Graffiti Server — Design and
Implementation

Technical Report UCSC-SSRC-07-02

Mark W. Storer
st or er @oe. ucsc. edu

Storage Systems Research Center
Jack Baskin School of Engineering
University of California, Santa Cruz

Santa Cruz, CA 95064
http://ww. ssrc. ucsc. edu/

January 23, 2007

Graffiti Server — Design and Implementation

Mark W. Storer
st or er @oe. ucsc. edu

Abstract a new document they are working in a directory named,

While data on file systems and data on the Web have tra\d}ﬂ-orm\ _rryhome\ (_jocurrpnt s\proj ect1. When it

tionally been organized in a hierarchical structure taggiComes time to retrieve this document the user can rely on
' the structure of their folder hierarchy to know that within

has emerged asa V|able. tec_hnologyfor degllng Wlth. Ia.r%eeir home folder they probably stored their documents
collections of data. Tagging involves attaching desarépti.

keywords to data objects such as files and URLSs. Mérsltthefolderdocurrent s and if the document pertains to

current implementations of tagging restrict the scope Bf o] ect 1 they have a good idea as to where they placed

tags to the website or application in which they were cré)leIr file. In this f||_|ng scenario th_e user spends time tp
.) .. _carefully place their data in a location that they can easily
ated. We have designed and implemented the Graffiti sys-
: educe later.
tem to explore the collaborative use of tags across appli-

cations, computers and users. The Graffiti system is madd? contrast to the “filing” model used on file systems,

up of two key components. The first is a client applicé\c-’cating data on the Web can best _be described as “find-
". In this model, since the user is not responsible for

tion which the user utilizes to manage the tags on th&id -))
local file system. The second is a server application ttfigcing the data, they must deduce the data’s full location

enables collaborative metadata management and sharffge€d on what they know aboutits content. In a simple us-
The Graffiti server constitutes a back-end database ﬁrﬂ? model users utilize search engines to find websites and
a server application which provides Graffiti clients wit Sts Of_lfavo?:_'te UIRLS toheasny return tt% th\?vsge ata Iaﬁer
access to shared metadata. This document describeg'mg‘ raditional search engines on the Web, as well as
design and implementation of the current version of t recent file systems, concentrate on automatic indexing.

Graffiti server. It includes a complete description of th-g e main challenge of this approach is to rank matching

current installation of the server as well as detailed iﬁ@SUItS to a query. On the web, Google’s PageRank [7]is

structions for extending the capabilities of the server. addressing this by taking the link structure of the web into
account. Based on anecdotal evidence, this search tech-

. . nigue worked so well that sets of a few keywords became
1 Project Introduction shorthand for URLs and greatly diminished the value of

Locating data that resides on file systems has traditiondlintaining personal bookmarks.
been very different than finding web-pages. Locating dataRecently a new model, tagging, has emerged for find-
on the local file system is closely tied to the act of “filinging data on the Web. Tagging, in the general case, consists
data. In contrast, locating data on the Web is more closeéliattaching descriptive text to objects. Many applicagion
related to “finding”. The disparity between locating datef tags have been focused on helping users locate data.
on local systems and the Web can be tied to fundameMétbsites such as Flickrl[2] and del.ico.us [1] have demon-
differences in the way the user interacts with the systestrated that tagging can effectively replace hierarchal or
Recently however, tagging has emerged as a new magihization schemes and can efficiently organize large col-
for locating data on the Web and aspects of it may be dgetions of data. Using similar, methods applications such
plicable to local and shared file systems. To determine Apple Computer’s iPhotbl[3] have included tagging ca-
how tagging techniques might be applied to file systerpgbilities to help manage collections of data on the lo-
we have create a tool called Graffiti which adds taggiegl computer. One common drawback that these schemes
capabilities to existing systems and allows us to colldeave is that they do not extend beyond the scope of a sin-
usage data about how users utilize tagging in file systergks application or website.

