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Abstract 

The ability to automatically hoard data on a computer's 
local store would go a long way towards freeing the mobile 
user from dependence on the network and potentially un- 
bounded latencies. An important step in developing a fully 
automatedfile hoarding algorithm is the abili9 to automat- 
ically identib strong relationships between files. 

We present a mechanism for visualizing the degree of 
long-term relationships inherent in a file access stream. We 
do this by comparing the performance of static and dynamic 
relationship predictors. We demonstrate that even the sim- 
plest associations (from a static4rst-successor predictor) 
maintain relatively high accuracy over extended periods of 
time, closely tracking the performance of an equivalent dy- 
namic (last-successor) predictoor: We then introduce rank- 
difference plots, a visualization technique which allows us 
to demonstrate how this behavior is caused by stable static 
pairings offiles that are lost by the adaptation of the dy- 
namic predictor for a substantial subset of frequently ac- 
cessed jiles. We conclude by demonstrating how a third 
pairing mechanism can make use of these observations to 
outperform both the dynamic and static predictors. 

1. Introduction and Motivation 

Although wireless communication can allow data con- 
nections while the user is mobile, wireless bandwidth does 
not approach the bandwidth available with conventional 
wired networks and is more susceptible to unforeseen dis- 
ruptions (e.g., driving through a tunnel, or signal interfer- 
ence). This means that a mobile user is susceptible to signif- 
icant data access latencies imposed by the network. In the 
case of disconnected operation this latency is unbounded, 
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and yet with increasing data transfer rates latency actually 
becomes a more serious penalty. 

Reducing latency is one of the more challenging prob- 
lems in modern data storage. With many of the newer 
storage technologies on the horizon, there is an ever grow- 
ing gap between seek performance (latency) and bandwidth 
(data transfer speed). Increases in capacity and transfer 
rates seem to be increasing at an impressive rate, and up- 
coming technologies such as holographic stores promise 
even greater improvements in capacity and transfer speeds 
(terabytes of storage accessible at gigabytes per second) 
[ 10, 121. Random access speeds to data on such devices is 
not showing the same degree of improvement, in large part 
due to the physical limitations of the mechanical process 
this involves, e.g., disk arm movement, media replacement 
in a tertiary library, or basically any mechanical movement 
in newer high-bandwidth storage devices. This is analogous 
to the problems with network communication for a user who 
may be weakly connected or temporarily disconnected from 
his main data repositories. 

Increases in bandwidth to data only help to compound 
the performance impact of data access latencies. To help il- 
lustrate this, Figure l shows the percentage contribution of 
data access latency to overall data access time for different 
average request sizes. Fixed or relatively large latencies be- 
come increasing performance bottlenecks as quickly as data 
transfer technologies improve. 

Mechanical overheads have quickly become the largest 
component of storage system overhead, and analogously for 
mobile systems, remote data access rapidly becomes the 
dominant component of data access cost as data transFer 
technologies improve in bandwidth. It is therefore impor- 
tant to reduce the number of times we incur avoidable data 
access latency. 

Figure 1 also suggests a possible solution to this prob- 
lem. It clearly shows the advantages of using more data per 
operation. Such techniques are useful only if the additional 
data accessed is likely to be requested in the immediate fu- 
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Figure 1. The effect of increasing la- 
tency/bandwidth gap on system throughput. 

ture, in other words, only if the larger volume of data re- 
trieved has effectively resulted in a prefetch of useful data. 
This observation implies a substantial gain through the pre- 
diction of sequences of data access, and placement of data in 
such a manner as to increase the likelihood of adjacent data 
items being useful. In other words it would be very help- 
ful if we could group related data items together, to ensure 
that moving larger volumes of data results in more effective 
utilization of bandwidth, while minimizing the likelihood 
of incurring an avoidable latency cost, i.e. we need to mini- 
mize the number of requests to retrieve remote data, and not 
simply reduce the volume of data moved. 

Using immediate-successor predictors, or pairing rela- 
tionship estimators, we demonstrate a new mechanism for 
visualizing the degree of relationship inherent in a file ac- 
cess trace. The detection of such accurate pairings, that re- 
main accurate for extended time periods, is a very promis- 
ing result for automated file hoarding and data grouping. 

2. Gauging Inter-Access Relationships 

Probabilistic approaches to data placement are often 
based on assumptions of independence. Data access events 
are generated by user behavior and deterministic programs, 
and are therefore rarely independent. The question we con- 
sider is how do we gauge the degree of inter-file relatedness 
inherent in a stream of file access events. We propose that 
by following the performance of dynamic and static file ac- 
cess predictors which operate on a per-file basis to predict 
the next-successor for each file (i.e. predictors that offer 
pairings between files) we can visualize this degree of relat- 
edness. 

