duplicate data given a max-
imum of 10 or more champions per segment (0.7% for
1/64).

Figures 5 and 6 show the overall deduplication pro-
duced by applying our approach to the two data sets.

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
maximumÿ#ÿofÿsegmentsÿcompactedÿagainstÿ(M)

%
ÿo
fÿd
up
lic
at
eÿ
ch
un
ks
ÿn
ot
ÿre
m
ov
ed

GREEDY
1/32ÿsampling
1/64ÿsampling
1/128ÿsampling
1/256ÿsampling
1/512ÿsampling

Figure 4: Deduplication efficiency obtained by using
sparse indexing with 10 MB average-sized segments
for various maximum numbers of champions (M) and
sampling rates for data set Workgroup. Shown for
comparison is GREEDY’s results given the same data.
Variable-size segmentation was used.

As can be seen, the degree of deduplication achieved
falls off as the sampling rate decreases and as the seg-
ment size decreases. The amount of deduplication re-
mains roughly constant as sampling rate is traded off
against segment size: halving the sampling rate and
doubling the mean segment size leaves deduplication
roughly the same. This can be seen most easily in Fig-
ure 7, which plots overall deduplication versus the av-
erage number of hooks per segment (equal to segment
size/chunk size×sampling rate). We believe this rela-
tionship reflects t7 he fact that deduplication quality us-
ing sparse indexing depends foremost on the number of
hooks per segment.

Note that these figures show simulated deduplication,
not real deduplication. In particular, they take into ac-
count only the space required to keep the data of the
non-deduplicated chunks. Including container padding,
the space required to store manifests, and other over-
head would reduce these numbers somewhat. Similar
overhead exists in all backup systems that use chunk-
based deduplication. On the other hand, these numbers
do not include any form of local compression of chunk
data. In practice, chunks would be compressed (e.g., by
Ziv-Lempel [29]), either individually or in groups, be-
fore storing to disk. Such compression usually adds an
additional factor of 1.5–2.5.

Using variable instead of fixed-size segmentation im-
proves deduplication using sparse indexing as can be
seen from Figure 8. This improvement is due to in-
creased locality: with fixed-size segmentation, there are
more segments that produce substantial deduplication

118 7th USENIX Conference on File and Storage Technologies USENIX Association

1.00

3.00

5.00

7.00

9.00

11.00

13.00

1/32 1/64 1/128 1/256 1/512 1/1024 1/2048 1/4096
Samplingÿrate

de
du
pl
ic
at
io
nÿ
fa
ct
or

perfectÿ4ÿKBÿdedup
1ÿMBÿmeanÿsegmentÿsize

2.5ÿMBÿmeanÿsegmentÿsize
5ÿMBÿmeanÿsegmentÿsize

10ÿMBÿmeanÿsegmentÿsize
20ÿMBÿmeanÿsegmentÿsize

Figure 5: Deduplication produced using sparse index-
ing with up to 10 champions (M=10) for various sam-
pling rates and segment sizes for data set Workgroup.
For each point, the deduplication factor (deduplicated
size/original size) is shown. Shown for comparison is
perfect 4 KB deduplication, wherein all duplicate chunks
are removed. Variable-size segmentation was used.

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

1/32 1/64 1/128 1/256 1/512 1/1024 1/2048 1/4096
Samplingÿrate

de
du
pl
ic
at
io
nÿ
fa
ct
or

perfectÿ4ÿKBÿdedup
1ÿMBÿmeanÿsegmentÿsize

2.5ÿMBÿmeanÿsegmentÿsize
5ÿMBÿmeanÿsegmentÿsize

10ÿMBÿmeanÿsegmentÿsize
20ÿMBÿmeanÿsegmentÿsize

Figure 6: Deduplication produced using sparse in-
dexing with up to 10 champions (M=10) for various
sampling rates and segment sizes for data set SMB.
For each point, the deduplication factor (deduplicated
size/original size) is shown. Shown for comparison is
perfect 4 KB deduplication, wherein all duplicate chunks
are removed. Variable-size segmentation was used.