On file systems, users usually store files in a hierarchi-Tags can be applied to many problems besides data lo-
cal structure with the hope that this careful placement wilation. For example tags can be used to identify files
make latter retrieval easier. For example a user may pldlcat are to be included in an action. In this scenario

a user might attached a tag, for exampleckup, to functionality. In contrast, Graffiti maps directly to file

a file. A backup program written to utilize tags would@ontentindependent of any particular file system structure
then search the system for that tag and backup the resaiftd strictly compliments traditional file system function-
ing files. Another example of inclusive tags might be aity. In addition we focus on collaborative management
program designed to automatically copy all files tagged metadata across many users.

synchroni ze to all the machines that a user has an

account on. In contrast to inclusive uses, exclusive uses System Overview

might specifically tells a program to omit afile. An EXaMes raffiti provides file systems with tagging capabilities.

ple of this exclusive model is a user that wishes to hav%@ing the system, clients use a local application to attach

file Igft out of an index. !n this case the i.ndexer could b(?escriptive text strings that they create to files. These tag
configured to ignore all files tagged wigh i vat e. Tags

: , are stored in a persistent database on the local computer.
might also be used to manage dependencies. For exa

lib file miaht b 4 with th d e Graffiti client application allows these tags to be ac-
a library fie mig t etaggt_a W.'t t € hame and Versiqsgjpe by applications through a published API. These
of each application that utilizes it. In this manner, if &l

th licati ted by the t | Yocal tags can also be synchronized with Graffiti servers.
€ applications represented by the tags areé no IoNgergR, & 4ffiti servers aggregate tags from multiple client in

lt_rt')e system a user would know that it is safe to remove tQ%entralized database and allow tags to be shared across
ibrary. hosts and with different users.

2 Related Work 3.1 Files

Our work has been inspired by the continued succdBdhe Graffiti system tags are attached to files. The system
of collaborative tagging services on the Web such Hses a file’s SHA-256 hash as a unique global identifier.
del.icio.us [[1] and flickr[[2]. Additionally, on the local This model has three distinct advantages. The first is that
file system tagging has been succesfully applied to as&€rs may have multiple copies of the same files on the
in managing collections of similar data. For exampléame computer. The second, and probably more common,
Apple’s iPhoto [3] utilizes tags to manage digitial phds that users may have multiple copies of the same file on
tographs and indev’s MailTags![8] applies tagging to tififferent computers. For example, a user may have a copy
problem of managing email. The key difference betweeian important file on both their laptop and desktop or on
these solutions and Graffiti is that Graffiti is a generteir home computer as well as their office computer. The
use tagging tool that manages disparate data and Sljﬁh’g reason that checksum are a useful global identifier is
the boundaries of file systems, hosts and users. We #@t Graffiti works across computers and across different
currently not aware of work that implements collaborassers. Users may have files in common and the check-
tive management of file metadata that works across filem as a global identifier is a useful way of facilitating
systems, hosts and applications. There has however, b@étadata sharing and tag suggestions.
work done on invesitgating the use and implications of There is, however, one important issue related to us-
collaborative metadat&l[g] 4]. ing the SHA-256 hash as a file’s global identifier. A file's
The Scientific Annotation Middleware (SAM)I[9] sys-Nash is dependent on its content and thus if a file changes,
tem is using a combination of WebDAV and content ma#ts global identifier changes. Thus, it is the responsibil-
agement to administer a large variety of scientific data aidl of the Graffiti client components to insure that, as
metadaata. Its design assumes that data and metadditefs changes, older tags migrate to the new file check-
stored in the databases of content management syst&HB- This disadvantage does have some useful semantics.
within a data grid framework. Graffiti, on the other handJsers may have shared files but they may diverge and the
focusses on the metadata of files stored in file Systemspontent-baSEd file identifier would reflect this. For exam-
The Presto document management system extends ®#g. two users may download a document from the same
ditional file systems with arbitrary attributes [5] that a/Source but those two users might make separate changes
low files to be grouped and searched by these attributistheir copy.
The system presents itself as a file system and can mount
other file systems via NFS and extend them with Pre Tags
functionality. Thus, Presto’s approach to providing metdags are descriptive strings that user attach to files. In the
data across multiple file systems is accomplished by a |&raffiti system they are user defined strings with no white
ered architecture that duplicates and mimics traditiorsgdaces. This provides a high degree of flexibility in what
file system functionality in addition to extended Prestan be expressed. For example, text strings can be used

plications that utilizing tagging restrict the tags to the a
plication they were made in. Graffiti attempts to remedy
this and to encourage users to utilize tagging by increases
a tags utility. If the tags exists in multiple applications
they are more valuable than tags restricted to a single ap-
plication.

