
Dynamic Relationships and the Persistence of Pairings

Ahmed Amer and Darrell D. E. Long'
Jack Baskin School of Engineering
University of California, Santa Cruz

I156 High Street
Santa Cruz, CA 95064

amer4,darrell@ cse. ucsc. edu

Abstract

The ability to automatically hoard data on a computer's
local store would go a long way towards freeing the mobile
user from dependence on the network and potentially un-
bounded latencies. An important step in developing a fully
automatedfile hoarding algorithm is the abili9 to automat-
ically identib strong relationships between files.

We present a mechanism for visualizing the degree of
long-term relationships inherent in a file access stream. We
do this by comparing the performance of static and dynamic
relationship predictors. We demonstrate that even the sim-
plest associations (from a static4rst-successor predictor)
maintain relatively high accuracy over extended periods of
time, closely tracking the performance of an equivalent dy-
namic (last-successor) predictoor: We then introduce rank-
difference plots, a visualization technique which allows us
to demonstrate how this behavior is caused by stable static
pairings offiles that are lost by the adaptation of the dy-
namic predictor for a substantial subset of frequently ac-
cessed jiles. We conclude by demonstrating how a third
pairing mechanism can make use of these observations to
outperform both the dynamic and static predictors.

1. Introduction and Motivation

Although wireless communication can allow data con-
nections while the user is mobile, wireless bandwidth does
not approach the bandwidth available with conventional
wired networks and is more susceptible to unforeseen dis-
ruptions (e.g., driving through a tunnel, or signal interfer-
ence). This means that a mobile user is susceptible to signif-
icant data access latencies imposed by the network. In the
case of disconnected operation this latency is unbounded,

+This work was supported in part by the National Science Foundation
award CCR-9972212, and the Usenix Association.

and yet with increasing data transfer rates latency actually
becomes a more serious penalty.

Reducing latency is one of the more challenging prob-
lems in modern data storage. With many of the newer
storage technologies on the horizon, there is an ever grow-
ing gap between seek performance (latency) and bandwidth
(data transfer speed). Increases in capacity and transfer
rates seem to be increasing at an impressive rate, and up-
coming technologies such as holographic stores promise
even greater improvements in capacity and transfer speeds
(terabytes of storage accessible at gigabytes per second)
[10, 121. Random access speeds to data on such devices is
not showing the same degree of improvement, in large part
due to the physical limitations of the mechanical process
this involves, e.g., disk arm movement, media replacement
in a tertiary library, or basically any mechanical movement
in newer high-bandwidth storage devices. This is analogous
to the problems with network communication for a user who
may be weakly connected or temporarily disconnected from
his main data repositories.

Increases in bandwidth to data only help to compound
the performance impact of data access latencies. To help il-
lustrate this, Figure l shows the percentage contribution of
data access latency to overall data access time for different
average request sizes. Fixed or relatively large latencies be-
come increasing performance bottlenecks as quickly as data
transfer technologies improve.

Mechanical overheads have quickly become the largest
component of storage system overhead, and analogously for
mobile systems, remote data access rapidly becomes the
dominant component of data access cost as data transFer
technologies improve in bandwidth. It is therefore impor-
tant to reduce the number of times we incur avoidable data
access latency.

Figure 1 also suggests a possible solution to this prob-
lem. It clearly shows the advantages of using more data per
operation. Such techniques are useful only if the additional
data accessed is likely to be requested in the immediate fu-

502
0-7695-1080-9/01 $10.00 0 2001 IEEE

0 100 200 MO 400 SW BMI 700 BW 800 (WO
Avenge VO Throughput (M W W

Figure 1. The effect of increasing la-
tency/bandwidth gap on system throughput.

ture, in other words, only if the larger volume of data re-
trieved has effectively resulted in a prefetch of useful data.
This observation implies a substantial gain through the pre-
diction of sequences of data access, and placement of data in
such a manner as to increase the likelihood of adjacent data
items being useful. In other words it would be very help-
ful if we could group related data items together, to ensure
that moving larger volumes of data results in more effective
utilization of bandwidth, while minimizing the likelihood
of incurring an avoidable latency cost, i.e. we need to mini-
mize the number of requests to retrieve remote data, and not
simply reduce the volume of data moved.

Using immediate-successor predictors, or pairing rela-
tionship estimators, we demonstrate a new mechanism for
visualizing the degree of relationship inherent in a file ac-
cess trace. The detection of such accurate pairings, that re-
main accurate for extended time periods, is a very promis-
ing result for automated file hoarding and data grouping.