1.0

3.0

5.0

7.0

9.0

11.0

13.0

0.1 1 10 100 1000
hooksÿperÿsegment

de
du
pl
ic
at
io
nÿ
fa
ct
or

2.5ÿMBÿmeanÿsegmentÿsize
5ÿMBÿmeanÿsegmentÿsize
10ÿMBÿmeanÿsegmentÿsize
20ÿMBÿmeanÿsegmentÿsize

Figure 7: Deduplication produced using sparse index-
ing with up to 10 champions (M=10) versus the av-
erage number of hooks per segment for various sam-
pling rates and segment sizes for data set Workgroup.
For each segment size, sampling rates (from right to left)
of 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024, 1/2048, and
1/4096 are shown. Variable-size segmentation was used.

0%

1%

2%

3%

4%

5%

6%

7%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

maximumÿ#ÿofÿsegmentsÿcompactedÿagainstÿ(M)

%
ÿo
fÿd
up
lic
at
eÿ
ch
un
ks
ÿn
ot
ÿre
m
ov
ed

1/64ÿsampling:ÿvariable
1/64ÿsampling:ÿfixed
1/128ÿsampling:ÿvariable
1/128ÿsampling:ÿfixed
1/256ÿsampling:ÿvariable
1/256ÿsampling:ÿfixed

Figure 8: Fixed versus variable-size segmentation
with 10 MB average size segments for selected sam-
pling rates for data set Workgroup.

USENIX Association 7th USENIX Conference on File and Storage Technologies 119

that must be found in order to achieve high levels of
deduplication quality. Because this introduces more op-
portunities for serious mistakes (e.g., missing such a seg-
ment due to poor sampling), sparse indexing does sub-
stantially worse with fixed-size segmentation.

4.5 RAM usage and comparison with Zhu
et al.

Since one of the main objectives of this paper is to ar-
gue that our approach significantly reduces RAM usage
for comparable deduplication and throughput to existing
approaches, we briefly describe here the approach used
by Zhu et al. [28], which we call the Bloom Filter with
Paged Full Index (BFPFI) approach.

BFPFI uses a full disk-based index of every chunk
hash. To avoid having to access the disk for every hash
lookup, it employs a Bloom Filter and a cache of chunk
container indexes. The Bloom Filter uses one byte of
RAM per hash and contains the hash of every chunk in
the store. If the Bloom filter does not indicate that an
incoming chunk is already in the store, then there is no
need to consult the chunk index. Otherwise, the cache is
searched and only if it fails to contain the given chunk’s
hash, is the on-disk full chunk index consulted. Each
time the on-disk index must be consulted, the index of
the chunk container that contains the given chunk (if any)
is paged into memory.

The hit rate of the BFPFI cache (and hence the overall
throughput) depends on the degree of chunk locality of
the input data: because chunk containers contain chunks
that occurred together before, high chunk locality im-
plies a high hit rate. The only parameter that impacts the
deduplication factor in BFPFI is the average chunk size,
since it finds all the duplicate chunks. Smaller chunk
sizes increase the deduplication factor at the cost of re-
quiring more RAM for the Bloom filter.

Both approaches degrade under conditions of poor
chunk locality: with BFPFI, throughput degrades,
whereas with sparse indexing, deduplication quality de-
grades. Unlike with BFPFI, with sparse indexing it is
possible to guarantee a minimum throughput by impos-
ing a maximum number of champions, which can be im-
portant given today’s restricted backup window times. It
is, of course, impossible to guarantee a minimum dedu-
plication factor because the maximum deduplication pos-
sible is limited by characteristics of the input data that are
beyond the control of any store.

The amount of RAM required by one of our sparse
indexes or the Bloom filter of the BFPFI approach is
linearly proportional to the maximum possible number
of unique chunks in that store. Accordingly, we plot
RAM usage as the ratio of RAM required per amount
of physical disk storage. Figure 9 shows the estimated

7

8

9

10

11

12

13

0 5 10 15 20 25 30 35 40 45 50
GBÿRAMÿperÿ100ÿTBÿofÿdisk

de
du
pl
ic
at
io
nÿ
fa
ct
or

5ÿMBÿmeanÿsegmentÿsize
10ÿMBÿmeanÿsegmentÿsize
20ÿMBÿmeanÿsegmentÿsize
Bloom filter

Figure 9: RAM space required per 100 TB of disk for
sparse indexing with up to 10 champions (M=10) and
for a Bloom filter. For each point, the deduplication
factor for data set Workgroup is shown. Each sparse in-
dexing series shows points for sampling rates of (right to
left) 1/32, 1/64, 1/128, 1/256, and 1/512 while the Bloom
filter series shows points for chunk sizes of 4, 8, 16, and
32 KB. Variable-size segmentation was used.