The Graffiti client includes both GUI and command
line tools for attaching tags to files. The tags users attach

gamma to files are instantly available locally as they are main-
tained in a local database. If clients would like these tags
file A : {alpha, beta, gamma} to be available to other users or on their other computer
file B : {alpha, beta} they can synchronize their tags to a Graffiti server. Clients
file ¢ : {alpha, gamma} can choose which servers they share their tags with using
file D : {beta, gamma} a special system tag which identifies a Graffiti server.
Figure 1: Relationship implied with tags that is difficult Clients communicate to the Graffiti server through se-
to express using a hierarchical structure. cure HTTP. All communication between the client and

the server is stateless. Each call that the client makes
to the server is self-contained with the request containing
to express URLS, key/value pairs, email addresses, or fiierequired information needed to authenticate the user
paths. The Graffiti system does reserve certain tags as $yshe system and fulfill the request. Currently, users are

tem tags which dictate the system’s behavior. Examplegjuired to have a password-protected account on every
of these system tags include those that inform the serygfver with which they communicate.

of a files location and tags that control the server that the

metadata is synchronized with. 3.4 Server Application
Tags can express an implied relationship between fi

when multiple files have a tag in common. For exa

ple, it is implied that two files that both contain the ta

Pr oj ect Al pha are part of the same project. The sal

L?ﬁe Graffiti server maintains a database of metadata ag-
regated over a number of clients and enables the sharing
f metadata across computers. The metadata stores on

fie server record a username along with the file metadata.

relationship wou_ld be_ implied if they were In the Sarnetilizing this username along with a time-stamp of syn-
folder. The relationship tags express differ from that InE’hronizations, the server is able to provide a user with

plied by folders in that tags allow relationships that aﬁ%ultiple computers the ability to synchronize metadata

non-hierarchical_. FigurBl 1 illustrates a relationship_bghanges across multiple hosts. An example of this func-
tvyeen a_set of files that could not be expressed USIngioahality would be a user with a laptop and a desktop and a
hierarchical structure such as folders and subfolders. set of files that exists on both. Solutions such as CVS can
3.3 Client Application effectively manage the synchronization between the two

o) __computers but largely ignore the file's metadata. A user
Users of Graffiti interact with the system through a cller&tan tag a file using the Graffiti client on their laptop and

application. The cllegt runs_don erz:\ch host corr_lauterl thak chronize this change to a Graffiti server. Later, that
supports tagging and provides the system with a 0Gflla; o4 synchronize their desktop to that Graffiti server

metadata store and an interface for the client to inter%qd have that tag automatically added to their desktop’s
with. The design of the Graffiti client provides a numb%ca| Graffiti metadata database.

of advantages. The client exists at the application layer.
This design choice allows Gr_affiti to work on a Wi_d_e va Implementation Overview
riety of client platforms and files systems. In addition to
the time it takes to implement tagging inside a file systefﬁhe Graffiti system consists of a Graffiti client that runs
it also presents a risk to the data within that file syste@ the users local machine and Graffiti servers that serve
Additionally, as one of the purposes of Graffiti is to te&S centralized points for metadata collaboration.
new metadata primitives, Graffiti allows the users to work . .
with their current data in its current state and location. 4.1 Client Overview

The Graffiti client exports an API interface that allow3he Graffiti client was built in Java using the SWT toolkit
any application to take advantage of the tags maintairfedthe GUI. Data on the client is managed via an embed-
by the local database. Many of the currently existing aged Apache Derby database that is accessed through SQL

gueries. The GUI and command line both access the dtita tag changes that the user has made on any machine
store through an API which allows common tagging opfter the given date. The third cadl| ear Al | Tags, al-
erations, and is available to other applications. For ndaws the user to reset all their tags in the server database.
filesystem event handling such as updating the datab@bke server accomplishes this by turning off all the tags
when files are renamed is only implemented for Mac d8r the user and setting the modification time to the ear-

X. liest possible system time. The third and fourth calls,
put Shar edTags andget Shar edTags, allow a user
4.2 Server Overview to share the metadata they have attached to a file with an-

. , other user. When a user shares their metadata they contact
The Graffiti server is based on a database back-end angkanc. . er and identify the checksum that has the tags the

