
Graffiti Server — Design and
Implementation

Technical Report UCSC-SSRC-07-02

Mark W. Storer
mstorer@soe.ucsc.edu

Storage Systems Research Center
Jack Baskin School of Engineering
University of California, Santa Cruz

Santa Cruz, CA 95064
http://www.ssrc.ucsc.edu/

January 23, 2007



Graffiti Server — Design and Implementation

Mark W. Storer
mstorer@soe.ucsc.edu

Abstract

While data on file systems and data on the Web have tradi-
tionally been organized in a hierarchical structure, tagging
has emerged as a viable technology for dealing with large
collections of data. Tagging involves attaching descriptive
keywords to data objects such as files and URLs. Most
current implementations of tagging restrict the scope of
tags to the website or application in which they were cre-
ated. We have designed and implemented the Graffiti sys-
tem to explore the collaborative use of tags across appli-
cations, computers and users. The Graffiti system is made
up of two key components. The first is a client applica-
tion which the user utilizes to manage the tags on their
local file system. The second is a server application that
enables collaborative metadata management and sharing.

The Graffiti server constitutes a back-end database and
a server application which provides Graffiti clients with
access to shared metadata. This document describes the
design and implementation of the current version of the
Graffiti server. It includes a complete description of the
current installation of the server as well as detailed in-
structions for extending the capabilities of the server.

1 Project Introduction

Locating data that resides on file systems has traditionally
been very different than finding web-pages. Locating data
on the local file system is closely tied to the act of “filing”
data. In contrast, locating data on the Web is more closely
related to “finding”. The disparity between locating data
on local systems and the Web can be tied to fundamental
differences in the way the user interacts with the system.
Recently however, tagging has emerged as a new model
for locating data on the Web and aspects of it may be ap-
plicable to local and shared file systems. To determine
how tagging techniques might be applied to file systems
we have create a tool called Graffiti which adds tagging
capabilities to existing systems and allows us to collect
usage data about how users utilize tagging in file systems.

On file systems, users usually store files in a hierarchi-
cal structure with the hope that this careful placement will
make latter retrieval easier. For example a user may place

a new document they are working in a directory named,
\home\myhome\documents\project1. When it
comes time to retrieve this document the user can rely on
the structure of their folder hierarchy to know that within
their home folder they probably stored their documents
in the folderdocuments and if the document pertains to
project1 they have a good idea as to where they placed
their file. In this “filing” scenario the user spends time to
carefully place their data in a location that they can easily
deduce later.

In contrast to the “filing” model used on file systems,
locating data on the Web can best be described as “find-
ing”. In this model, since the user is not responsible for
placing the data, they must deduce the data’s full location
based on what they know about its content. In a simple us-
age model users utilize search engines to find websites and
lists of favorite URLs to easily return to the site at a later
time. Traditional search engines on the Web, as well as
in recent file systems, concentrate on automatic indexing.
The main challenge of this approach is to rank matching
results to a query. On the web, Google’s PageRank [7]is
addressing this by taking the link structure of the web into
account. Based on anecdotal evidence, this search tech-
nique worked so well that sets of a few keywords became
shorthand for URLs and greatly diminished the value of
maintaining personal bookmarks.

Recently a new model, tagging, has emerged for find-
ing data on the Web. Tagging, in the general case, consists
of attaching descriptive text to objects. Many applications
of tags have been focused on helping users locate data.
Websites such as Flickr [2] and del.ico.us [1] have demon-
strated that tagging can effectively replace hierarchal or-
ganization schemes and can efficiently organize large col-
lections of data. Using similar, methods applications such
as Apple Computer’s iPhoto [3] have included tagging ca-
pabilities to help manage collections of data on the lo-
cal computer. One common drawback that these schemes
have is that they do not extend beyond the scope of a sin-
gle application or website.

