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Abstract—We propose Clasas (from the Castilian “Claves
seguras” for “secure keys”), a key-store for distributed storage
such in the Cloud. The security of Clasas derives from breaking
keys into K shares and storing the key shares at many different
sites. This provides both a probabilistic and a deterministic
guarantee against an adversary trying to obtain keys. The
probabilistic guarantee is based on a combinatorial explosion,
which forces an adversary to subvert a very large portion of the
storage sites for even a minute chance of obtaining a key. The
deterministic guarantee stems from the use of LH* distributed
linear hashing. Our use of the LH* addressing rules insures that
no two key shares (belonging to the same key) are ever, even in
transit, stored at the same site. Consequentially, an adversary
has to subvert at least K sites. In addition, even an insider with
extensive administrative privileges over many of the sites used
for key storage is prevented from obtaining access to any key.

Our key-store uses LH* or its scalable availability derivate,
LH*RS to distribute key shares among a varying number of
storage sites in a manner transparent to its users. While an
adversary faces very high obstacles in obtaining a key, clients or
authorized entities acting on their behalf can access keys with
a very small number of messages, even if they do not know all
sites where key shares are stored. This allows easy sharing of
keys, rekeying, and key revocation.

I. INTRODUCTION

Many applications can benefit from the inexpensive, scal-

able storage solutions offered by storage providers in the

cloud. These applications often need to maintain confiden-

tiality of data. While storage service providers might be

trusted to fulfill their contractual obligations, their maintenance

and administrative personnel might be suborned and security

procedures insufficiently vetted. In this environment, client-

side encryption is an attractive choice, but its downside is the

difficulty of key management. Loss, destruction, or disclosure

of keys during the lifetime of the data can be disastrous.

A third-party escrow service could safeguard keys and

provide key recovery on request [1], [2]. These services

are not widely used, perhaps because of legal and technical

difficulties. Current industrial practices mainly use server-side

encryption, unless “data security is paramount” [3], [4]. The

resulting lack of control is unacceptable when the owners of

the data and of the storage sites are different entities.

Microsoft’s Encrypted File System (EFS) uses a public-

private key infrastructure [5]. Files are encrypted, the en-
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cryption key is itself encrypted with the public key of the

application and with a domain (group) server public key and

stored with the file. A successful intrusion into two servers

reveals all information.

The research prototype Potshards takes a different approach

[6]. It targets assets stored much longer than the average

lifetime of any encryption system and eschews encryption

at all. Instead, participants use secret sharing to break every

datum into several shares stored at different systems, each

protected by an autonomous authentication procedure. The

price tag is high storage overhead, as every share has the same

size as the original data.

A large number of proposals for distributed storage systems

exist, such as CFS [7], FarSite [8], Pasis [9], and PAST [10]

to name only a few. Common to these systems is that data is

stored on machines beyond the administrative and often legal

domain of the data owners.

We propose a solution to the resulting security problem

that combines client side encryption, Potshard’s secret splitting

across administrative boundaries, and an adaptation of LH*

[11], [12] a scalable, distributed data structure. An asset is

protected with a secret key that is split into a number of key

shares, which are then stored in the LH* data structure that can

use all available storage sites. The LH* addressing algorithm

prevents shares of the same key from being stored together. It

thus forces an attacker to subvert many sites, while allowing

fast access to keys for authorized users, who can share keys,

retrieve lost keys, and revoke keys.

The combinatorial explosion resulting from the use of LH*

and many key shares provides strong probabilistic guarantees.

Even an adversary who can access many sites in the system

is very unlikely to have access to one of a reasonably large

set of keys. The mere fact of secret sharing provides a hard

lower bound on the number of sites needed for an adversary to

be successful. In contrast, the client itself can quickly retrieve

keys. The client can also delegate its rights to an authority. A

central authority or a delegated authority can access keys on

the client’s behalf, can revoke and replace keys. For example,

when an employee has left the employment or a mobile device

with keys was stolen. Our work here focuses on the security

resulting from key share dispersal. We leave out the design of

authentication and authorization procedures for a large set of

interacting clients.

Because the deterministic security of our scheme is based

on LH* and its variants, the next section gives a short overview
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of these systems that can be skipped at first reading. We then

discuss the key store itself. A detailed analysis of its security is

given in Section IV, while Section V draws the consequences

for the operations of Clasas.