API that clients access through secure HTTPS callls. TLI?ger wishes to share. The server responds with an iden-

server has two primary roles. The first role of the servgfi.ation number that another user can use to collect the
is to enable the collaboration of metadata across mum%’ﬁared metadata

machines. This is accomplished through the database and
the API. The second role of the server is to collect usage3 patabase
data about collaborative metadata. This is done throu

h . . " -

aggressive event logging at the server and database Ie\ﬁ@ current |mplgmentat|on of the Graffiti server utilizes

The back-end database provides a persistent data-s OqgtgreS_QL version 7.4.11. The name of the dat_abgse that
for collaborative metadata. It is implemented using Po e Graffiti server attempts to connect togisaf f , t ;
greSQL version 7.4.11. Currently, each user that acces&lgOStgresQL the databas,e can be cregted by issuing the
the Graffiti server has an account managed by a Spegﬁrlnmand from the system's command line.
Graffiti users database table. In the future we may lo Sl
into providing centralized authentication capabiliti€se % eatedb graffiti

database has four sets of data to manage. The first is thep o qatabase can be administered from the command
set of user accounts for that server. The second is themgé using thepsql command. To access the database

of files, identified by checksum, that are owned by Use{Hu would issue the following command from the system
Third, the database tracks the tags that have been plggsdmand line:

by users on files. Finally the server is able to manage
metadata that users choose to share. psql graffiti [usernane]
The Graffiti server was implemented using the Twisted
server framework version 2.1.0 and Python version 2.3.41f no user name is given then the default username is
The clients makes calls to the server as HTTP requestsed. Within the psqgl interactive command terminal com-
The server uses basic HTTP authentication along withmands are terminated using the ‘;’ character. Commands
table of users in the database to authenticate Graffiti usegn span several lines. To exit the psgl command terminal
One of the important tasks of the Graffiti server igse Ctrl-D or\ q. To access a list of useful PostgreSQL
to collect usage data based on interaction with Graffimmands use?.
clients. This is accomplished at two levels. The first is
logging at the database level. The second is logging®a$-1 Database Users
the server level. The logging at this level is accomplish&there are two database users that the Graffiti server
using the Pythoh oggi ng module. This module allows uses. The first, graffitiserver, is used
the content of log messages to be separated from the nies-general queries to the database and the other,
sages presentation. graffitiserveradmn n,is usedto manage users. In
Clients interact with the server through a publishd@ostgreSQL users are created using ¢heat euser
API. The API receives requests from the client ov@ommand at the system command line. The Graffiti
HTTP. The API currently consists of five calls. Theerver uses two different user accounts so that security
first call, put TagChanges, allows a user to update thecan be more fine-grained.
server database with the tag changes that have been pefhe graf fiti serveradm n account is used to
formed at the client. The second cglet TagChanges, manage user accounts. It has permissions that allow it
allows a client to retrieve the tag updates that they hawee modify the tables related to user accounts. In the
placed on the server. The server retrieves the tag changesent Graffiti server implementation it is used in the
based on a date passed as an argument and the useraaldaser . py script which walks through the process
attached to the request. The server returns a list of aflicreating a Graffiti account. This is the only account

password

date
added

0
& &

Files

&
OIS

Users

o
ags
10

Comas - Como)

Figure 2: ER model diagram of the Graffiti server database schema

| User | Permissions | Table |
graffitiserveradmin| SELECT,INSERT,UPDATE| users
graffitiserver SELECT users
graffitiserver SELECT,INSERT,UPDATE| userfiles
graffitiserver SELECT,INSERT,UPDATE]| tags
graffitiserver SELECT,INSERT,UPDATE]| file_ownership
graffitiserver SELECT,INSERT,UPDATE| tag sharing

Table 1: Table permissions needed by the Graffiti server databaseiat Note that no database user account needs
DELETE permissions for any of the tables.