2. Gauging Inter-Access Relationships

Probabilistic approaches to data placement are often
based on assumptions of independence. Data access events
are generated by user behavior and deterministic programs,
and are therefore rarely independent. The question we con-
sider is how do we gauge the degree of inter-file relatedness
inherent in a stream of file access events. We propose that
by following the performance of dynamic and static file ac-
cess predictors which operate on a per-file basis to predict
the next-successor for each file (i.e. predictors that offer
pairings between files) we can visualize this degree of relat-
edness.

By tracking a time-dependent accuracy metric (which we
have called LTscore - the long-term pair score) we can
demonstrate that simple first-guesses for file relationships
are reasonably accurate, and that this accuracy persists for

extended time periods (several months). Using the rank-
difference plots we can demonstrate that persistence of this
simple static prediction is indeed the cause of this sustained
accuracy, and not a constant shift to new files being ac-
cessed.

2.1. The PredictorsR’airing Estimators

We use file access predictors that are designed to predict
a successor given a single predicate. Given an access to file
A our predictors offer a candidate file B as its prediction for
the next file to be accessed after A. In this manner these
predictors define a one-way relationship between pairs of
files. We refer to these predictions as candidate pairings.

The static predictor observes the first file B to follow
A, and from that point on the static predictor will always
provide B as the successor prediction. The static successor
predictor provides a pairing that remains static, effectively
pairing a file with its first successor and never changing this
first impression. Although this approach would intuitively
appear fruitless, we demonstrate below how this incredibly
simple scheme achieves an accuracy that is very close to
that of the dynamic predictor.

The dynamic predictor is simply the last successor pre-
diction model, where the last file observed to follow file A
is offered as the prediction for the next successor of A. This
model requires checking and possibly updating the predic-
tion with each and every file access.

Our final predictor is “Noah,” which is an extension of
the basic last-successor predictor to filter out noise in the
observed access stream. This filtered model effectively ig-
nores observations that vary too rapidly, effectively acting
as a low-pass filter for observations. As with the last-
successor model, this predictor maintains a record of the
last file to be a successor to the current file. In addition to
this, Noah maintains a current successor prediction, which
is updated to become the last-successor, only if the last suc-
cessor is observed to have remained unchanged from the
last access to this file.

The last-successor (dynamic) predictor updates its pre-
diction with every access to a file, and the first successor
never updates its initial prediction, but Noah will update a
file’s successor only if a new successor is observed consis-
tently for two consecutive accesses.

2.2. The LTscore: Long-Term pair score

Our first test is applied to the dynamic and static predic-
tors, and produces what we refer to as long-term pair scores
for a given trace of access events. In particular the accu-
racy of a pairing is evaluated over a trace period of several
months. A pairing is considered to be accurate if an ac-
cess event confirms the existing pairing (in other words, no

503

update is required for the case of dynamic pairings). All
averages are weighted by the frequency of particular access
events, an item accessed frequently contributes proportion-
ally to the evaluated average “score.”

A higher score for dynamic placement is to be ex-
pected. The alternative would imply a workload that ex-
hibited pathological alternation between multiple pairings,
a possibility but not very likely to be the dominant case. A
rapid divergence between the score for static pairings and
dynamic pairings would indicate a strong need to revise
pairings, indicating a strong tendency towards change in the
inter-file relationships.

Given a sequence of access events w = rl ,r2,r3, ...,
such that ri = x implies the ith file access was to file x. A
pairing is a tuple (x, y) that assumes if r; = x then r;+l =

y . A pairing (x , y) is valid for an occurrence of ri = x
if r;+l is indeed found to be y , otherwise it is invalid. A
pairing (x, y) is formed at the first encounter of ri = x and
T i + l = y .

For dynamic pairings, if a pairing (x , y) is found to
be invalid and ri+l = z, then the pairing (x , y) is re-
placed with (x , z) , but static pairings do not perform this
update. If the number of valid pairings observed at time
t are Pdynamic(t) and Ps ta t ic (t) for dynamic and static
pairings respectively. And the total number of events was
T (t) , the long-term pair score (LTscore) for dynamic pair-
ing at time t is calculated as

Long-term pair scores are therefore cumulative over the
length of the trace period. This allows us to judge the de-
velopment of a final performance average as it is calculated
over the entire trace period. When referring to the degree
of “matching,” we are referring to the degree to which the
accuracy for static pairing follows the trend of the accu-
racy for dynamic pairing. Matching is therefore propor-
tional to the correlation between LTSCOre~yna,ic(t) and
LTscorestutic(t) The second term “divergence” refers to
the increase in separation between these two curves. In
other words, the divergence d can be defined as:

a
a t

d = -(LTscoredynamic(t) - LTscoreStatic(t))