II. BACKGROUND

We use the highly available, scalable distributed data struc-

ture LH*RS, a distributed version of linear hashing [11], [12],

[13], [14]. LH*RS adds scalable availability to LH* and an

LH*RS file appears to a client as an LH* file. An LH* or

LH*RS file is a collection of records identified by a Record

IDentifier (RID). One or more clients insert, update, read, and

delete records. The records themselves are stored in buckets,

each stored at a different server. Buckets have logical addresses

0, 1 . . . N − 1. We call N the file extent. LH* gracefully

adjusts N to the total number of records. The location of a

record depends therefore both on the RID and N. We first

break up N, writing N = 2l +s where the level l is the highest

power of two smaller or equal to N and s is called the split

pointer (for reasons that will become apparent soon). We

define hi(r) = r mod 2i. The family (hi)i=0,1,2,... is a family of

extendible hash functions used for the address calculation. The

address a, i.e. the bucket where a record with RID r resides,

depends indirectly on the current extent N and directly on the

current level l and split pointer s. We obtain a by

if hl(r) < s then a = hl+1(r) else a = hl(r)

If a bucket reports an overflow after an insert, then a special

coordinator node creates a new bucket with number N. The

extent is incremented, but only records currently in bucket

s change their bucket address because of this change in file

extent. Indeed, about half of them should be now located in

the new bucket and the split operation moves them there.

Conversely, the merge operation is triggered if a bucket reports

an underflow and undoes the last split.

The coordinator does not inform clients of splits and merges.

Consequentially, a client can commit an addressing error based

on an outdated extent. To deal with misdirected requests, all

buckets remember the file level when they were last split

or created. Based on this information, a bucket receiving a

misdirected request can forward the request, usually directly

to the correct bucket. It is known [12] that in the absence of an

intervening bucket merge at most two forwards can occur. The

correct bucket sends its view of the file extent to the requester

who updates his view of the file extent and is guaranteed to

never repeat this particular error. After merge operations, it is

possible that a client tries to access a record in a bucket that no

longer exists. After a timeout or receipt of an error-message,

the client resends the request to one of the original buckets.

In addition to RID-based operations, we can scan an LH*

file. The scan operation is a Map-Reduce type query to all N
buckets, requesting records fulfilling the conditions specified

in the query. By forwarding, it is guaranteed to reach all

buckets, even those the client did not know about.

As a consequence of bucket size limits and the maximum

number of message forwards, LH* maintains constant access
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Fig. 1: Formation of record groups for calculating parity

records in an LH*RS-file

times independent of the number of records in the file. LH*

does not rely on central routing information, broadcasts of

states to clients, or Distributed Hash Tables (DHT).

Any large distributed system should offer transparent re-

covery from site unavailabilities. As we use the LH* structure

to store key shares whose loss implies loss to possibly many

assets, this need is exacerbated for us. We use LH*RS which

groups adjacent buckets into a bucket (reliability) group of k
buckets. We refer to them as data buckets. To each bucket

group, it adds one or more parity buckets, depending on the

size of the file. Records in data buckets are grouped into

record groups such that each record in a group belongs to one

bucket in the bucket group. Figure 1 gives an example with

k = 4 and two parity buckets. Each parity bucket has a parity
record in the record group. Its key is the number of the record

group, and its payload contains the keys of all data records in

the record group, as well as the parity of the data records’

payload calculated with a linear erasure correcting code. Not

all record groups contain k data buckets. In this case, the parity

records are calculated using dummy zero records in place of

the missing data records. When a record in a record group

changes, the parity records are updated based only on the

exclusive-or (delta) between the previous and current version

of the changed record and key information. In particular, this

process allows us to replace dummy records with real data

records. The erasure correcting code is a linear code with

optimal erasure correcting capacity. Hence, if there are p parity

buckets in a group, then LH*RS can recover from p or less

bucket failures. LH*RS uses its particular growth by splits to

increase p gradually and thus adjust to the greater need for

redundancy in the storage as the number of buckets increases.