Tags can be applied to many problems besides data lo-
cation. For example tags can be used to identify files
that are to be included in an action. In this scenario

1



a user might attached a tag, for examplebackup, to
a file. A backup program written to utilize tags would
then search the system for that tag and backup the result-
ing files. Another example of inclusive tags might be a
program designed to automatically copy all files tagged
synchronize to all the machines that a user has an
account on. In contrast to inclusive uses, exclusive uses
might specifically tells a program to omit a file. An exam-
ple of this exclusive model is a user that wishes to have a
file left out of an index. In this case the indexer could be
configured to ignore all files tagged withprivate. Tags
might also be used to manage dependencies. For example,
a library file might be tagged with the name and version
of each application that utilizes it. In this manner, if all of
the applications represented by the tags are no longer on
the system a user would know that it is safe to remove the
library.

2 Related Work

Our work has been inspired by the continued success
of collaborative tagging services on the Web such as
del.icio.us [1] and flickr [2]. Additionally, on the local
file system tagging has been succesfully applied to assit
in managing collections of similar data. For example,
Apple’s iPhoto [3] utilizes tags to manage digitial pho-
tographs and indev’s MailTags [8] applies tagging to the
problem of managing email. The key difference betweens
these solutions and Graffiti is that Graffiti is a general
use tagging tool that manages disparate data and spans
the boundaries of file systems, hosts and users. We are
currently not aware of work that implements collabora-
tive management of file metadata that works across file
systems, hosts and applications. There has however, been
work done on invesitgating the use and implications of
collaborative metadata [6, 4].

The Scientific Annotation Middleware (SAM) [9] sys-
tem is using a combination of WebDAV and content man-
agement to administer a large variety of scientific data and
metadaata. Its design assumes that data and metadata is
stored in the databases of content management systems
within a data grid framework. Graffiti, on the other hand,
focusses on the metadata of files stored in file systems.

The Presto document management system extends tra-
ditional file systems with arbitrary attributes [5] that al-
low files to be grouped and searched by these attributes.
The system presents itself as a file system and can mount
other file systems via NFS and extend them with Presto
functionality. Thus, Presto’s approach to providing meta-
data across multiple file systems is accomplished by a lay-
ered architecture that duplicates and mimics traditional
file system functionality in addition to extended Presto

functionality. In contrast, Graffiti maps directly to file
content independent of any particular file system structure
and strictly compliments traditional file system function-
ality. In addition we focus on collaborative management
of metadata across many users.

3 System Overview
Graffiti provides file systems with tagging capabilities.
Using the system, clients use a local application to attach
descriptive text strings that they create to files. These tags
are stored in a persistent database on the local computer.
The Graffiti client application allows these tags to be ac-
cessible by applications through a published API. These
local tags can also be synchronized with Graffiti servers.
The Graffiti servers aggregate tags from multiple client in
a centralized database and allow tags to be shared across
hosts and with different users.

3.1 Files

In the Graffiti system tags are attached to files. The system
uses a file’s SHA-256 hash as a unique global identifier.
This model has three distinct advantages. The first is that
users may have multiple copies of the same files on the
same computer. The second, and probably more common,
is that users may have multiple copies of the same file on
different computers. For example, a user may have a copy
of an important file on both their laptop and desktop or on
their home computer as well as their office computer. The
third reason that checksum are a useful global identifier is
that Graffiti works across computers and across different
users. Users may have files in common and the check-
sum as a global identifier is a useful way of facilitating
metadata sharing and tag suggestions.

There is, however, one important issue related to us-
ing the SHA-256 hash as a file’s global identifier. A file’s
hash is dependent on its content and thus if a file changes,
its global identifier changes. Thus, it is the responsibil-
ity of the Graffiti client components to insure that, as
files changes, older tags migrate to the new file check-
sum. This disadvantage does have some useful semantics.
Users may have shared files but they may diverge and the
content-based file identifier would reflect this. For exam-
ple, two users may download a document from the same
source but those two users might make separate changes
to their copy.

3.2 Tags

Tags are descriptive strings that user attach to files. In the
Graffiti system they are user defined strings with no white
spaces. This provides a high degree of flexibility in what
can be expressed. For example, text strings can be used

2



file A : {alpha, beta, gamma}

file B : {alpha, beta}

file C : {alpha, gamma}

file D : {beta, gamma}

alpha beta

gamma

A

B

C D

Figure 1: Relationship implied with tags that is difficult
to express using a hierarchical structure.

to express URLS, key/value pairs, email addresses, or file
paths. The Graffiti system does reserve certain tags as sys-
tem tags which dictate the system’s behavior. Examples
of these system tags include those that inform the server
of a files location and tags that control the server that the
metadata is synchronized with.