2.3. Rank-Difference Plots

A rank-difference plot represents a performance differ-
ence between two successor-predictors, plotted against in-
stances of files ordered according to access frequency (in-
creasing in the direction of the increasing x-axis). The y-
axis on these graphs represents the difference between the

accuracy (%) of two predictors, for the specific file at that
point on the x-axis. In effect this measures the improvement
in final LTscore from using a particular dynamic predictor
vs. leaving the initially observed pairings.

An important feature of the rank-difference plot is that
the highest-frequency files are at the right of the graph,
meaning that observed differences at higher x ranges are
more significant than differences at the lower (left) x ranges.
When considering these plots it should be noted that all
file traces examined showed a tremendous skew in file ac-
cess frequencies. These traces included multiple comput-
ers ranging from personal workstations to file servers, and
were tested for trace periods varying up to several months
and over a year.

3. Experimental Results

To describe the scoring schemes in real-world scenarios
we present results from experiments conducted on two sets
of traces collected from Carnegie Mellon University (CMU)
[8], and the University of California, Berkeley (UCB) [1 I].
Both sets of traces were processed using the DFSTrace trace
reading library [8]. These traces offered detailed records of
all system calls and file accesses performed over a period
of several years, and spanning a wide range of systems and
workloads. Tests were run for periods extending over sev-
eral months and up to a year.

3.1. LTscore Results

Figure 2 shows two results from the CMU traces that are
worthy of comparison. Figure 2(a) represents a personal
workstation, whereas Figure 2(b) was a server which exhib-
ited the highest rate of file accesses of the traced systems.
One would expect the inter-access relationships for a busy
system to be heavily interleaved and attempts to discern the
“higher-level knowledge” to be masked by more noise than
that for a less loaded system with fewer sources of access
requests. In fact, you can see that Figure 2(a) shows better
matching for static and dynamic pairing. Whereas in the
case of the file server (Figure 2(b)), the matching is much
poorer, with more pronounced divergence.

It should be noted that the accuracy results remain rea-
sonably high, and can in fact tend to increase for both static
and dynamic pairings. This is a result of the most recent
files accessed being the most likely to be accessed fre-
quently. As long as new files are being created and used,
static pairing accuracy values calculated cumulatively over
an extended period (as for the long-term pair scoring), can
increase and decrease depending on the degree of inter-
access dependencies inherent in the current working set of
files.