III. CLASAS OPERATIONS

Clasas (Claves Seguras) uses an (adapted) LH*RS-file to

store cryptographic keys of clients in a distributed system in

the cloud. For protection, keys are broken up by a standard

cryptographic secret sharing mechanism [15] into K shares,

which are stored at different sites. The storage nodes also

store buckets from an LH*RS-file, that contains the keys of

all clients.
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A. Adjustments to LH*RS

To use LH*RS in our setting, we need to make a number of

relatively minor adjustments. First, we never allow the number

of data buckets to fall below K, the number of shares into

which we break each share. Otherwise, at least two key shares

would be located in the same bucket. Secondly, instead of

adjusting the file extent to the number of records stored in the

file, we adjust the file extent to be approximately the number

of sites available in the storage system. This departure from

LH* is motivated by a change in goals. LH* intends to keep

buckets close to their capacity to avoid deterioration of access

to records in overflowing buckets. We instead are interested

in dispersing key information as much as possible. Third, we

assume that access to buckets is authenticated and authorized

on a per bucket base. We do not discuss the selection of the

mechanisms, but argue that maintaining public-private keys

per client and site is less arduous than maintaining multiple

keys per client. As records in an LH*RS-file change location,

a client might have to use different authentication methods to

access the same record over the lifetime of the record. Also,

when a client approaches the wrong bucket for a key share, and

the request is forwarded, the final site needs to authenticate

the client independently.

Finally, we have to make a change to the high availability

implementation of LH*RS. If there is a single data record in

a record group (as in the second highlighted record group in

Figure 1) then the contents of the parity records reveal the

contents of the data record. Similarly, a parity record reveals

which of the data records in the record group are dummy

(zero) records. To avoid this situation, we do not allow bucket

groups with only one data bucket. Various mechanisms can

be employed, such as having a larger final bucket group. In

addition, if we create a record group by inserting a data record

that cannot be placed in any other record group, we create

dummy records with random contents in all other slots in a

record group. If later we want to use this slot for a real key

share record, LH*RS performs a normal record update.

B. Key Share Records

Clients maintain their keys locally in a key chain. Before

a client stores a key C in the key chain, it also backs it up

in Clasas. Since keys are small, we can use a simple scheme

that is not storage optimal. We first generate (cryptographically

strong) random numbers C0, . . .CK−2 and calculate CK−1 =
C0 ⊕ . . .⊕CK−2 ⊕C as the last key share. Each key share

becomes then the payload of an LH* record, together with

fields for authentication and authorization purposes. We also

include a field that identifies the client or clients using this key

and that points to the location of the key in the key chain of the

client(s). Finally, we need to give a unique Record IDentifier

(RID) to the key share record. In addition to uniqueness, the

RID should not identify the client. Most importantly, the LH*

addressing mechanism should place all key shares into the K
different data buckets if the extent were K. This is the rule

that in conjunction with LH* addressing implies the key safety

property: No two key shares will ever be placed together in

the same bucket however the system evolves. A simple trial

and error method based on a cryptographically strong random

number generator will yield RIDs with these properties.

C. Operations

Clients can recover keys by using the LH* RID-based

access if they can regenerate the RIDs used for the key shares.

Alternatively and more likely, they can use the LH* scan

operation by searching for all key shares belonging to the

client and possibly having a given pointer into the key chain.

Similarly, an entity with the correct authentication information

can use a scan to recover all key shares belonging to a

certain client and thus recover all of the client’s keys. In

order to revoke a client’s keys (e.g. because an employment

was terminated or because an application was replaced,) the

authority can recover all keys, then search for and access all

assets of the client and rekey them.

IV. SECURITY ANALYSIS

A. Threat Model

The novelty of our scheme lies in its distributed nature

and our threat model focuses on this aspect. In particular, we

do not consider direct attacks on a client but concentrate on

attacks at storage sites. We focus also on key integrity and

confidentiality, and only consider availability briefly in what

follows. The greatest threat comes from insiders administering

servers in the cloud. These adversaries are likely to have access

to more than a single server. They can certainly destroy locally

stored assets and the same applies to key shares. We assume

that social sanction will prevent them from doing so. For our

analysis, we assume individual attacks on servers, but discuss

generic strategies against insiders with administrative control

over many sites. Finally, we assume that the encryption method

used is strong and an adversary needs access to the key as well

as the asset.