that needs permissions to modify theer s table as de- actual name and contact information. The SQL command
scribed in sectiofi Z3.2. It does not, however, have afoy creating the table is as follows:
access to any other table as it is only used for managing
user accounts. CREATE TABLE users (
The other accountgraffitiserver, is used to ~ Username VARCHAR(32),
modify the contents of every table in the database with Password — VARCHAR(32),
the exception of theser s table. Since itis used by the i rst_name VARCHAR(32),
authentication module it does, as tale 1 illustrates, havel 8st_nanme VARCHAR(32),
select access to theser s table and select, insert and up- €& | VARCHAR(32) NOT NULL,
date access to all of the other tables. Table permissiond’Rl MARY KEY (usernane))
can be granted to an account using the GRANT commang.3 User Files Table

from within the database shell.
The second entity in the server schema is a user file.
4.3.2 Users Table These are stored in theser f i | es table. User files are
uniquely represented in the system by their checksums.
Each user that authenticates to the Graffiti server hasTie table consists simply of the checksum and the date
entry in theuser s table. Authentication involves twothat they were added to the system. The SQL command
fields in the table: username and password. The passwjiictreating the table is as follows:
is stored in the table as an MD5 hash of the actual pass-
word text chosen by the user. The remainder of the fiel@REATE TABLE user files (
in the table store information about the user such as theirchecksum VARCHAR(64) ,

dat e_added TI MESTAMP DEFAULT now(), hostname (although a hostname would be a logical choice

PRI MARY KEY (checksum)) for the client field). This description is assigned by the file
owner.
4.3.4 Tags Table As with tags, the constraints on the

Tags are central to the Graffiti system and in the senfarl e_.owner shi p table insure that the username
schema are described in the ER-model as, “Users thgt owns the tag as well as the checksum are present in
Files”. The tag itself has attributes such as the string thlhe user s and user fi | es table respectively. The
makes up the tag, its last modification time and wheth@@QL command for creating the table is as follows:
the tag is valid or not. Tags are never deleted from the sys-
tem for three reasons. The first is that users would needFATE TABLE file_ownership (
have access rights to delete data and this was consideret ! TEXT,
a needless security risk. The second reason is that oné! i ent VARCHAR(64) ,
of Graffiti's primary roles is to provide usage data and as User name VARCHAR(32),
such operations such as deletion should be recorded in &hecksum VARCHAR(64) ,
way that leaves a clear record. The third reason is relatedval i d BOOLEAN DEFAULT TRUE,
to synchronization. Deleting a tag by removing its entry PRI MARY KEY
from the table results in the need to log actions taken by (username, checksumuri, client),
the user that can be consulted to get synchronization dataFOREl GN KEY (user nane)
In contrast, in the current model deletion is simulated by ~REFERENCES users,
setting the validity of the tag tialse. Using this technique ~ FOREI GN KEY (checksum
along with the modification time it easy to determine the =~ REFERENCES fi | es)
changes that have occurred since a given time. i
The constraints on thé ags table insure that the4-3:6 Tag Sharing Table
username that owns the tag as well as the checkstihe third relationship found in the server's database
that the tag is placed on are present in treer s and schema relates to the collaborative aspects of Graffiti's
user _f il es table respectively. The SQL command fometadata. It is described in the ER-model as “Users share

creating the table is as follows: Files”. The relationship is actually a bit misleading as
the relationship describes not the sharing of file data but
CREATE TABLE tags (rather of file metadata (in this case tags). In the current
nodtime Tl MESTAVP DEFAULT now(), usage model the user chooses to share the metadata at-
tag VARCHAR(256) , tached to a checksum and receives a token. The user that
valid BOOLEAN DEFAULT TRUE, the metadata owner wishes to share the data with is given
user name VARCHAR(32), the token which the receiver redeems at the server. In the
checksum VARCHAR(64) , currentimplementation the token is an identification num-
PRI MARY KEY (usernanme, checksumtag), per. Thet ag_shari ng table relates a checksum to the
FOREI GN KEY (user nane) identification number.
REFERENCES user s, As with the other relations, the constraints on the
FOREI GN KEY (checksum t ag_shar i ng table insure that the username that owns
REFERENCES fi | es) the tag is in theuser s , the file being shared is in the