Tags can express an implied relationship between files
when multiple files have a tag in common. For exam-
ple, it is implied that two files that both contain the tag
ProjectAlpha are part of the same project. The same
relationship would be implied if they were in the same
folder. The relationship tags express differ from that im-
plied by folders in that tags allow relationships that are
non-hierarchical. Figure 1 illustrates a relationship be-
tween a set of files that could not be expressed using a
hierarchical structure such as folders and subfolders.

3.3 Client Application
Users of Graffiti interact with the system through a client
application. The client runs on each host computer that
supports tagging and provides the system with a local
metadata store and an interface for the client to interact
with. The design of the Graffiti client provides a number
of advantages. The client exists at the application layer.
This design choice allows Graffiti to work on a wide va-
riety of client platforms and files systems. In addition to
the time it takes to implement tagging inside a file system,
it also presents a risk to the data within that file system.
Additionally, as one of the purposes of Graffiti is to test
new metadata primitives, Graffiti allows the users to work
with their current data in its current state and location.

The Graffiti client exports an API interface that allows
any application to take advantage of the tags maintained
by the local database. Many of the currently existing ap-

plications that utilizing tagging restrict the tags to the ap-
plication they were made in. Graffiti attempts to remedy
this and to encourage users to utilize tagging by increases
a tags utility. If the tags exists in multiple applications
they are more valuable than tags restricted to a single ap-
plication.

The Graffiti client includes both GUI and command
line tools for attaching tags to files. The tags users attach
to files are instantly available locally as they are main-
tained in a local database. If clients would like these tags
to be available to other users or on their other computer
they can synchronize their tags to a Graffiti server. Clients
can choose which servers they share their tags with using
a special system tag which identifies a Graffiti server.

Clients communicate to the Graffiti server through se-
cure HTTP. All communication between the client and
the server is stateless. Each call that the client makes
to the server is self-contained with the request containing
all required information needed to authenticate the user
to the system and fulfill the request. Currently, users are
required to have a password-protected account on every
server with which they communicate.

3.4 Server Application

The Graffiti server maintains a database of metadata ag-
gregated over a number of clients and enables the sharing
of metadata across computers. The metadata stores on
the server record a username along with the file metadata.
Utilizing this username along with a time-stamp of syn-
chronizations, the server is able to provide a user with
multiple computers the ability to synchronize metadata
changes across multiple hosts. An example of this func-
tionality would be a user with a laptop and a desktop and a
set of files that exists on both. Solutions such as CVS can
effectively manage the synchronization between the two
computers but largely ignore the file’s metadata. A user
can tag a file using the Graffiti client on their laptop and
synchronize this change to a Graffiti server. Later, that
user can synchronize their desktop to that Graffiti server
and have that tag automatically added to their desktop’s
local Graffiti metadata database.

4 Implementation Overview
The Graffiti system consists of a Graffiti client that runs
on the users local machine and Graffiti servers that serve
as centralized points for metadata collaboration.

4.1 Client Overview

The Graffiti client was built in Java using the SWT toolkit
for the GUI. Data on the client is managed via an embed-
ded Apache Derby database that is accessed through SQL

3



queries. The GUI and command line both access the data
store through an API which allows common tagging op-
erations, and is available to other applications. For now,
filesystem event handling such as updating the database
when files are renamed is only implemented for Mac OS
X.

4.2 Server Overview

The Graffiti server is based on a database back-end and an
API that clients access through secure HTTPS calls. The
server has two primary roles. The first role of the server
is to enable the collaboration of metadata across multiple
machines. This is accomplished through the database and
the API. The second role of the server is to collect usage
data about collaborative metadata. This is done through
aggressive event logging at the server and database levels.