504

100 I

(a) Personal Workstation

70 ?....--.>
-'-..\.....I . .- - E 60

8 40

I

i

10

~~~ 0 1 21 41 61 81 101 121 141 161 181 201 221 241 

Day 

(b) File Server 

Figure 2. Plots of a long-term pair score 
for two representative workloads, from the 
Carnegie-Meilon traces [8]. 

Another feature of the long-term pair scores involves the 
divergence of the static and dynamic scores. If the working 
set of files being accessed varies greatly, and is not well- 
conserved, then the rate of divergence between static and 
dynamic pair scores would be expected to increase. If on the 
other hand the working sets were well-conserved, the rate of 
divergence should be much lower. This is supported by the 
increased divergence in the file server results of Figure 2(b). 

It is not possible to discern from Figure 2 whether the 
surprising correlation between static and dynamic pairings 
is due to new files being accessed, or is in fact a true persis- 
tence of static pairings. To answer this question we can use 
the results of the rank-difference plots, which we present in 
the following section. 

100 

I 
File instames in increasing order of wpulardy 

(a) Dynamic w s .  Static 

File inlances in mcreasmg order 01 popularfly 

(b) Noah vs. Static 

Figure 3. Rank-difference plots. 

3.2. Rank-Difference: The persistence of pairings 

Figure 3(a) demonstrate the difference between the dy- 
namic (last-successor) model and the static (first-successor) 
model for each file. Figure 3(b) demonstrates the difference 
between Noah and the static (first-successor) model. The 
x-axis is simply an ordering of file instances such that the 
most frequently accessed file is at the rightmost point on the 
axis. 

The first thing to notice from these plots is that differ- 
ences tend to occur towards the right of the plot. This is an 
artifact of the access-frequency distribution. Any improve- 
ment in predictions can only happen if a file is accessed 
more than once. And if a file is accessed very few times, 
then any improvement in performance is subsequently lim- 
ited. Algorithms that observe the dynamic access stream to 
make their decisions would also have no time to learn. 

The most important thing to notice about this figure is 

505 



Dynamic 
ONoah 

-- 
80 

~ 70 

i 60 

E 50 

18 40 

~ 30 

- 
I s  

~ 20 

I Workstation Server Workstation Server (year) 

I (month) (month) (year) 

Figure 4. Prediction accuracy. 

that for Figure 3(a) there is a very wide variation for what 
each file finds to be a good pairing estimator (dynamic vs. 
static). Also worthy of note is how these differences are 
more pronounced for higher-frequency files. This is espe- 
cially.notable when you consider that the distribution of file 
access frequencies is exponentially skewed (this was repeat- 
edly confirmed for all tested workloads at multiple time- 
scales ranging from a day to a year). With such a large 
variation among individual files, i t  is definitely beneficial to 
use a mechanism that can capture the best of both worlds. 

Figure 3(b) shows one thing very clearly, Noah is suc- 
cessful at eliminating noisy data, and filtering out transient 
successors. By accepting a successor only if it is observed 
as such two consecutive times, Noah captures pairings that 
are indeed stable over extended durations, without confu- 
sion due to once-off differences in the observed successor. 
In this manner Noah can be seen to incorporate the static 
predictor and is unlikely to ever perform worse over an ex- 
tended period of time. 

Figure 4 summarizes the relative predictor performance 
scores (final LTscore or average accuracy) for the two sets 
of CMU traces over two different time periods. Not sur- 
prisingly Noah outperforms the dynamic predictor, which 
in turn outperforms the static predictor. 

4. Related Work 

To overcome latency problems without some form of 
prefetching would not appear to be possible. This explains 
the increased interest in prefetching and predictive caching 
for such applications as web-proxies and file caches. The 
graph-based model for predictive prefetching was first pro- 
posed by Griffioen and Appleton [ 2 ] ,  and has been used in 
a range of applications including web proxies [9]. A model 
based on data compression technology, the Finite Multi- 
Order Context (FMOC) model, was evaluated in compar- 
ison to Griffioen and Appleton’s graph-based model [6]. 
FMOC requires state exponential in the number of unique 

files. This comparison showed both FMOC, and its static- 
space derivatives the Partitioned Context Model (PCM), and 
Extended PCM (EPCM) [5], could outperform equivalent 
graph-based models. Our own experiments demonstrated 
that Noah could improve upon the accuracy of PCM when 
using similar state space, and could match the performance 
of PCM models utilizing more than 10 times more state per 
file. The first to suggest the application of techniques from 
data compression to predictive caching were Curewitz, KJ- 
ishnan, and Vitter [ 1, 141. 

Similar concepts of detecting and prefetching “working 
sets” of data were also used to cache enough data on a mo- 
bile system to allow disconnected operation [4, 71. Among 
the most successful hoarding algorithms developed to date 
is that of the SEER system [7] .  SEER introduced the con- 
cept of “semantic distance” and achieved a high level of 
automation. 

SEER was also based on identifying groups of related 
files. It used “semantic distance” to evaluate how “near” 
one file was to another. This was combined with cluster- 
ing based on a thresholded number of “shared near neigh- 