. . user fil es table and the user sharing the file owns
4.3.5 File Ownership Table the checksum according to thé | e_owner shi p table.
The relationship between users and files is describedTife SQL command for creating the table is shown as fol-
the ER-model as, “Users own Files”. This relationship jsws:

contained within thé i | e_owner shi p table. This rela-

tionship describes not only which file a user owns but alSSIREATE TABLE t ag_sharing (

where the owner has placed the file. This location infor- sharei d | NTEGER,

mation is related to two attributes on the "owns” relation- val i d BOOLEAN DEFAULT TRUE,
ship. The first attribute is ther i field which consists of user nane VARCHAR(64),

the fully qualified path to the file. The second attribute is checksum VARCHAR(64) ,

thecl i ent field which is a descriptive string identifying PRI MARY KEY (checksum shareid),
a host. This client name only needs to be understandablé-OREl GN KEY (user nane)

to the owner of the file and does not relate directly to a REFERENCES user s,

FOREI GN KEY (checksum) returns the username back to the caller, otherwise it raises

REFERENCES user fil es) an authentication exception.
Currently, the user must have a local account on each
4.4 HTTP Server server that they access. This could easily be extended by

The Graffiti server users HTTP to communicate with thgpdating theaut hent i cat eUser method to access a
clients. The web server portion of the server is in¢entralized authentication server.

plemented using the Twisted 2.1.0 package and Pytho .
version 2.3.4. Starting the server involves running tﬁleﬂ'2 HTTPS and Certificates

graffiti. py file throughthe Python interpreter as folin an effort to provide transport level security, the Graffit

lows: server performs all communication over HTTPS. As such,
o the server requires a private key and a certificate. In the
python graffiti.py current implementation the keys and certificates required

, _ o) by HTTPS are generated using thpenss| command.

The servers main loop is implemented in thg, e cyrrent implementation, the server's certificate is
graffiti.py f|_Ie. This is the ’f|le that directly im- not signed by a valid certificate authority and thus would
pl_ements the Twisted framework’s factory classes. ,TWSt be automatically trusted by a generic HTTPS client
primary class that handles a secure HTTP request is éhu%h as a web browser. For the purposes of this project,
Functi onHandl edRequest . This class’process -+is not an issue.

method is automatically called when the server receivesr,, private key required by the Graffiti server is gen-

an n;}corfr_nng rﬁ_questr.] o g hen i erated using thgenr sa command and the OpenSSL
The first thing that the ierve;r Oeﬁ when it reEommand line tool. The final argument specifies the key

ceives a request is to authenticate the user. — TARqh aq a bit length. The current implementation uses

details of user authentication are explained in se&key of length 1024 but this is somewhat arbitrary. The

_tion d4l. If authenti_cat_ion succeeds, server Contr(‘%mmand used to generate the key is as follows. It outputs
is passed to thgraf fiti Handl er method of the the key in a file namedr af fi ti Ser ver Key. pem

graffiti Server APl . py file.
The graffiti Server API. py is responsible for gpenssi genrsa - out

taking the request from the user and, utilizing the URL, graffiti Server Key. pem 1024

determining the API call requested and the handler for

that call. This module exports one method which uses aThe certificate for the Graffiti server is produced using

lookup table to match the user’s requestto the API call atitkr eq command and the OpenSSL command line tool.

handler. Extending the number of API calls is a three st&pe r eq command is an interactive command line tool

procedure as follows and should not require any changleat walks the user through the process of creating an x509

to thegr af fi ti Handl er method.: certificate. The command used to generate the certificate
] is as follows:
1. Implement a Python module which performs the new
call. openssl req -new -x509

-key graffiti ServerKey. pem
-out graffitiServerCertt.pem
-days 1095

2. Add an import for the module’s entry point to the
graffiti Server APl . py file.

3. Edit graffiti ServerAPl.py by adding a)
lookup table entry for the new API call 4.5 Logging

o One of the goals of the Graffiti project is to collect us-
4.4.1 Authentication age information for tags. To this end, the Graffiti server
Authentication in the Graffiti server is handled using basitilizes Python'd oggi ng package. This package sepa-
HTTP authentication. In the server implementation, all ohtes the content and presentation of the log messages and
the code for handling the authentication is located in tipeovides a single point of configuration for log messages.
file graf fitiauth. py. This file implements a single In Python’sl oggi ng packagel ogger objects are
method,aut hent i cat eUser, which takes the user-used to generate log messages. THesgger objects
name and password associated with a request and cre-not passed as variables but rather accessed by name.
firms that these values agree with values in the Graff@bnfiguration of logging within the Graffiti server is cen-
server database. If the values are correct than the mettratized to thegr af fi t i Logger . py file. This module