The back-end database provides a persistent data-store
for collaborative metadata. It is implemented using Post-
greSQL version 7.4.11. Currently, each user that accesses
the Graffiti server has an account managed by a special
Graffiti users database table. In the future we may look
into providing centralized authentication capabilities.The
database has four sets of data to manage. The first is the
set of user accounts for that server. The second is the set
of files, identified by checksum, that are owned by users.
Third, the database tracks the tags that have been placed
by users on files. Finally the server is able to manage
metadata that users choose to share.

The Graffiti server was implemented using the Twisted
server framework version 2.1.0 and Python version 2.3.4.
The clients makes calls to the server as HTTP requests.
The server uses basic HTTP authentication along with a
table of users in the database to authenticate Graffiti users.

One of the important tasks of the Graffiti server is
to collect usage data based on interaction with Graffiti
clients. This is accomplished at two levels. The first is
logging at the database level. The second is logging at
the server level. The logging at this level is accomplished
using the Pythonlogging module. This module allows
the content of log messages to be separated from the mes-
sages presentation.

Clients interact with the server through a published
API. The API receives requests from the client over
HTTP. The API currently consists of five calls. The
first call,putTagChanges, allows a user to update the
server database with the tag changes that have been per-
formed at the client. The second call,getTagChanges,
allows a client to retrieve the tag updates that they have
placed on the server. The server retrieves the tag changes
based on a date passed as an argument and the username
attached to the request. The server returns a list of all

the tag changes that the user has made on any machine
after the given date. The third call,clearAllTags, al-
lows the user to reset all their tags in the server database.
The server accomplishes this by turning off all the tags
for the user and setting the modification time to the ear-
liest possible system time. The third and fourth calls,
putSharedTags andgetSharedTags, allow a user
to share the metadata they have attached to a file with an-
other user. When a user shares their metadata they contact
the server and identify the checksum that has the tags the
user wishes to share. The server responds with an iden-
tification number that another user can use to collect the
shared metadata.

4.3 Database

The current implementation of the Graffiti server utilizes
PostgreSQL version 7.4.11. The name of the database that
the Graffiti server attempts to connect to isgraffiti.
In PostgreSQL the database can be created by issuing the
command from the system’s command line.

createdb graffiti

The database can be administered from the command
line using thepsql command. To access the database
you would issue the following command from the system
command line:

psql graffiti [username]

If no user name is given then the default username is
used. Within the psql interactive command terminal com-
mands are terminated using the ‘;’ character. Commands
can span several lines. To exit the psql command terminal
use Ctrl-D or\q. To access a list of useful PostgreSQL
commands use\?.

4.3.1 Database Users

There are two database users that the Graffiti server
uses. The first, graffitiserver, is used
for general queries to the database and the other,
graffitiserveradmin, is used to manage users. In
PostgreSQL users are created using thecreateuser
command at the system command line. The Graffiti
server uses two different user accounts so that security
can be more fine-grained.

The graffitiserveradmin account is used to
manage user accounts. It has permissions that allow it
to modify the tables related to user accounts. In the
current Graffiti server implementation it is used in the
adduser.py script which walks through the process
of creating a Graffiti account. This is the only account

4



Usersfirst name

last name
email

tag

username
password

tag

Files

uri
checksum

client

modtime

own

valid

date

added

valid

share

shareid valid

Figure 2: ER model diagram of the Graffiti server database schema

User Permissions Table

graffitiserveradmin SELECT,INSERT,UPDATE users
graffitiserver SELECT users
graffitiserver SELECT,INSERT,UPDATE userfiles
graffitiserver SELECT,INSERT,UPDATE tags
graffitiserver SELECT,INSERT,UPDATE file ownership
graffitiserver SELECT,INSERT,UPDATE tag sharing

Table 1: Table permissions needed by the Graffiti server database accounts. Note that no database user account needs
DELETE permissions for any of the tables.

that needs permissions to modify theusers table as de-
scribed in section 4.3.2. It does not, however, have any
access to any other table as it is only used for managing
user accounts.

The other account,graffitiserver, is used to
modify the contents of every table in the database with
the exception of theusers table. Since it is used by the
authentication module it does, as table 1 illustrates, have
select access to theusers table and select, insert and up-
date access to all of the other tables. Table permissions
can be granted to an account using the GRANT command
from within the database shell.