RAM usage of sparse indexes with 5, 10, and 20 MB
variable-sized segments as well as the Bloom filter used
by BFPFI. We assume here a local compression factor of
2, which allows 100 TB of disk to store twice as many
chunks as would otherwise be possible. Because it is
easy to achieve good RAM usage if deduplication quality
can be neglected, we also show the deduplication factor
for data set Workgroup for each case.

You will note that our approach uses substantially less
RAM than BFPFI for the same quality of deduplication.
For example, for a store with 100 TB of disk, a sparse
index with 10 MB segments and 1/64 sampling requires
17 GB whereas we estimate a Bloom filter would require
36 GB for an equivalent level of deduplication. Alter-
natively, starting with a Bloom filter using 8 KB chunks
(the value used by Zhu et al. [28]), which requires 25 GB
for 100 TB, we estimate we can get the same deduplica-
tion quality (using 4 KB chunks) but use only 10 GB
(10 MB segments) or 6 GB (20 MB segments) of RAM.
For comparison, the Jumbo Store [14], which keeps a
full chunk index in RAM, would need 1,500 GB for the
second case.

A sparse index has one key for each unique hook en-
countered; when using a sampling rate of 1/s, on average
1/s of unique chunks will have a hash which qualifies
as a hook. Because of the random nature of hashes and
the law of large numbers (we are dealing with billions
of unique chunks), we can treat this average as a maxi-
mum for estimation purposes. To conserve RAM needed

120 7th USENIX Conference on File and Storage Technologies USENIX Association

by our simulated sparse indexes, we generally limit the
number of manifest IDs per hook in our sparse index-
ing experiments to 1; that is, for each hook, we simulate
keeping the ID of only the last manifest containing that
hook. This slightly decreases deduplication quality (see
Section 4.7), but saves a lot of RAM.

Such a sparse index needs to be big enough to hold
u/s keys, each of which has exactly 1 entry, where u
is the maximum number of unique chunks possible. The
sampling rate is thus the primary factor controlling RAM
usage for our experiments. The actual space is ku/s
where k is a constant depending on the exact data struc-
ture implementation used. For this figure, we have used
k = 21.7 bytes based on using a chained hash table with
a maximum 70% load factor, 4-byte internal pointers, 8-
byte manifest IDs, and 4 key check bytes per entry. Us-
ing only a few bytes of the key saves substantial RAM
but means the index can—very rarely—make mistakes;
this may occasionally result in the wrong champion be-
ing selected, but is unlikely to substantially alter the over-
all deduplication quality. We calculate the size of the
BFPFI Bloom filter per Zhu et al. as 1 byte per unique
chunk [28].

Additional RAM is needed for both approaches for per
stream buffers. In our case, the per stream space is pro-
portional to the segment size.

4.6 Throughput

Because we do not move around or even simulate mov-
ing around chunk data, we cannot estimate overall read
or write throughput. However, because we do collect
statistics on how many champions are loaded per seg-
ment, we can estimate the I/O burden that loading cham-
pions places on a system using our approach. Aside from
this I/O and writing out new manifests, the only other
I/O our system needs to do when ingesting data is that
required by any other deduplicating store: reading in the
input data and writing out the non-deduplicated chunks.

Similarly, the majority of the computation required by
our approach—chunking, hashing, and compression—
also must be done by any chunk-based deduplication en-
gine. For an alternative way of getting a handle on the
throughput our approach can support, see Section 4.8
where we briefly describe some early throughput mea-
surements of a product embodying our approach.

Figure 10 shows the average number of champion
manifests actually loaded per segment for the data set
Workgroup with up to 10 champions per segment al-
lowed. The equivalent chart for SMB (not shown) is
similar, but scaled down by a factor of 2/3. You will
notice that that the average number loaded is substan-
tially less than the maximum allowed, 10. This is pri-
marily because most segments in these data sets can

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1/32 1/64 1/128 1/256 1/512 1/1024 1/2048 1/4096

Samplingÿrate

av
er
ag
eÿ
#ÿ
of
ÿc
ha
m
pi
on
sÿ
pe
rÿs
eg
m
en
t 1ÿMBÿmeanÿsegmentÿsize

2.5ÿMBÿmeanÿsegmentÿsize
5ÿMBÿmeanÿsegmentÿsize
10ÿMBÿmeanÿsegmentÿsize
20ÿMBÿmeanÿsegmentÿsize

Figure 10: Average number of champions actually
loaded per segment using sparse indexing with up to
10 champions (M=10) for various sampling rates and
segment sizes for data set Workgroup. Variable-size
segmentation was used.

be completely deduplicated using only a few champions
(GREEDY does not load substantially more champions
than 1/32-sampling). Lower sampling rates result in even
fewer champions being loaded because sparser indexes
result in fewer candidate champions being identified.