B. Single Key Safety

An adversary can only obtain key shares from an intrusion

into a server. These key shares can be residing at the server

or they can be in transit, for example because the client made

an addressing error during the insert of a key share. Recall

that we split every key into K shares. Clasas is (K−1)-safe,

which means that an adversary needs to have access to at

least K servers in order to obtain a share. The formal proof

of (K − 1)-safety requires some notation. When a bucket i
splits, then the new bucket j (which happens to have address

j = 2l + i where l is the level) is called a descendent. Reversely,

we call i an ancestor of j. We form a set Di of all direct or

indirect descendents (descendents, descendents of descendents,

. . .) of a bucket i, 0 ≤ i < K and call Di the ith descendency
set. LH* addressing implies the following properties for files

with extent at least K:

1) The sets Di, 0 ≤ i < K are mutually disjoint and every

possible bucket is in one Di.
2) A descendent of a bucket in Di is also in Di.
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Fig. 2: Nines of Assurance that a single key is not compromised when broken into K = 4 (left), K = 8, and K = 32 (right)

shares. The x-axis gives the number of randomly intruded sites. The curves correspond to a total of 32, 64, 128, 256, 512,

1024 (left and middle) and 64, 128, 256, 512, and 1024 sites.

3) A RID based query (i.e. a key share insert, update,

delete, or read) to a record in a bucket in Di is orig-

inally sent and possibly forwarded only through and

to other buckets in Di. In particular, a scan for key

shares transmitting its results back to the client uses

independent messages for each key share belonging to

the same record.

4) If a scan requests reaches a bucket in Di and the message

is forwarded because the client did not know the true

extent of the file, then the message only has passed and

will pass to other buckets in Di.
5) Records in a bucket in Di can migrate through split and

merge operations, but only to other buckets in Di.

In an LH* file that contracts and expands repeatedly, it

could happen that the same server stores various buckets in

succession. We add a rule that prohibits this successive hosting

of buckets on the same server. Taken together, all these rules

imply that key shares are never collocated on the same server,

even in transit. They also allow protection against insiders

with administrative control over many servers, as long as we

can insure that no single administrative domain has direct or

indirect control over buckets from all dependency sets.

An LH*RS gives an attacker an additional opportunity for

harvesting key shares as access to sufficient parity buckets

gives access to data. Assume a bucket group with m data

buckets and k parity buckets. An adversary can gain access to

all the data in the group by gaining access to any m or more

buckets in the group. According to what we just derived, there

are at most m keys ever stored in the bucket group. Using the

loss resilience of LH*RS, the attacker has to access at least as

many buckets as there are keys.

C. Assurance

While the safety level K− 1 (K being the number of key

shares into which a key is broken) gives a simple measure of

confidence that an intruder cannot read a client’s data, it gives

only a lower bound on the number of intrusions necessary for

an adversary to succeed. Typically, the required number of

intrusions is much higher. As usual [16], we define assurance
to be the probability that an adversary is not successful despite

certain gains, namely access to the key shares in x buckets.

As sites storing keys also store assets encrypted with these

keys, we can calculate disclosure, which is the expected ratio

of assets to which an intruder now has access.

1) Single Key: We first calculate assurance of a single

key for a key store depending on the number of sites that

the adversary can read. We first assume that there are no

parity buckets and that the adversary has somehow managed

to intrude x of the N buckets in which key shares are stored.

In our scenario, the intruder does not exploit any knowledge

about location of buckets and the buckets obtained appear

to him to be random. We determine the probability that an

adversary has obtained all key shares by a counting argument.

There are
(N

x

)
ways to select the x buckets that the intruder

broke into. If the attacker has intruded into all K sites with

key shares then there are
(N−K

x−K

)
ways to select the remaining

x−K buckets intruded not containing a key share. Thus, the

probability that the adversary obtains a given set of K key

shares with x intrusions is

p1(N,x,K) =
(

N−K
x−K

)
·
(

N
x

)−1

The assurance against disclosure of this single key is

q1(N,x,K) = 1− p1(N,x,K). As can be expected, the assur-

ance is rather high, even if a large portion of sites has suffered

an intrusion. We measure assurance in the number of nines.

