
Who Is More Adaptive?
ACME: Adaptive Caching using Multiple Experts

Ismail Ari Ahmed Amer Ethan Miller Scott Brandt Darrell Long
�
ari,amer4,elm,scott,darrell � @cs.ucsc.edu

Storage Systems Research Group

University of California Santa Cruz

Abstract

The trend in cache design research is towards finding

the single optimum replacement policy that performs

better than any other proposed policy by using all the

useful criteria at once. However, due to the variety

of workloads and system topologies it is daunting, if

not impossible, to summarize all this information into

one magical value using any static formula. We pro-

pose a workload and topology adaptive cache man-

agement algorithm to address this problem. Based on

proven machine learning techniques, this algorithm

uses a weighted voting mechanism guided by a pool

of cache replacement policies. Objects that collect

the highest total vote from all policies stay in the

cache. The policies that predict the workload well

are rewarded by an increase in their weight and the

policies that lead to wrong decisions are punished

by a decrease in their weight. Weight adjustments

of the replacement policies, or caching experts, are

managed by extremely powerful but computationally

simple machine learning algorithms. Our scheme

is different from hybrid criteria schemes and parti-

tioned cache management policies because it is adap-

tive, and because it favors objects that are rated highly

by many policies rather than simply favoring objects

with high weight by a single, possibly complex pol-

icy.

1 Introduction

The number of users connected to the Internet via

slow links at the edges of the networks is increas-

ing exponentially. Satisfying so many users with

fast response times while transparently saving net-

work bandwidth demands efficient proxy caching

techniques. The cache sizes that are technically and

economically possible are dwarfed when compared

to the infinite unique document space accessed by so

many users. Only the most “valuable” objects are to

be kept in the cache, where the value of an object

is a dynamic parameter that leads to a global im-

provement in both client response times and network

bandwidth usage, when equally applied to all objects

being accessed. This value is the output of policies

making use of one or more criteria.

Static caching policies cannot adapt to changes in

1

workload and network topology. These policies per-

form poorly as the characteristics of the workload

shift over time. Moreover, they are prone to filter-

ing effects [1] and perform poorly when used at in-

termediate nodes in the hierarchy [4, 21]. Continuous

monitoring and manual tuning are tedious and daunt-

ing tasks, if they are possible at all. Solutions that

try to adapt by exchanging messages to learn who

caches what [10] or inquiring to a central database

to locate cached copies [15] have limited scalability.

Autonomous caching schemes that don’t exchange

messages, but summarize useful criteria such as time,

frequency and size into one magical value based on a

static formula discard information by collapsing mul-

tiple possible dimensions or viewpoints into one. Dif-

ferent viewpoints could lead to different decisions,

which may be more valuable than a single static view-

point in different circumstances.

To address this problem, we propose an adaptive

weighted voting scheme that employs a pool of cache

replacement policies. In our design, we separate

the caching criteria from policies, providing flexibil-

ity in policy choice both in time and location. The

ideas proposed in this paper can be applied to any

caching system, including hierarchical web proxies,

distributed file systems with cooperative caching and

storage embedded network clusters.

There are five significant motivations for our re-

search. The first is the unprecedented need to elim-

inate the daunting tasks of continuous monitoring,

tracing and manual parameter tuning for performance

improvements. The second is the proven success

of using heterogeneous policies [4] within caching

clusters to achieve exclusive caching. Although far

from being adaptive, this novel idea implies that if

the right combinations of policies can be found, the

global power of a cache cluster scales linearly with

the number of nodes due to the caching of different

objects by different policies—heterogeneous caching

eliminates the need for extra messaging. The third

motivation is the need for flexibility to support new

criteria. Many successful caching strategies that use

uncommon criteria such as object IDs and QoS pri-

ority information are emerging. We predict that, in

the future, more criteria are to come and therefore

there is need for flexibility to support all. The fourth

motivation is the remarkable success of computation-

ally simple machine learning algorithms [13, 3], and

their proven success in addressing non-trivial operat-

ing systems problems [11]. The fifth and final mo-

tivation is the abundance of processing power as an

enabling technology for the slightly more complex

cache management scheme that we are proposing.