bors.” This was effectively an efficient version of the Jarvis 
and Patrick clustering algorithm [3] (The original cluster- 
ing algorithm was O(n2)  in the number of files, which 
is obviously impractical for large file systems hoarding), 
utilizing semantic distance as a nearness metric. Unfortu- 
nately, the automation of SEER involved a substantial re- 
search effort to find parameters that provided good perfor- 
mance. Whether the actual hoarding process requires ex- 
tensive user input, or parameter selection was based on ex- 
tensive experimental tuning, we feel that the major obstacle 
to general adoption of file hoarding has been an insufficient 
level of automation. 

Predicting based on a choice between two alternatives is 
a common and well established scenario in the domain ,of 
processor branch prediction [ 131. In branch prediction you 
are attempting to predict whether a branch will be taken or 
not. This is critical for effective pipelining and processor 
hardware utilization, in a similar manner to data access pre- 
diction’s usefulness for improving the performance of the 
storage subsystem. Branch prediction differs from our ap- 
plication in that it is a domain that is limited to only two 
possibilities: a branch is taken or not. In file access streams 
the observed successor could potentially be any file in the 
file system space. The fact that our predictors work so well 
in spite of this observation is indicative of the inherent re- 
latedness in file access events. 

5. Conclusions 

Pairings produced by a dynamic predictor (a last- 
successor guess) are more accurate than static (first- 
successor) pairings, and yet this is only true on average. 

506 



The suitability of different predictors for different files can 
be seen very clearly using a rank-difference plot. For many 
cases of files that are accessed very frequently we can see a 
distinct tendency for static pairings to remain valid over ex- 
tended periods of time. By using a predictor that attempts to 
capture the stability of a static predictor, while allowing for 
the adaptability of the dynamic predictor, we have seen how 
an improvement over both in terms of prediction accuracy 
can be achieved. 

These results, combined with our argument for the ever- 
increasing penalties of data access latency make a strong 
case for mobile data hoarding, or dynamic placement poli- 
cies, based on the dynamic detection of relationships. The 
latency argument shows it is useful to do this, and the per- 
sistence results show that it is reasonable and feasible to 
detect and exploit dynamic relationships, as they will often 
remain valid for extended time periods. 

6 Acknowledgements 

We are grateful to all the members of the Computer Sys- 
tems Laboratory at the University of California, Santa Cruz, 
for their continuous feedback, support and valuable discus- 
sions. Our most extensive multi-year traces were kindly 
made available by M. Satyanaryanan of Carnegie Mellon 
University, through the greatly appreciated efforts of Tom 
Kroeger in processing and conversion. 

References 

[ 11 K. M. Curewitz, P. Krishnan, and J. S. Vitter, “Practi- 
cal prefetching via data compression,” in Proceedings 
of the 1993 ACM SIGMOD International Conference 
on Management of Data (SIGMOD ’93), (Washing- 
ton, D. C.), pp. 257-266, May 1993. 

[2] J. Griffioen and R. Appleton, “Reducing file system 
latency using a predictive approach,” in USENIX Sum- 
mer Technical Conference, pp. 197-207, June 1994. 

[3] R. A. Jarvis and E. A. Patrick, “Clustering using a sim- 
ilarity measure based on shared near neighbors,” IEEE 
Transactions on Computers, vol. C22, pp. 1025-34, 
November 1973. 

[4] J. J. Kistler and M. Satyanarayanan, “Disconnected 
operation in the Coda file system,” Operating Systems 
Review, vol. 25, no. 5, pp. 213-25, 1991. Thirteenth 
ACM Symposium on Operating Systems Principles, 
Pacific Grove, CA, USA, 13-16Oct. 1991. 

[5] T. M. Kroeger, Modeling File Access Patterns to Im- 
prove Caching Performance. PhD thesis, University 
of California, Santa Cruz, Mar. 2000. 

[6] T. M. Kroeger and D. D. E. Long, “The case for effi- 
cient file access pattern modeling,” in Proceedings of 
the Seventh Workshop on Hot Topics in Operating Sys- 
tems (HotOS-VU), (Rio Rico, Arizona), IEEE, Mar. 
1999. 

71 G .  H. Kuenning and G .  J. Popek, “Automated hoard- 
ing for mobile computers,” in Sixteenth ACM Sympo- 
sium on Operating Systems Principles, (Saint Malo, 
France), pp. 264-75, Oct. 1997. 

81 L. Mummert and M. Satyanarayanan, “Long term dis- 
tributed file reference tracing: Implementation and ex- 
perience,” Software - Practice and Experience (SPE), 
vol. 26, pp. 705-736, June 1996. 

[9] V. N. Padmanabhan and J. C. Mogul, “Using predic- 
tive prefetching to improve world wide web latency,” 
in Proccedings of the 1996 SIGCOMM, ACM, July 
1996. 

[ 101 D. Psaltis and G .  W. Burr, “Holographic data storage,” 
IEEE Computer, pp. 52-60, Feb. 1998. 

[ 1 11 D. Roselli, “Characteristics of file system workloads,” 
Technical Report CSD-98-1029, University of Cali- 
fornia, Berkeley, Dec. 23, 1998. 

[ 121 G .  T. Sincerbox, ed., Selected Papers on Holographic 
Storage, vol. MS 95 of SPIE Milestone series. Inter- 
national Society for Optical Engineering, 1994. 

[13] J. E. Smith, “A study of branch prediction strate- 
gies,” in Proceedings of the Eighth Annual Symposium 
on Computer Architecture, (Minneapolis, MN, USA), 
pp. 135-48, IEEE, May 1981. 

[14] J. S. Vitter and P. Krishnan, “Optimal prefetching 
via data compression,” Journal of the ACM, vol. 43, 
pp. 771-93, Sept. 1996. 

507 