Mathematically, this is − log10(p1). We give an example in

Figure 2. There, we display the number of nines of assurance

for N = 32, 64, 128, 256, 512, and 1024 sites and K = 4,

K = 8 and K = 32. We move the x-axis to cross the y-axis at a

point corresponding to six nines. With only K = 4 key shares,

this level of assurance is only reachable if the LH* file has

more than 64 buckets.

For example, nine out of 32 sites intruded still give us six

nines of assurance (probability 0.999 999) that the attacker has

not obtained all K = 8 key shares. The almost even spacing

of the curves on the logarithmic x-axis shows that the fraction

of sites needed for a key disclosure is almost independent

of the number of sites. We now investigate this fact. For a

given assurance level a, we define x0 = min{x|p1(x) ≥ a}
and F = x0/N. F thus measures the portion of sites an

adversary has to subvert in order to bring assurance below

a certain level. We display F for an assurance of six nines

(0.999 999) for various K in dependence on N and confirm that

F essentially becomes constant in Figure 3. The percentage
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values correspond to the value for N = 1000. The convergence

of F is easily explained by comparing with an alternative

scheme in which key shares are stored in randomly chosen

buckets. In the alternative scheme, two key shares can be in

the same bucket. Let ρ denote the probability of disclosure of

an individual bucket. The assurance against key disclosure in

the alternative scheme is simply 1−ρK and is independent of

the number of sites. As the number of buckets increases, the

probability of two key shares being in the same bucket goes

quickly to zero and the assurance of Clasas converges from

above to the assurance of the alternative. We can calculate the

critical value for ρ below which assurance falls under a given

assurance level. F then converges towards this critical value

for ρ. For example, the critical value for ρ is 3.16% for K = 4,

42.16% for K = 16 and 80.58% for K = 64, very close to the

values in Figure 3. Overall, the dispersal of key shares even

over a moderate number of sites is astonishingly effective.

The assurance becomes independent of LH* addressing as the

number of sites increases.

2) Multiple Keys: Assume now that the client has r keys

stored in the key store. The probabilities of obtaining two

different keys from the data in the same x intruded sites are in-

dependent. Consequentially, the assurance is now qr(N,x,K) =
(1 − p1(N,x,K))r. The number of nines of assurance is

ninesr(N,x,K) ≈ nines1(N,x,K)− log10(r). We illustrate the

influence of r in Figure 4 with the case K = 8 and N = 128.
As the number r of keys increases, the number of sites that

an adversary can intrude without assurance falling too low

converges only very slowly to K−1, and in fact so slowly that

clients can easily entrust hundreds of keys to a large storage

system with high assurance that not a single one falls into the

hands of the adversary.

3) Single Keys in a LH*RS-File: A closed form expression

for assurance of a single key stored in a LH*RS-file has

escaped us. If an adversary breaks into x buckets in a LH*RS

reliability group (consisting of m data buckets and a total of

n buckets), she has all of the information contained in the m
data buckets if x ≥ m. If x < m, then information in parity

buckets is not useful to her.

For our model, we assume that a given site is vulnerable to

an adversary with probability ρ. To obtain a given key share,

the attacker either has to have gained access to the bucket that

contained the key share, or to m out of the n−1 other buckets,
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Fig. 3: Ratio F of critical value x0 over number of storage

sites N for an assurance of six nines.

or to both. If B(x,N, p) is the cumulative distribution of the bi-

nomial distribution, i.e. if B(x,N, p) = ∑x
ν=0

(N
ν
)

pν(1− p)N−ν ,

then the probability of the second mode is B(m,n−1, p) and

the probability of obtaining a given key share is accordingly

pshare(ρ) = ρ +(1−B(m,n−1,ρ)−
ρ · (1−B(m,n−1,ρ)

If the number of sites is large enough, then the probability

of two records placed in the same bucket is negligibly small.

This allows us to approximate the probability of obtaining a

given key by

pkey(ρ) = pshare(ρ)K

which is a lower bound for the true value. Figure 5 displays

assurance, which in this model is independent of the total

number of buckets. We notice that the effect of more data

buckets in a bucket group is negligible, while of course the

effect of key dispersion is rather dramatic.

To gauge the effect of more parity buckets, we can vary

the number of parity buckets and with it the tolerance of

the file. In Figure 6, we use m = 8 data buckets in a bucket

reliability group and add parity buckets in pairs of two to the

group. As we can see, assurance falls with larger numbers of

parity buckets (as our models adds more opportunities for the

adversary), but the change is rather benign.