2 Related Work

Table 1 lists some very popular and recently proposed

criteria and the policies that use these criteria to make

local replacement decisions. Random, First-In-First-

Out (FIFO) and Last-In-First-Out (LIFO) do not re-

quire any information about the objects. Time, fre-

quency and object size are the most commonly used

criteria for local replacement decisions. Least Re-

2

cently Used (LRU) uses recency of access as the sole

criteria for replacement, while Least Frequently Used

(LFU) uses frequency of access. SIZE replaces the

largest object and Greedy-Dual-Size (GDS) [14] re-

places the smallest key Ki � Ci � Si � L, where Ci is the

retrieval cost, Si is the size and L is a running age fac-

tor. GDS with Frequency (GDSF) adds the frequency

of access, Fi, into the same equation. Lowest Relative

Value (LRV) [18] replacement makes a cost benefit

analysis using the access time, access frequency and

size information about objects.

Hashing or more complex Bloom filters on ob-

ject IDs are often preferred for local decisions in the

building blocks of a global system of caches. If the

ID hash implies that the neighboring node should be

caching that object then it could be replaced quickly.

Hop-counts provide another set of criteria that can

passively provide an indication of the logical loca-

tion of a cache without resorting to full location-

awareness. Up-stream hop counts are a loose mea-

sure of how far a cache is from the closest data

source, while down-stream hop counts indicate logi-

cal distance from clients. Recent research [22] points

to the benefits of keeping a record of access latency

information, providing yet another potential caching

criterion (e.g., it s wise not to discard items from the

cache that are very costly to retrieve). Stor-serv [7]

proposes Quality of Service (QoS) ideas used in net-

working to be applied to storage systems for giving

differentiated services.

Table 1 does not intend to cover all the proposed

criteria algorithm

– Random, FIFO, LIFO
time LRU, MRU, GDS, GDSF, LRV
freq LFU, MFU, GDSF, LRV
size SIZE, GDS, GDSF, LRV

retrieval cost GDS, GDSF, LRV
ID hash, Bloom-Filter

hop-count –
QoS priority stor-serv

Table 1: An extended taxonomy of existing and pro-
posed cache replacement policies.

algorithms; rather, our goal is to show two things.

First, the possible criteria and the ways to use them

are endless. Second, the trend in cache replacement

algorithms is towards finding the functions that unite

all the criteria in a single key or value. Other tax-

onomies of time, frequency and size based policies

are presented in prior work [14, 6].

Virtual cache management [2] divides the cache

into static partitions and lets a few successful poli-

cies work in separate partitions. Objects evicted from

one partition go to the next until they are moved out

of the cache. This scheme is not as homogeneous as

our voting scheme and the performance is bound by

the performance of the best partition [2].

Adaptive web caching [17] proposes that nearby

caches self-configure themselves into a mesh of over-

lapping multicast groups and exchange messages to

locate the nearby copies of requested data and to

find out about topology changes. Although scalabil-

ity was a major goal in this design, like any other

system that needs global bookkeeping and exchange

of recorded information [19, 8], the scalability and

performance will be limited due to the vast amount

3

of objects floating on the Internet. There also some

other deployment problems with multicast [9].

AutoRAID [20], which automates the RAID level

selection process in disk arrays, is an excellent exam-

ple for the benefits of switching from manual to adap-

tive systems. Hybrid Adaptive Caching (HAC) [5]

proposed within the context of system memory com-

bines the virtues of page and object caching, while

avoiding their disadvantages.

3 Design of ACME

Figure 1 shows our design for an adaptive (self-tuning

or autonomous) cache using multiple experts. In

our design, cache management criteria and policies

are separated. The criteria pool is filled with gen-

eral descriptions of information regarded as useful

by one or more of the cache replacement policies.

Most popular criteria such as recency of access, fre-

quency of access and size are initially registered to

the pool. A new policy registering into the policy

pool has to register its criteria in case they are not

already registered. ACME ensures that the regis-

tered criteria are recorded and updated on a per ob-

ject basis. The policies themselves are just descrip-

tions of how to use criteria to order the objects: e.g.

LFU ��� list � key �	� pageid � f requency
�� . These

may include any proposed cache management pol-

icy — the machine learning algorithms will ensure

that the best ones for the current workload receive

the highest weight and therefore have the largest ef-

fect on the cache management decisions.

policies

ResultsObjects

ObjectsUpdates

Request Stream
Physical Cache

Weight Votes for

Policy Pool
(LRU, LFU, GDS etc.)

Highest-vote Hit and Miss

A.C.M.E.
(Machine Learning)

Criteria Pool

New replacement

(time, freq, size etc.)