Loading a champion manifest requires a random seek
followed by a quite small amount of sequential reading
(manifests are a hundredth of the size of segments and
measured in KBs). Accordingly, the I/O burden due to
loading champions is best measured in terms of the av-
erage number of seeks (equivalently champions loaded)
per unit of input data. Figure 11 shows this informa-
tion for the Workgroup data set. Note that the ordering
of segment sizes has reversed: although bigger segments
load more champions each, they load their champions
so much less frequently that their overall rate of loading
champions per megabyte of input data, and hence, their
I/O burden is less.

If we conservatively assume that loading a champion
manifest takes 20 ms and that we load 0.2 champions
per megabyte on average, then a single drive doing noth-
ing else could support a rate of 1/(0.2 · 20 ms/MB) =
250 MB/s. Of course, as we mentioned above, there is
other I/O that needs to be done as well. However, in prac-
tice deduplication systems are usually deployed with 10
or more drives so the real number before other I/O needs
is more like 2.5 GB/s. This is a sufficiently light burden
that we expect that some other component of the system
will be the throughput bottleneck.

USENIX Association 7th USENIX Conference on File and Storage Technologies 121

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1/32 1/64 1/128 1/256 1/512 1/1024 1/2048 1/4096
Samplingÿrate

av
er
ag
eÿ
#ÿ
of
ÿc
ha
m
pi
on
sÿ
pe
rÿ1
ÿM
B
ÿo
fÿi
np
ut

1ÿMBÿmeanÿsegmentÿsize
2.5ÿMBÿmeanÿsegmentÿsize
5ÿMBÿmeanÿsegmentÿsize
10ÿMBÿmeanÿsegmentÿsize
20ÿMBÿmeanÿsegmentÿsize

Figure 11: Average number of champions actually
loaded per 1 MB of input data using sparse indexing
with up to 10 champions (M=10) for various sam-
pling rates and segment sizes for data set Workgroup.
Variable-size segmentation was used.

4.7 Optimization

Figure 12 shows how capping the number of manifest
IDs kept per hook in the sparse index affects deduplica-
tion quality. Keeping only one manifest ID per hook does
reduce deduplication somewhat (99.29% versus 99.44%
duplicate chunks removed for M = 10 here), but greatly
reduces the amount of RAM required for the sparse in-
dex.

All the experiments we have reported on do not use
any manifest caching at all. While the design of our sim-
ulator unfortunately makes it hard to implement manifest
caching correctly (we compute the ith champion for each
segment in parallel), we were able to conservatively ap-
proximate a cache just large enough to hold the cham-
pions from the previous segment.3 We find that even
with this suboptimal implementation, manifest caching
reduces champions loaded per segment and slightly im-
proves deduplication quality. For 10 MB variable size
segments, M = 10, and 1 in 64 sampling for data set
Workgroup, for example, our version of manifest caching
lowers the average number of champions loaded per seg-
ment by 3.9% and improves the deduplication factor by
1.1%.

4.8 Productization

Our approach is being used to build a family of VTL
products that use deduplication internally to increase the
amount of data they can support. Already on the mar-
ket are the HP D2D2500 and the D2D4000. Most of the
work described in this paper, however, was done before

0%

1%

2%

3%

4%

5%

6%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
maximumÿ#ÿofÿsegmentsÿcompactedÿagainstÿ(M)

%
ÿo
fÿd
up
lic
at
eÿ
ch
un
ks
ÿn
ot
ÿre
m
ov
ed

1ÿmanifests/hook
2ÿmanifests/hook
3ÿmanifests/hook
4ÿmanifests/hook
5ÿmanifests/hook
10ÿmanifests/hook
noÿlimit

Figure 12: Deduplication efficiency obtained as the
maximum number of manifest IDs kept per hook
varies for 10 MB average size segments and a sampling
rate of 1/64 for data set Workgroup. Variable-size seg-
mentation was used.