4) Using Ramp Scheme Sharing for Key Availability: An

alternative to using LH*RS is direct protection of key shares

through a ramp scheme [17]. A ramp scheme splits a secret

into K shares of which any L are necessary and sufficient

to reconstruct the original key. Since keys are small, we can

afford making the shares as big as the original keys. We split

a key into L shares (of the same size as the key). We then add

K−L parity shares calculated using an optimal, linear erasure

code such as a Reed Solomon code. The properties of the code

guarantee that any L shares, whether they are original or parity

shares, are necessary and sufficient to recover the secret. If an

adversary has L− 1 of the shares, there are exactly as many

possibilities for any given additional share as there are keys.

Therefore, the adversary cannot derive any information on the

key from his knowledge of only L−1 shares.

Expanding on the argument for the safety of a single key,

we obtain the probability of the adversary gaining access to a

single key as the sum of the probabilities of gaining access to

s of the K keys, summing from L to K. Thus

pL,K(N,x) =
K

∑
s=L

(K
s

)(N−K
x−s

)
(N

x

)
Figure 7 shows some values. As is to be expected, the

assurance is about the same as for LH*RS. The advantage of

choosing a ramp scheme is the simplicity of the organization,

but unlike LH*RS, there is no native mode of adjusting the

availability level K−L to the number of sites.

D. Disclosure Size

The disclosure d measures the quantity of data revealed by

a successful intrusion. More precisely, we define d to be the
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Fig. 4: Nines of Assurance that r keys (r = 1,10,100,100,10000) are not compromised when broken into K = 8 (left), K = 16

(middle) and K = 32 (bottom) shares. The x-axis gives the number of randomly intruded sites out of a total of N = 128 (top)

and N = 1024 sites.
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Fig. 5: Nines of assurance of the safety of a single key in LH*RS file with bucket reliability groups consisting of m data

buckets and n buckets total for m = 4,n = 6 (left), m = 8,n = 10 (middle), and m = 16,n = 18. All schemes can tolerate two

inaccessible buckets per bucket group.
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Fig. 6: Nines of assurance of the safety of a single key in LH*RS file with bucket reliability groups consisting of m = 8 data

buckets and n = 8,10,12,14, and 16 total buckets for a key broken into K = 8 (left) and K = 16 shares

expected proportion of records revealed by an intrusion into

x servers. As we will see, d does not depend either on the

distribution of data records to buckets nor on the distribution of

records encrypted with a certain key. Assume an attacker has

intruded into x servers out of N total. This gives the adversary

access to about x/N of all encrypted assets, which does her no

good without the corresponding keys. She also now possesses

a given key with probability

p1 =
(

N−K
x−K

)
/

(
N
x

)

On average, she has obtained a proportion of

d(N,x,K) =

(N−K
x−K

) · x(N
x

) ·N
of all assets. Since this is a proportion, the same expression

not only gives the disclosure for a single key but also the

disclosure for any number of encryption keys. In particular,

expected disclosure is independent of the number of encryption
keys used. Figure 8 shows that disclosure even for rather

substantial break-ins is rather low. We placed the x-axis at

a level representing 10−6 disclosure, i.e. 0.0001 %. Results
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L = 16 (bottom) necessary key shares out of K varying from L to L+8.
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Fig. 8: Disclosure amount with K = 8 (left) and K = 16 (right), and N = 32,64,128,256, 512, and 1024.

for disclosure and assurance closely mimic each other as the

respective formulae show.

If we increase the number of keys, but maintain the same

total amount of data, the amount of data disclosed in a

successful breach becomes smaller. We can capture this notion

in what we call conditional disclosure. Conditional disclosure

resulting from x intrusions is defined to be the disclosure (i.e.

the proportion of accessible assets over total assets) under

the assumption that the x intrusions resulted in a successful

attack, i.e. one where the attacker has obtained at least one

key. The probability for a successful attack on a specific key is

p1 =
(N−k

x−K

)
/
(N

K

)
. Our model implies that obtaining one specific

key and obtaining a different one (in the course of the same

attack) are independent events. The probability of obtaining

at least one out of r keys is P = 1− (1− p1)r. We notice

that P = ∑r
s=1

(r
s

)
ps

1(1− p1)r−s. The probability of obtaining

exactly s out of r keys given that we obtain at least one key

is (
r
s

)
ps

1(1− p1)r−s

P

and the expected number of total keys obtained given that we

obtained at least one is

E =
r

∑
s=1

P−1s
(

r
s

)
ps

1(1− p1)r−s

This is the mean of a binomial distribution divided by P and

thus evaluates to

E =
r · p1

P
.