New criteria

Figure 1: Design of Adaptive Caching using Multiple
Experts (ACME).

ACME orders the physical cache depending on the

votes coming from the policies. The hit and miss

events occurring as a result of the request stream and

cache placements are fed back to ACME. The poli-

cies that predict the workload well and vote well are

rewarded by an increase in their weight and the poli-

cies that lead to wrong decisions are punished by a

decrease in their weight. Weight adjustments of the

replacement policies or caching experts are managed

by the machine learning algorithms. These learning

algorithms include weighted majority [16] and the

share algorithm [12], both developed by members of

our local machine learning group. In machine learn-

ing, expert-based algorithms provide solutions that

represent a combination of such experts that can dy-

namically adapt to changes in experts’ performance.

Figure 2(a) gives a simple illustration of how mul-

tiple cache replacement algorithms may be used to

decide what objects to cache. By using each sim-

ple algorithm to generate a relative ordering of po-

4

tentially cached objects, each algorithm can be con-

sidered an “expert” providing its own opinion about

what data should be cached. Algorithms do not work

on the physical cache, but a larger logical cache,

whose size is related to the physical cache size. In-

formation in the logical cache is stored in the policy

pool; objects themselves are stored in the physical

cache.

Each policy needs only to maintain an ordering

of object identifiers, allowing the identification of

cache misses that could have been avoided, or cache

hits that were ranked appropriately. Some cache re-

placement policies can provide a numerical ranking

for items in the cache, e.g., space-time algorithms,

whereas others only offer relative orderings. For the

latter case we simply assume the rankings to be the

“slot numbers” (see Figure 2(a)). Such rankings al-

low the simple caching policies, our experts, to pro-

vide a consistent representation of their opinions. The

effective ranking of items in the cache, used by our

automated cache for replacement decisions, is based

on the weighted combination of the different experts’

rankings.

Many questions we aim to answer in this project

concern the best choices for expert evaluation. Fig-

ure 2(b) presents the main choices when reevaluat-

ing the weight assigned to a particular policy. Should

a cache miss occur, we can “punish” algorithms by

decreasing the weight for the policies that did not

rank the requested item highly, “reward” algorithms

by increasing the weights of the policies that ranked it

i j a b h

1 2 3 .. N

FIFO

LRU

LFU b a i j h g f c e d

a i b j f h g e d c

j i h g f e d c b a
10 9 8 7 6 5 4 3 2 1

Slot Numbers

}

Caches
Logical

Physical Cache

(a) Multiple Cache “Experts”

Miss

Hit
Keep

Eject

Keep

Eject

Strategy

Reward

Punish

Punish

Reward

Action Taken

(b) Evaluation Paths

Figure 2: Adaptive Caching

highly, or combine reward and punishment for algo-

rithms that were ambivalent about the item. Similar

questions are posed when a cache hit occurs: how are

algorithms rewarded and punished. Other questions

include finding the best rate of weight adjustment,

i.e., how often and how drastically do we modify the

weights and the effects that modifying the combina-

tion of caching algorithms has on the cache’s ability

to perform well while quickly selecting the best com-

bined policy.

4 Conclusions

It is generally true that the multiple-criteria policies

are more successful than single-criteria policies at de-

ciding which objects to cache. However, a single pol-

icy that represents a single view cannot be guaranteed

to work equally well under all types of workloads and

topologies. Our adaptive caching scheme based on

5

voting experts gives a chance to all views and evalu-

ates performance based on hits and misses using ma-

chine learning algorithms, providing improved cache

performance by adaptively choosing the best policies,

and thus criteria, to apply to a particular cache. Be-

cause our system is adaptive, nodes can vary their

policies over time, producing better performance over

a wide range of both workloads and cache topologies.

5 Acknowledgements

We are grateful to Manfred Warmuth and the Ma-

chine Learning Group for their valuable contributions

to the machine learning algorithms in our on-going

work.

References

[1] A. Amer and D. D. E. Long. Adverse filtering
effects and the resilience of aggregating caches.
In Proceedings of the Workshop on Caching,
Coherence and Consistency (WC3 ’01), Sor-
rento, Italy, June 2001. ACM.

[2] M. Arlitt, L. Cherkasova, J. Dilley, and
R. Friedrich. Evaluating content management-
techniques for web proxy caches. In Proceed-
ings of the 2nd Workshop on Internet Server
Performance WISP’99, Atlanta, Georgia, May
1999.