even a prototype of these products was available.
A third-party testing firm, Binary Testing Ltd., was

hired by HP to test the D2D4000’s deduplication perfor-
mance [5]. The D2D4000 configuration they tested has
6 750 GB disk drives running RAID 6, 8 GB RAM, 2
AMD Opteron 3 Ghz dual core processors, and a 4 Gb
fiber channel link. We report a few representative ex-
cerpts from their report here: changing 0.4% of every file
of a 4 GB file server data set every day and taking fulls
for three months produced a deduplication factor of 69.2;
the same change schedule applied to a 4 GB exchange
server produced a factor of 24.9. Instead changing only
20% of the items every day but by 5% yielded factors
of 25.5 (for the file server) and 40.3 (for the Exchange
server). Note that these numbers include all overhead
and local compression.

Preliminary throughput testing of a similar system
with 12 750 GB disk drives shows write rates of 90 MB/s
(1 stream) and 120 MB/s (4 streams) and read rates of 40-
50 MB/s (1 stream) and 25-35 MB/s (4 streams). The re-
store path was still being optimized when these measure-
ment were taken, so those numbers may improve sub-
stantially. We believe these product results validate our
approach, and demonstrate that we have not overlooked
any crucial points.

5 Related Work

Chunking has been used to weed out near duplicates in
repositories [16], conserve network bandwidth [20], and
reduce storage space requirements [1, 22, 23, 27]. It
has also been used to synchronize large data sets reliably

122 7th USENIX Conference on File and Storage Technologies USENIX Association

while conserving network bandwidth [14, 17].
Archival and backup storage systems detect dupli-

cate data at granularities that range from an entire file,
as in EMC’s Centera [12], down to individual fixed-
size disk blocks, as in Venti [22], and variable-size data
chunks, as in the Low-Bandwidth Network File Sys-
tem [20]. Variable-sized chunking has also been used
in the commercial sector, for example, by Data Domain
and Riverbed Technology. Deep Store [27] is a large-
scale archival storage system that uses both delta com-
pression [2, 11] and chunking to reduce storage space
requirements. How much deduplication is obtained de-
pends on the inherent content overlaps in the data, the
granularity of chunks, and the chunking method [21].
Deduplication using chunking can be quite effective for
data that evolves slowly (mainly) through small changes,
additions, and deletions [26].

Chunking is just one of the methods in the literature
used to detect similarities or content overlap between
documents. Shingling [8] was developed by Broder for
near duplicate detection in web pages. Manber [18],
Brin et al. [7], and Forman et al. [16] have also developed
techniques for finding similarities between documents in
large repositories

Various approaches have been used to reduce disk ac-
cesses when querying an index. Database buffer man-
agement strategies [10] that aim to efficiently maintain a
‘working set’ of rows of the index in a buffer cache have
been well researched. However, these strategies do not
work in the case of chunk-based deduplication because
chunk IDs are random hashes for which it is not possible
to identify or maintain a working set.

Bloom filters [6] have also been used to minimize in-
dex accesses. A Bloom filter, which can give false posi-
tives but not false negatives, can be used to determine the
existence of a key in an index before actually querying
the index. If the Bloom filter does not contain the key,
then the index does not need to queried thereby elimi-
nating both an index and possibly a disk access. Bloom
filters have been used by large scale distributed storage
systems such as Google’s BigTable [9] and by Data Do-
main [28].

Besides using Bloom filters to improve the dedupli-
cation throughput, Data Domain exploits chunk local-
ity for index caching as well as for laying out chunks
on disk. By using these techniques Data Domain can
avoid a large number of disk accesses related to index
queries. Venti uses a disk-based hash table divided into
buckets where a hash function is used to map chunk
hashes to appropriate buckets. To improve the index
lookup performance, Venti uses caching, striping, and
write buffering. Foundation [23] is an archival storage
system that preserves users’ data and dependencies by
capturing and storing regular snapshots of every users’

virtual machine. Chunking is used to deduplicate the
snapshots. Foundation also uses a combination of Bloom
filters and locality-friendly on-disk layouts to improve
the performance of index lookups.