The proportion of assets encrypted with s out of r keys is

s/r. Consequentially, E/r of all assets are expected to be

encrypted with a key that the adversary obtained in the course

of the attack. The attack also gained access to encrypted assets

themselves, at a proportion of x/N. Thus, the conditional

disclosure is

dcond =
p1 · x
PN

We present a contour graph of conditional disclosures in

Figure 9. By increasing the number of keys, we can control

conditional disclosure rather well. Increasing the number of

keys decreases the expected damage of a successful attack,

but also increases the probability of such a successful attack.

Ultimately, the choice is a business decision. A minimal

number of key limits the chance of a successful intrusion with

all of its associated costs in public relations, regulatory fines,

and need for compensation for users, but such a failure would

probably have catastrophic costs. A larger number of keys

increases the probability of a break-in, but limits its expected

size. Such a scenario can possibly be addressed by insurance,

which traditionally is hard to obtain for protection against very

rare, but extremely costly events.

E. A Refinement of the Intrusion Scenario

Our basic intrusion scenario limits the capability of an

outside attacker perhaps more than is reasonable to assume.

We switch now to a different scenario where the attacker

spends a certain effort in order to obtain contents of a given

storage site. However, we now allow the adversary knowledge

of the LH* structure of the file, in particular of the global

state of the LH* file and the locations of buckets. These can

be obtained after obtaining access to a client, or through an

analysis of the traffic, even if the traffic is encrypted. The

adversary now has obtained some advantages: First, if LH*RS

is deployed, the adversary knows which buckets are parity

buckets and which ones data buckets. He can then plan on
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Fig. 9: Contour Graph for the conditional disclosure. We vary N, the number of sites, on the x-axis and r, the number of keys.

We chose the number of key shares to be K = 8 and we consider x = 8, x = 9, x = 16, and x = 32 (right) intrusions. The upper

right corner of each graph has close to zero conditional disclosure.

attacking only data buckets, as we now assume. Secondly, by

reconstructing descendency sets, the attacker can avoid hunting

for a key share that she already obtained. Thirdly, the number

of keys in a bucket is only approximately even, if the LH*

file extent is a power of two (and the split pointer reset to

zero). Otherwise, there are some buckets already split (e.g.

Buckets 0, and 1 in Figure 10, which shows the state of an

LH* file with 10 buckets) or obtained through splitting (e.g.

Buckets 8 and 9) and buckets not yet split (Buckets 2, 3, 4,

5, 6, 7), which contain about twice as many records as the

other buckets. The attacker might also have different costs of

a break-in, such as exposure when using social engineering,

the time spent testing for vulnerabilities, . . . The two different

sizes of the buckets, the different costs of breaking into them,

and their position in descendency sets lead to an interesting

optimization problem for the attacker.

We use the file in Figure 10 as an example, even though

it uses a very low value of K = 3. Assume that the attacker

plans on x simultaneous intrusions, of which x0 are directed to

buckets in D0, x1 to D1, and x2 to D2. To have any chance of

success, all xi need to be non-zero. We assume that the costs

of all attacks are identical and that the adversary looks for
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Fig. 11: Disclosure with K = 4 and N = 58, N = 60 and N = 64 and K = 3 and N = 44, N = 58, and N = 66 for the savvy

and the naı̈ve attacker.

a single key. Within her “attack budget” of xi the adversary

does best to prefer large buckets over small ones. With this

strategy, we can calculate the chances pi(xi) of obtaining the

key share in Di from xi and the number of big and small

buckets in Di. Assume that there are bi big buckets and ai
small buckets in Di. Then pi(xi) = 2xi/(ai +bi) if xi ≤ b and

pi(xi) = (bi + xi)/(ai + bi) if xi > bi. The adversary has to

maximize ∏K−1
i=0 pi(xi) subject to ∑K−1

i=0 xi = x.