4.3.2 Users Table

Each user that authenticates to the Graffiti server has an
entry in theusers table. Authentication involves two
fields in the table: username and password. The password
is stored in the table as an MD5 hash of the actual pass-
word text chosen by the user. The remainder of the fields
in the table store information about the user such as their

actual name and contact information. The SQL command
for creating the table is as follows:

CREATE TABLE users (
username VARCHAR(32),
password VARCHAR(32),
first_name VARCHAR(32),
last_name VARCHAR(32),
email VARCHAR(32) NOT NULL,
PRIMARY KEY (username))

4.3.3 User Files Table

The second entity in the server schema is a user file.
These are stored in theuser files table. User files are
uniquely represented in the system by their checksums.
The table consists simply of the checksum and the date
that they were added to the system. The SQL command
for creating the table is as follows:

CREATE TABLE user_files (
checksum VARCHAR(64),

5



date_added TIMESTAMP DEFAULT now(),
PRIMARY KEY (checksum))

4.3.4 Tags Table

Tags are central to the Graffiti system and in the server
schema are described in the ER-model as, “Users tag
Files”. The tag itself has attributes such as the string that
makes up the tag, its last modification time and whether
the tag is valid or not. Tags are never deleted from the sys-
tem for three reasons. The first is that users would need to
have access rights to delete data and this was considered
a needless security risk. The second reason is that one
of Graffiti’s primary roles is to provide usage data and as
such operations such as deletion should be recorded in a
way that leaves a clear record. The third reason is related
to synchronization. Deleting a tag by removing its entry
from the table results in the need to log actions taken by
the user that can be consulted to get synchronization data.
In contrast, in the current model deletion is simulated by
setting the validity of the tag tofalse. Using this technique
along with the modification time it easy to determine the
changes that have occurred since a given time.

The constraints on thetags table insure that the
username that owns the tag as well as the checksum
that the tag is placed on are present in theusers and
user files table respectively. The SQL command for
creating the table is as follows:

CREATE TABLE tags (
modtime TIMESTAMP DEFAULT now(),
tag VARCHAR(256),
valid BOOLEAN DEFAULT TRUE,
username VARCHAR(32),
checksum VARCHAR(64),
PRIMARY KEY (username,checksum,tag),
FOREIGN KEY (username)
REFERENCES users,

FOREIGN KEY (checksum)
REFERENCES files)

4.3.5 File Ownership Table

The relationship between users and files is described in
the ER-model as, “Users own Files”. This relationship is
contained within thefile ownership table. This rela-
tionship describes not only which file a user owns but also
where the owner has placed the file. This location infor-
mation is related to two attributes on the ”owns” relation-
ship. The first attribute is theuri field which consists of
the fully qualified path to the file. The second attribute is
theclient field which is a descriptive string identifying
a host. This client name only needs to be understandable
to the owner of the file and does not relate directly to a

hostname (although a hostname would be a logical choice
for the client field). This description is assigned by the file
owner.

As with tags, the constraints on the
file ownership table insure that the username
that owns the tag as well as the checksum are present in
the users and user files table respectively. The
SQL command for creating the table is as follows:

CREATE TABLE file_ownership (
uri TEXT,
client VARCHAR(64),
username VARCHAR(32),
checksum VARCHAR(64),
valid BOOLEAN DEFAULT TRUE,
PRIMARY KEY

(username,checksum,uri,client),
FOREIGN KEY (username)

REFERENCES users,
FOREIGN KEY (checksum)

REFERENCES files)

4.3.6 Tag Sharing Table

The third relationship found in the server’s database
schema relates to the collaborative aspects of Graffiti’s
metadata. It is described in the ER-model as “Users share
Files”. The relationship is actually a bit misleading as
the relationship describes not the sharing of file data but
rather of file metadata (in this case tags). In the current
usage model the user chooses to share the metadata at-
tached to a checksum and receives a token. The user that
the metadata owner wishes to share the data with is given
the token which the receiver redeems at the server. In the
current implementation the token is an identification num-
ber. Thetag sharing table relates a checksum to the
identification number.