6 Conclusions

D2D backup is increasingly becoming the backup so-
lution of choice, and deduplication is an essential fea-
ture of D2D backup. Our experimental evaluation has
shown that there exists a lot of locality within backup
data at the small number of megabytes scale. Our ap-
proach exploits this locality to solve the chunk-lookup
disk bottleneck problem. Through content-based seg-
mentation, sampling, and sparse indexing, we divide in-
coming streams into segments, identify similar existing
segments, and deduplicate against them, yielding excel-
lent deduplication and throughput while requiring little
RAM.

While our approach allows a few duplicate chunks to
be stored, we more than make up for this loss of dedu-
plication by using a smaller chunk size (possible because
of the small RAM requirements), which produces greater
deduplication. Compared with the BFPFI approach, we
use less than half the RAM for an equivalent high level
of deduplication. The practicality of our approach has
been demonstrated by its being used as the basis of a HP
product family.

Acknowledgments

We would like to thank Graham Perry, John Czerkow-
icz, David Falkinder, and Kevin Collins for their help
and support. We would also like to think the anonymous
FAST’09 reviewers and Greg Ganger, our shepherd. This
work was done while the third author was an intern at HP.

References
[1] ADYA, A., BOLOSKY, W. J., CASTRO, M., CERMAK, G.,

CHAIKEN, R., DOUCEUR, J. R., HOWELL, J., LORCH, J. R.,
THEIMER, M., AND WATTENHOFER, R. P. FARSITE: Feder-
ated, available, and reliable storage for an incompletely trusted
environment. In Proc. of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI) (Boston, MA, Decem-
ber 2002), pp. 1–14.

[2] AJTAI, M., BURNS, R., FAGIN, R., LONG, D. D. E., AND
STOCKMEYER, L. Compactly encoding unstructured inputs with
differential compression. Journal of the Association for Comput-
ing Machinery 49, 3 (May 2002), 318–367.

[3] ASARO, T., AND BIGGAR, H. Data De-duplication and Disk-to-
Disk Backup Systems: Technical and Business Considerations.
The Enterprise Strategy Group (July 2007).

[4] BIGGAR, H. Experiencing Data De-Duplication: Improving Ef-
ficiency and Reducing Capacity Requirements. The Enterprise
Strategy Group (Feb. 2007).

USENIX Association 7th USENIX Conference on File and Storage Technologies 123

[5] BINARY TESTING LTD. HP StorageWorks D2D4000 Backup
System: a report and full performance test on Hewlett-
Packard’s SME data deduplication appliance. Available at
http://h18006.www1.hp.com/products/storageworks/d2d 4000/
relatedinfo.html, July 2008.

[6] BLOOM, B. H. Space/time trade-offs in hash coding with allow-
able errors. Communications of the ACM 13, 7 (1970), 422–426.

[7] BRIN, S., DAVIS, J., AND GARCÍA-MOLINA, H. Copy detec-
tion mechanisms for digital documents. In SIGMOD ’95: Pro-
ceedings of the 1995 ACM SIGMOD International Conference on
Management of Data (San Jose, California, United States, 1995),
ACM Press, pp. 398–409.

[8] BRODER, A. Z. On the resemblance and containment of doc-
uments. In SEQUENCES ’97: Proceedings of the Compres-
sion and Complexity of Sequences 1997 (Washington, DC, USA,
1997), IEEE Computer Society, pp. 21–29.

[9] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: a distributed storage system for struc-
tured data. In OSDI’06: Proc. of the 7th USENIX Symposium
on Operating Systems Design and Implementation (Seattle, WA,
2006), pp. 205–218.

[10] CHOU, H.-T., AND DEWITT, D. J. An evaluation of buffer man-
agement strategies for relational database systems. In Proc. of the
11th Conference on Very Large Databases (VLDB) (Stockholm,
Sweden, 1985), VLDB Endowment, pp. 127–141.

[11] DOUGLIS, F., AND IYENGAR, A. Application-specific delta-
encoding via resemblance detection. In Proceedings of the 2003
USENIX Annual Technical Conference (San Antonio, Texas, June
2003), pp. 113–126.

[12] EMC CORPORATION. EMC Centera: Content Addressed Stor-
age System, Data Sheet, April 2002.

[13] ESHGHI, K. A framework for analyzing and improving content-
based chunking algorithms. Tech. Rep. HPL-2005-30(R.1),
Hewlett Packard Laboratories, Palo Alto, 2005.