®
graffiti.py ® graffitiServerAPIl.py
e
Recieve request Find API call handler
@ ‘ @

graffitiAuth.py Q putSharedTags.py
Authenicate user clearTagspy Process request

API Call Implementations

Figure 3: Request processing

implements one methodget upLoggi ng, that is called The get TagChanges call is implemented in the
from thegraf fiti. py just before the server starts. Iget TagChanges. py file. The tag changes are inter-
configures oné.ogger object namedr af fiti . Each preted and not log based. For example, if a tag has been
user module that wishes to use this logger must import ta@ded, and then deleted, and then added again since the
| oggi ng module and retrieve the logger by name usirtgnestamp given, the server will respond with one ADD

the following command: operation. Thus, the tag changes returned by the server
. o represent the current state of the tags and not the sequence
| og = | ogging. getLogger ("graffiti™) of events that brought it to its current state. This call ake

. . the following arguments:
While Logger objects are used to generate log garg

data, presentation of that data is left to one or more Arg Status Description

Handl er objects. Thesedandl er objects represent ~year req. timestamp’s year field
output streams such as files and standard output. Themonth req. timestamp’s month field [1,12]
advantage of the Python logging scheme is that each day req. timestamp’s day field [1,31]
Handl er can be configured independently but in one hour opt. timestamp’s hour field [0-24]
central location. For example, in the current implementa- min opt. timestamp’s minute field

tion there are two handlers. The first is the standard error gec opt. timestamp’s seconds field

stream which outputs server errors. The second is a file _ _
stream which produces a detailed log of all the requestsl he server responds to the client request withan HTML
made to the Graffiti server. encoded page. It is the client’s responsibility to parse the

contents of the page. An example page that returns a log
4.6 API Calls of two operations would have the following format:

All' API calls to the server are issued as URL's in whichet TagChanges

the call is specified as the requested resource. Argumamsr - <user name>

are passed in the CGI format for URL arguments. Thg pest anp: <ti nestanmp gi ven by user>
general form for API calls is as follows: <ADD| DELETE>, <tag>, <checksump

<ADD| DELETE>, <tag>, <checksun®
https://<server>: <port >/ <cal | >?<ar gs>
4.6.2 putTagChanges

4.6.1 getTagChanges This API call is used to put the client's metadata infor-

This API call gets all the tag changes associated wittation on the server. Theut TagChanges call is im-
the client that have occurred after the given timelementedintheut TagChanges. py file. Itis used to

place both tag and file ownership information on the Grgfut TagChanges

fiti server. The tags are connected to a checksum andtls&r : <user nane>

server does not attach the old tags if a checksum changehecksun® : <sharei d>

Itis up to the client to keep the server up to date and keep . _)) _

old tags moving forward as the checksum changes If there is an error during the database interaction or if
Each tag placement request is passed to the servellf, user (_10es not own the file according to the database

the url string as a three tuple labeleelq where the tuple th€ shareid returned will be -1.

is of the following form: 4.6.5 clearAllTags

<ADD| DELETE>, <t ag>, <checksun® This API sets the validity of all of a user’s tags to false and
Fil hio | dth hth ¢ then resets their modification date. Tdleear Al | Tags
lle ownership s expressed through the use of a spegiay i implemented in thel ear Al | Tags. py file. It

Fag. I th? tag is afile u_rI (etile: /() then an entry is important to note that since the server is implemented
is made in the serverki | e_owner shi p table associ- .

) .) in Python the new modification date is not the start of
ating that user with that checksum at the client and pa{f) .hai time but rather the start of AD time. "0001-01-
given. For example, if the user has the file with a chec 1 00:00-00” '
sum ofmunm emumi e the special request might look e

Itis also important to note that there is no confirmation
as follows:

when the client makes the call. The user that is authenti-
ADD, fil e://home/ docs, munm emunmi e cated will have their tags reset on the server so the client

]]]) must be careful making this call.
When the server receives a file, certain sanity checks

are made. First, the server will insure that the checks®Bn Server History

is located in the file table. If it is not then the server Wi”l'he first version of the Graffiti server was implemented
add it to the file table. Second, if the request is to add a P