We calculated the disclosure for a “savvy” attacker who uses

this optimization and an “naı̈ve” attacker who does not. The

results are depicted in Figure 11 (note the different scales for

the y-axis). While the success of the savvy strategy is clearly

visible, it is not dramatic. The biggest differences we found

result from using values that are not powers of two for K and

for values of N midway between powers of two. Our numbers

are based on an explicit optimization, but since we did not use

sophisticated approximation such as simulated annealing, we

only obtained values for the “savvy” adversary for smaller K.
We conclude that location information is indeed helpful to the

adversary, but it does not amount to a serious threat on the

scheme.

V. OPERATIONAL CONSIDERATIONS

In most storage systems in the cloud, several storage sites

belong to the same administrative unit and are vulnerable

to insider attack not individually, but in ensemble. When

implementing Clasas in such an environment, the insider threat

requires careful assignment of buckets to the different entities.

Placing data buckets from all descendancy sets into the same

administrative domain gives an insider adversary a non-zero

chance of obtaining some keys (and hence assets). Placing

sufficient buckets (i.e. as many as there are data buckets)

from a bucket reliability group into a single domain gives

the malicious insider also access to the other data buckets.

Unfortunately for us, the creation of bucket reliability groups

in LH*RS places buckets from different descendancy sets into

the same group. As the assignment of buckets to servers falls

to a single entity, the coordinator, the solution requires that the

coordinator is made aware of administrative boundaries. Even

if there are only two administrative domains, the coordinator

can assure that for a given K, no domain has all of the

information needed to retrieve a single key.
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Assets are not created equal and neither are the security

requirements of a client. Using the simple share generation

scheme allows clients to dynamically change the number of

key shares for a key. The process is similar to the bucket

split. Assume that K = 2l + s where l is the level of an LH*

structure of extent K. The client retrieves the key share Cs in

Ds, which is the key share that would be stored in bucket s in

an LH* file of extent K. It then creates a random number which

becomes key share CK and calculates Cs =Cs⊕CK . The client

creates a new key share record by copying the authentication

information and storing CK as the payload. It gives the new

record a RID that places it into bucket K if the file extent

were K + 1. It reuses the old RID for Cs but places the new

Cs in it instead of the old one (if keys are shared, this alone

alerts the other clients that the safety level of the key has

changed). The number of key shares is now K +1. A repetition

of the process allows any number of key shares and a reverse

operation lowers the number of key shares.

A different variant doubles the access time to key share

records in order to almost double the safety of a key by using

a master key to encrypt the key shares of a single key or

of a group of keys. The master key itself is stored in Clasas,

possibly using a larger number of key shares. If the master key

is cached at the client, the access times to key shares remains

the same.

VI. CONCLUSIONS

Clasas has not been implemented. An implementation for a

specific environment would force complete solutions of autho-

rization and authentication and ultimately prove its feasibility.

LH*RE [18] is a version of linear hashing where all records

are encrypted. It stores keys in the same manner as Clasas,

but in the LH* structure itself. The security analysis of Clasas,

while much more involved than the one presented in [18], also

applies to LH*RE. While LH*RE is an integration of an SDDS

with the key store that we presented here, other scalable data

structures could also benefit from integrating a key store with

the data structure. BigTable [19] and Chord [20] come to mind.

While Chord has also disjoint descendency sets, its forwarding

algorithm does not prevent different key shares from traversing

the same node. BigTable has a meaningful RID whose privacy

would need to be protected.

In conclusion, our work here proposed a new type of key

store that relies for its security on the splitting of keys into

shares and using an LH* structure to disperse the shares in

a large distributed system. With the advent of cloud com-

puting, such large distributed systems become possible even

for organizations of moderate size. We have shown that key

share dispersion is a very powerful tool to thwart an adversary

who can only gain access to a number of the total machines

involved in Clasas. This type of security depends on the

security of the clients themselves and the use of individual

access and authentication mechanisms between clients and

individual storage sites. Clasas offers a solution to a very

difficult problem (how to maintain a large number of keys)

based on solving a more tractable problem. While Clasas

denies access to keys to an attacker, it allows fast access for

clients and authorized entities. Overall, Clasas enables safe

and fast client side encryption for clients of cloud storage.
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