As with the other relations, the constraints on the
tag sharing table insure that the username that owns
the tag is in theusers , the file being shared is in the
user files table and the user sharing the file owns
the checksum according to thefile ownership table.
The SQL command for creating the table is shown as fol-
lows:

CREATE TABLE tag_sharing (
shareid INTEGER,
valid BOOLEAN DEFAULT TRUE,
username VARCHAR(64),
checksum VARCHAR(64),
PRIMARY KEY (checksum, shareid),
FOREIGN KEY (username)

REFERENCES users,

6



FOREIGN KEY (checksum)
REFERENCES user_files)

4.4 HTTP Server
The Graffiti server users HTTP to communicate with the
clients. The web server portion of the server is im-
plemented using the Twisted 2.1.0 package and Python
version 2.3.4. Starting the server involves running the
graffiti.py file through the Python interpreter as fol-
lows:

python graffiti.py

The server’s main loop is implemented in the
graffiti.py file. This is the file that directly im-
plements the Twisted framework’s factory classes. The
primary class that handles a secure HTTP request is the
FunctionHandledRequest. This class’process
method is automatically called when the server receives
an incoming request.

The first thing that the server does when it re-
ceives a request is to authenticate the user. The
details of user authentication are explained in sec-
tion 4.4.1. If authentication succeeds, server control
is passed to thegraffitiHandler method of the
graffitiServerAPI.py file.

The graffitiServerAPI.py is responsible for
taking the request from the user and, utilizing the URL,
determining the API call requested and the handler for
that call. This module exports one method which uses a
lookup table to match the user’s request to the API call and
handler. Extending the number of API calls is a three step
procedure as follows and should not require any changes
to thegraffitiHandlermethod.:

1. Implement a Python module which performs the new
call.

2. Add an import for the module’s entry point to the
graffitiServerAPI.py file.

3. Edit graffitiServerAPI.py by adding a
lookup table entry for the new API call

4.4.1 Authentication

Authentication in the Graffiti server is handled using basic
HTTP authentication. In the server implementation, all of
the code for handling the authentication is located in the
file graffitiauth.py. This file implements a single
method,authenticateUser, which takes the user-
name and password associated with a request and con-
firms that these values agree with values in the Graffiti
server database. If the values are correct than the method

returns the username back to the caller, otherwise it raises
an authentication exception.

Currently, the user must have a local account on each
server that they access. This could easily be extended by
updating theauthenticateUser method to access a
centralized authentication server.

4.4.2 HTTPS and Certificates

In an effort to provide transport level security, the Graffiti
server performs all communication over HTTPS. As such,
the server requires a private key and a certificate. In the
current implementation the keys and certificates required
by HTTPS are generated using theopenssl command.
In the current implementation, the server’s certificate is
not signed by a valid certificate authority and thus would
not be automatically trusted by a generic HTTPS client
such as a web browser. For the purposes of this project,
that is not an issue.

The private key required by the Graffiti server is gen-
erated using thegenrsa command and the OpenSSL
command line tool. The final argument specifies the key
length as a bit length. The current implementation uses
a key of length 1024 but this is somewhat arbitrary. The
command used to generate the key is as follows. It outputs
the key in a file namedgraffitiServerKey.pem.

openssl genrsa -out
graffitiServerKey.pem 1024

The certificate for the Graffiti server is produced using
thereq command and the OpenSSL command line tool.
The req command is an interactive command line tool
that walks the user through the process of creating an x509
certificate. The command used to generate the certificate
is as follows:

openssl req -new -x509
-key graffitiServerKey.pem
-out graffitiServerCertt.pem
-days 1095

4.5 Logging

One of the goals of the Graffiti project is to collect us-
age information for tags. To this end, the Graffiti server
utilizes Python’slogging package. This package sepa-
rates the content and presentation of the log messages and
provides a single point of configuration for log messages.