) .) Sing Java 5 and, instead of HTTP, relied on Java’'s Re-
tag that the user has already associated with the ﬂle’.%rhgte Method Invocation (RMI) for exporting its API to

server will insure that the valid field is set to true. This;. .) :
. . Clients. This approach proved to be inflexible as the au-
may occur if a user adds a tag, then deletes it and then L iy
. . entication and secure communications capabilities were
chooses to add it again. . gy L . \
insufficient for our application. In spite of RMI's usage

4.6.3 getSharedTags over CGl we were unable to produce a suitably secure ver-
This API call fetches the tags associated with a sharélgn in @n acceptable amount of time. One advantage that
checksum and then sets the share to invalid so that it cHi$ Method did have was the ability to pass arguments and
not be fetched a second time. Tiet Shar edTags call €tum results as Java collections. While this reduced the
is implemented in thget Shar edTags. py file. This amount of parsing required on the client’s end, this alone
call takes one argumerghar ei d. The server respondsas considered a poor tradeoff for the communications
with the following output if the shareid is valid and th&hortcomings.

validity of the shared checksum is set to true: The Javz_;\ version of the Graffiti server was first imple_-
mented using the MySQL version 3.23 database. Two is-
get Shar edTags sues prevented the further use of this database. The first
User: <usernane> was this version’s inability to use arbitrary text fields as
<checksun» : <tag> table keys. As figurEl2 shows, the database schema for

Qe Graffiti server utilizes a number of tables that use text
lelds as keys. The second issue that caused the move
to PostgreSQL was MySQL version 3.23’s poor support
4.6.4 putSharedTags for foreign keys. This particular feature was considered
This API call adds the checksum to be shared to tiBportant for maintaining the consistency of a number
server's tagsharing table and returns a nonce which & tables. For example, it was important to insure that
used to get the shared tags. Thet Shar edTags call Uusers were tagging and sharing files that existed in the
is implemented in theut Shar edTags. py file. Since database.

the user shares a checksum and not specific tags, all of .

a users tags attached to the checksum are shared. ﬁniscondus'on

method takes one argumerthecksum The server Tagging has proven to be a useful method for organizing
replies with the following output: collections of data. Its use has been proven on websites

If more than one shareid is given, all the tags for all t
valid shareids will be fetched and output.

as well as in local applications. The Graffiti system has
been developed to experiment with tags that cross appli-
cation, host and user boundaries. A key component that
enables this capability is the Graffiti server which makes
tags available across host boundaries and promotes tag
sharing and collaboration.

References

[1] del.icio.us. http://del.icio.us, Nov 2005.

[2] Flickr - photo sharing. http://www.flickr.com, Nov 2005

[3] Apple Computer Inc. iphoto.

[4] T. Butler, S. Fisher, S. Hockey, G. Coulombe, P. Clements
S. Brown, I. Grundy, K. Carter, K. Harvey, and J. Wood.
Can a team tag consistently? experiences on the or-
lando project. Markup Languages: Theory and Practice,
2(2):111-25, 2000.

[5] P. Dourish, W. K. Edwards, A. LaMarca, and M. Salis-
bury. Presto: an experimental architecture for fluid intera
tive document space8SCM Trans. Comput.-Hum. Interact.,
6(2):133-161, 1999.

[6] S. A. Golder and B. A. Huberman. The structure of col-
laborative tagging systems. Technical report, Infornmatio
Dynamic Lab, HP Labs, 2005.

[7] M. Henzinger. The past, present and future of web
search engines. IRroceedings of the 31st International
Colloguium on Automata, Languages and Programming.
Springer-Verlag, 2004.

[8] S. Morrison. Mailtags, 2005.

[9] J. D. Myers, A. R. Chappell, M. Elder, A. Geist, and
J. Schwidder. Re-integrating the research reco@hm-
puting in Science and Engineering, May/June 2003:44-50,
2003.

10

	Project Introduction
	Related Work
	System Overview
	Files
	Tags
	Client Application
	Server Application

	Implementation Overview
	Client Overview
	Server Overview
	Database
	Database Users
	Users Table
	User Files Table
	Tags Table
	File Ownership Table
	Tag Sharing Table

	HTTP Server
	Authentication
	HTTPS and Certificates

	Logging
	API Calls
	getTagChanges
	putTagChanges
	getSharedTags
	putSharedTags
	clearAllTags

	Server History
	Conclusion