[14] ESHGHI, K., LILLIBRIDGE, M., WILCOCK, L., BELROSE, G.,
AND HAWKES, R. Jumbo Store: Providing efficient incremental
upload and versioning for a utility rendering service. In Proceed-
ings of the 5th USENIX Conference on File and Storage Tech-
nologies (FAST) (San Jose, CA, February 2007), USENIX Asso-
ciation, pp. 123–138.

[15] Federal Information Processing Standard (FIPS) 180–3: Secure
Hash Standard (SHS). Tech. Rep. 180–3, National Institute of
Standards and Technology (NIST), Gaithersburg, MD, Oct 2008.

[16] FORMAN, G., ESHGHI, K., AND CHIOCCHETTI, S. Finding
similar files in large document repositories. In Proceeding of the
Eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD) (Chicago, IL, USA, August
2005), ACM Press, pp. 394–400.

[17] JAIN, N., DAHLIN, M., AND TEWARI, R. TAPER: Tiered ap-
proach for eliminating redundancy in replica synchronization. In
Proceedings of the 4th USENIX Conference on File and Storage
Technologies (FAST) (San Francisco, CA, USA, December 2005),
pp. 281–294.

[18] MANBER, U. Finding similar files in a large file system. In
Proceedings of the Winter 1994 USENIX Technical Conference
(San Fransisco, CA, USA, January 1994), pp. 1–10.

[19] Microsoft exchange server 2003 load simulator. Download avail-
able at http://www.microsoft.com/downloads, February 2006.

[20] MUTHITACHAROEN, A., CHEN, B., AND MAZIÈRES, D. A
low-bandwidth network file system. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP)
(Banff, Alberta, Canada, October 2001), ACM Press, pp. 174–
187.

[21] POLICRONIADES, C., AND PRATT, I. Alternatives for detect-
ing redundancy in storage systems data. In Proc. of the General
Track, 2004 USENIX Annual Technical Conference (Boston, MA,
USA, June 2004), USENIX Association, pp. 73–86.

[22] QUINLAN, S., AND DORWARD, S. Venti: A new approach to
archival storage. In Proceedings of the FAST 2002 Conference
on File and Storage Technologies (Monterey, CA, USA, January
2002), USENIX Association, pp. 89–101.

[23] RHEA, S., COX, R., AND PESTEREV, A. Fast, inexpensive
content-addressed storage in Foundation. In Proceedings of
the 2008 USENIX Annual Technical Conference (Boston, Mas-
sachusetts, June 2008), pp. 143–156.

[24] SHAPIRO, L. D. Join processing in database systems with large
main memories. ACM Transactions on Database Systems 11, 3
(1986), 239–264.

[25] TOLIA, N., KOZUCH, M., SATYANARAYANAN, M., KARP, B.,
BRESSOUD, T., AND PERRIG, A. Opportunistic use of content
addressable storage for distributed file systems. In Proceedings of
the General Track, 2003 USENIX Annual Technical Conference
(San Antonio, Texas, June 2003), USENIX Association, pp. 127–
140.

[26] YOU, L. L., AND KARAMANOLIS, C. Evaluation of efficient
archival storage techniques. In Proceedings of the 21st IEEE /
12th NASA Goddard Conference on Mass Storage Systems and
Technologies (College Park, MD, April 2004).

[27] YOU, L. L., POLLACK, K. T., AND LONG, D. D. E. Deep
Store: An archival storage system architecture. In Proc. of the
21st International Conference on Data Engineering (ICDE ’05)
(Tokyo, Japan, April 2005), IEEE, pp. 804–815.

[28] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the disk bottle-
neck in the Data Domain deduplication file system. In Proceed-
ings of the 6th USENIX Conference on File and Storage Tech-
nologies (FAST) (San Jose, CA, USA, February 2008), USENIX
Association, pp. 269–282.

[29] ZIV, J., AND LEMPEL, A. A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory 23,
3 (1977), 337–343.

Notes
1 E.g., 30 fulls with 5% data change/day might when deduplicated

occupy the space of 1+29 · 5% = 2.45 fulls so the extra full worth of
space needed by out-of-line amounts to requiring 29% more disk space.

2 Standard TTTD parameters yield for this chunk size a minimum
chunk size of 1,856 and a maximum chunk size of 11,299 using primary
divisor 2,179 and secondary divisor 1,099.

3 We get the effect of a size-M manifest cache by causing our sim-
ulator to do the following: each time it chooses the ith champion for
a given segment, it immediately also deduplicates the given segment
against the ith champion of the immediately preceding segment as well.