In Python’slogging package,Logger objects are
used to generate log messages. TheseLogger objects
are not passed as variables but rather accessed by name.
Configuration of logging within the Graffiti server is cen-
tralized to thegraffitiLogger.py file. This module

7



request

4

3

2

1

graffitiAuth.py

Authenicate user

graffiti.py

Recieve request

graffitiServerAPI.py

Find API call handler

putSharedTags.py

Process request

+
getTagChanges.py

putTagChanges.py
getSharedTags.py

putSharedTags.py
clearTags.py

API Call Implementations

Figure 3: Request processing

implements one method,setupLogging, that is called
from thegraffiti.py just before the server starts. It
configures oneLogger object namedgraffiti. Each
user module that wishes to use this logger must import the
logging module and retrieve the logger by name using
the following command:

log = logging.getLogger("graffiti")

While Logger objects are used to generate log
data, presentation of that data is left to one or more
Handler objects. TheseHandler objects represent
output streams such as files and standard output. The
advantage of the Python logging scheme is that each
Handler can be configured independently but in one
central location. For example, in the current implementa-
tion there are two handlers. The first is the standard error
stream which outputs server errors. The second is a file
stream which produces a detailed log of all the requests
made to the Graffiti server.

4.6 API Calls
All API calls to the server are issued as URL’s in which
the call is specified as the requested resource. Arguments
are passed in the CGI format for URL arguments. The
general form for API calls is as follows:

https://<server>:<port>/<call>?<args>

4.6.1 getTagChanges

This API call gets all the tag changes associated with
the client that have occurred after the given time.

The getTagChanges call is implemented in the
getTagChanges.py file. The tag changes are inter-
preted and not log based. For example, if a tag has been
added, and then deleted, and then added again since the
timestamp given, the server will respond with one ADD
operation. Thus, the tag changes returned by the server
represent the current state of the tags and not the sequence
of events that brought it to its current state. This call takes
the following arguments:

Arg Status Description
year req. timestamp’s year field
month req. timestamp’s month field [1,12]
day req. timestamp’s day field [1,31]
hour opt. timestamp’s hour field [0-24]
min opt. timestamp’s minute field
sec opt. timestamp’s seconds field

The server responds to the client request with an HTML
encoded page. It is the client’s responsibility to parse the
contents of the page. An example page that returns a log
of two operations would have the following format:

getTagChanges
User: <username>
Timestamp: <timestamp given by user>
<ADD|DELETE>, <tag>, <checksum>
<ADD|DELETE>, <tag>, <checksum>

4.6.2 putTagChanges

This API call is used to put the client’s metadata infor-
mation on the server. TheputTagChanges call is im-
plemented in theputTagChanges.py file. It is used to

8



place both tag and file ownership information on the Graf-
fiti server. The tags are connected to a checksum and the
server does not attach the old tags if a checksum changes.
It is up to the client to keep the server up to date and keep
old tags moving forward as the checksum changes.

Each tag placement request is passed to the server in
the url string as a three tuple labeledreq where the tuple
is of the following form:

<ADD|DELETE>,<tag>,<checksum>

File ownership is expressed through the use of a special
tag. If the tag is a file url (i.e.:file://) then an entry
is made in the server’sfile ownership table associ-
ating that user with that checksum at the client and path
given. For example, if the user has the file with a check-
sum ofmummlemummle the special request might look
as follows:

ADD,file://home/docs,mummlemummle

When the server receives a file, certain sanity checks
are made. First, the server will insure that the checksum
is located in the file table. If it is not then the server will
add it to the file table. Second, if the request is to add a
tag that the user has already associated with the file, the
server will insure that the valid field is set to true. This
may occur if a user adds a tag, then deletes it and then
chooses to add it again.

4.6.3 getSharedTags

This API call fetches the tags associated with a shared
checksum and then sets the share to invalid so that it can-
not be fetched a second time. ThegetSharedTags call
is implemented in thegetSharedTags.py file. This
call takes one argument,shareid. The server responds
with the following output if the shareid is valid and the
validity of the shared checksum is set to true:

getSharedTags
User: <username>
<checksum> : <tag>

If more than one shareid is given, all the tags for all the
valid shareids will be fetched and output.