[3] O. Bousquet and M. K. Warmuth. Tracking
a small set of experts by mixing past posteri-
ors. In D. Helmbold and B. Williamson, editors,
Proceedings of the 14th Annual Conference on
Computational Learning Theory and 5th Euro-
pean Conference on Computational Learning
Theory, pages 31–47. Springer, July 2001.

[4] M. Busari and C. Williamson. Simulation eval-
uation of heterogeneous web proxy caching hi-
erarchies. In Proceedings of the Ninth Interna-
tional Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunica-
tion Systems (MASCOTS 2001), pages 379–388,
Cincinnati, OH, Aug. 2001. IEEE.

[5] M. Castro, A. Adya, B. Liskov, and A. C. My-
ers. HAC: Hybrid adaptive caching for dis-
tributed storage systems. In Symposium on
Operating Systems Principles, pages 102–115,
1997.

[6] K. Cheng and Y. Kambayashi. Adavanced re-
placement policies for www caching. In Web-
Age Information Management, First Interna-
tional Conference, WAIM, pages 21–23, Shang-
hai, China, June 2000.

[7] J. Chuang and M. Sirbu. stor-serv: Adding
quality-of-service to network storage. In Work-
shop on Internet Service Quality Economics,
Cambridge MA, Dec. 1999.

[8] M. Cieslak, D. Forster, G. Tiwana, and
R. Wilson. Web Cache Coordination Proto-
col (WCCP) V2.0, Internet-Draft , draft-wilson-
wrec-wccp-v2-00.txt, July 2000.

[9] C. Diot, B. Levine, J. Lyles, H. Kassem, and
D. Balensiefen. Deployment issues for the IP
multicast service and architecture. IEEE Net-
work, 14:10–20, 2000.

[10] L. Fan, P. Cao, J. Almeida, and A. Z. Broder.
Summary Cache: A scalable wide-area web
cache sharing protocol. IEEE/ACM Transac-
tions on Networking, 8(3):281–293, 2000.

[11] D. P. Helmbold, D. D. E. Long, T. L. Sconyers,
and B. Sherrod. Adaptive disk spin-down for
mobile computers. ACM/Baltzer Mobile Net-
works and Applications (MONET), pages 285–
297, 2000.

[12] M. Herbster and M. K. Warmuth. Tracking the
best expert. In Proceedings of the Twelfth In-
ternational Conference on Machine Learning,
pages 286–94, Tahoe City, CA, 1995. Morgan
Kaufmann.

[13] M. Herbster and M. K. Warmuth. Tracking the
best linear predictor. Journal of Machine Learn-
ing Research, 1:281–309, September 2001.

[14] S. Jin and A. Bestavros. Greedydual* web
caching algorithm: Exploiting the two sources
of temporal locality in web request stream.
In Proceedings of the 5th International Web
Caching and Content Delivery Workshop, Lis-
bon, Portugal, May 2000.

[15] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weath-
erspoon, W. Weimer, C. Wells, and B. Zhao.

6

Oceanstore: An architecture for global-scale
persistent storage. In Proceedings of ACM AS-
PLOS. ACM, November 2000.

[16] N. Littlestone and M. K. Warmuth. The
weighted majority algorithm. Information and
Computation, 108(2):212–61, 1994.

[17] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang,
S. Floyd, and V. Jacobson. Adaptive Web
caching: towards a new global caching archi-
tecture. Computer Networks and ISDN Systems,
30(22–23):2169–2177, 1998.

[18] L. Rizzo and L. Vicisano. Replacement policies
for a proxy cache. IEEE/ACM Transactions on
Networking, 8(2):158–170, 2000.

[19] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay.
Design considerations for distributed caching
on the Internet. In International Conference
on Distributed Computing Systems, pages 273–
284, 1999.

[20] J. Wilkes, R. Golding, C. Staelin, and T. Sul-
livan. The HP AutoRAID hierarchical storage
system. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles,
pages 96–108, Copper Mountain, CO, 1995.
ACM Press.

[21] T. M. Wong, G. R. Ganger, and J. Wilkes.
My cache or yours? Making storage more
exclusive. Technical report, CMU-CS-00-157
Carnegie Mellon University, Nov. 2000.

[22] R. Wooster and M. Abrams. Proxy caching that
estimates page load delays. In In Proceedings
of the Sixth International World Wide Web Con-
ference, pages 325–334, Santa Clara, CA, Apr.
1997.

7