4.6.4 putSharedTags

This API call adds the checksum to be shared to the
server’s tagsharing table and returns a nonce which is
used to get the shared tags. TheputSharedTags call
is implemented in theputSharedTags.py file. Since
the user shares a checksum and not specific tags, all of
a users tags attached to the checksum are shared. This
method takes one argument,checksum. The server
replies with the following output:

putTagChanges
User: <username>
<checksum> : <shareid>

If there is an error during the database interaction or if
the user does not own the file according to the database
the shareid returned will be -1.

4.6.5 clearAllTags

This API sets the validity of all of a user’s tags to false and
then resets their modification date. TheclearAllTags
call is implemented in theclearAllTags.py file. It
is important to note that since the server is implemented
in Python the new modification date is not the start of
epochal time but rather the start of AD time, ”0001-01-
01 00:00:00”

It is also important to note that there is no confirmation
when the client makes the call. The user that is authenti-
cated will have their tags reset on the server so the client
must be careful making this call.

5 Server History
The first version of the Graffiti server was implemented
using Java 5 and, instead of HTTP, relied on Java’s Re-
mote Method Invocation (RMI) for exporting its API to
clients. This approach proved to be inflexible as the au-
thentication and secure communications capabilities were
insufficient for our application. In spite of RMI’s usage
over CGI we were unable to produce a suitably secure ver-
sion in an acceptable amount of time. One advantage that
this method did have was the ability to pass arguments and
return results as Java collections. While this reduced the
amount of parsing required on the client’s end, this alone
was considered a poor tradeoff for the communications
shortcomings.

The Java version of the Graffiti server was first imple-
mented using the MySQL version 3.23 database. Two is-
sues prevented the further use of this database. The first
was this version’s inability to use arbitrary text fields as
table keys. As figure 2 shows, the database schema for
the Graffiti server utilizes a number of tables that use text
fields as keys. The second issue that caused the move
to PostgreSQL was MySQL version 3.23’s poor support
for foreign keys. This particular feature was considered
important for maintaining the consistency of a number
of tables. For example, it was important to insure that
users were tagging and sharing files that existed in the
database.

6 Conclusion
Tagging has proven to be a useful method for organizing
collections of data. Its use has been proven on websites

9



as well as in local applications. The Graffiti system has
been developed to experiment with tags that cross appli-
cation, host and user boundaries. A key component that
enables this capability is the Graffiti server which makes
tags available across host boundaries and promotes tag
sharing and collaboration.

References
[1] del.icio.us. http://del.icio.us, Nov 2005.
[2] Flickr - photo sharing. http://www.flickr.com, Nov 2005.
[3] Apple Computer Inc. iphoto.
[4] T. Butler, S. Fisher, S. Hockey, G. Coulombe, P. Clements,

S. Brown, I. Grundy, K. Carter, K. Harvey, and J. Wood.
Can a team tag consistently? experiences on the or-
lando project. Markup Languages: Theory and Practice,
2(2):111–25, 2000.

[5] P. Dourish, W. K. Edwards, A. LaMarca, and M. Salis-
bury. Presto: an experimental architecture for fluid interac-
tive document spaces.ACM Trans. Comput.-Hum. Interact.,
6(2):133–161, 1999.

[6] S. A. Golder and B. A. Huberman. The structure of col-
laborative tagging systems. Technical report, Information
Dynamic Lab, HP Labs, 2005.

[7] M. Henzinger. The past, present and future of web
search engines. InProceedings of the 31st International
Colloquium on Automata, Languages and Programming.
Springer-Verlag, 2004.

[8] S. Morrison. Mailtags, 2005.
[9] J. D. Myers, A. R. Chappell, M. Elder, A. Geist, and

J. Schwidder. Re-integrating the research record.Com-
puting in Science and Engineering, May/June 2003:44–50,
2003.

10


	Project Introduction
	Related Work
	System Overview
	Files
	Tags
	Client Application
	Server Application

	Implementation Overview
	Client Overview
	Server Overview
	Database
	Database Users
	Users Table
	User Files Table
	Tags Table
	File Ownership Table
	Tag Sharing Table

	HTTP Server
	Authentication
	HTTPS and Certificates

	Logging
	API Calls
	getTagChanges
	putTagChanges
	getSharedTags
	putSharedTags
	clearAllTags


	Server History
	Conclusion