By tracking a time-dependent accuracy metric (which we 
have called LTscore - the long-term pair score) we can 
demonstrate that simple first-guesses for file relationships 
are reasonably accurate, and that this accuracy persists for 

extended time periods (several months). Using the rank- 
difference plots we can demonstrate that persistence of this 
simple static prediction is indeed the cause of this sustained 
accuracy, and not a constant shift to new files being ac- 
cessed. 

2.1. The PredictorsR’airing Estimators 

We use file access predictors that are designed to predict 
a successor given a single predicate. Given an access to file 
A our predictors offer a candidate file B as its prediction for 
the next file to be accessed after A. In this manner these 
predictors define a one-way relationship between pairs of 
files. We refer to these predictions as candidate pairings. 

The static predictor observes the first file B to follow 
A, and from that point on the static predictor will always 
provide B as the successor prediction. The static successor 
predictor provides a pairing that remains static, effectively 
pairing a file with its first successor and never changing this 
first impression. Although this approach would intuitively 
appear fruitless, we demonstrate below how this incredibly 
simple scheme achieves an accuracy that is very close to 
that of the dynamic predictor. 

The dynamic predictor is simply the last successor pre- 
diction model, where the last file observed to follow file A 
is offered as the prediction for the next successor of A. This 
model requires checking and possibly updating the predic- 
tion with each and every file access. 

Our final predictor is “Noah,” which is an extension of 
the basic last-successor predictor to filter out noise in the 
observed access stream. This filtered model effectively ig- 
nores observations that vary too rapidly, effectively acting 
as a low-pass filter for observations. As with the last- 
successor model, this predictor maintains a record of the 
last file to be a successor to the current file. In addition to 
this, Noah maintains a current successor prediction, which 
is updated to become the last-successor, only if the last suc- 
cessor is observed to have remained unchanged from the 
last access to this file. 

The last-successor (dynamic) predictor updates its pre- 
diction with every access to a file, and the first successor 
never updates its initial prediction, but Noah will update a 
file’s successor only if a new successor is observed consis- 
tently for two consecutive accesses. 

2.2. The LTscore: Long-Term pair score 

Our first test is applied to the dynamic and static predic- 
tors, and produces what we refer to as long-term pair scores 
for a given trace of access events. In particular the accu- 
racy of a pairing is evaluated over a trace period of several 
months. A pairing is considered to be accurate if an ac- 
cess event confirms the existing pairing (in other words, no 
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update is required for the case of dynamic pairings). All 
averages are weighted by the frequency of particular access 
events, an item accessed frequently contributes proportion- 
ally to the evaluated average “score.” 

A higher score for dynamic placement is to be ex- 
pected. The alternative would imply a workload that ex- 
hibited pathological alternation between multiple pairings, 
a possibility but not very likely to be the dominant case. A 
rapid divergence between the score for static pairings and 
dynamic pairings would indicate a strong need to revise 
pairings, indicating a strong tendency towards change in the 
inter-file relationships. 

Given a sequence of access events w = rl ,r2,r3, ..., 
such that ri = x implies the ith file access was to file x. A 
pairing is a tuple (x,  y )  that assumes if r; = x then r;+l = 

y .  A pairing ( x , y )  is valid for an occurrence of ri = x 
if r;+l is indeed found to be y ,  otherwise it is invalid. A 
pairing (x, y )  is formed at the first encounter of ri = x and 
T i + l  = y .  

For dynamic pairings, if a pairing ( x , y )  is found to 
be invalid and ri+l = z, then the pairing ( x , y )  is re- 
placed with (x , z ) ,  but static pairings do not perform this 
update. If the number of valid pairings observed at time 
t are Pdynamic(t) and Ps ta t ic ( t )  for dynamic and static 
pairings respectively. And the total number of events was 
T ( t ) ,  the long-term pair score (LTscore) for dynamic pair- 
ing at time t is calculated as 

Long-term pair scores are therefore cumulative over the 
length of the trace period. This allows us to judge the de- 
velopment of a final performance average as it is calculated 
over the entire trace period. When referring to the degree 
of “matching,” we are referring to the degree to which the 
accuracy for static pairing follows the trend of the accu- 
racy for dynamic pairing. Matching is therefore propor- 
tional to the correlation between LTSCOre~yna,ic(t) and 
LTscorestutic(t)  The second term “divergence” refers to 
the increase in separation between these two curves. In 
other words, the divergence d can be defined as: 

a 
a t  

d = -(LTscoredynamic(t) - LTscoreStatic(t))  

2.3. Rank-Difference Plots 

A rank-difference plot represents a performance differ- 
ence between two successor-predictors, plotted against in- 
stances of files ordered according to access frequency (in- 
creasing in the direction of the increasing x-axis). The y- 
axis on these graphs represents the difference between the 

accuracy (%) of two predictors, for the specific file at that 
point on the x-axis. In effect this measures the improvement 
in final LTscore from using a particular dynamic predictor 
vs. leaving the initially observed pairings. 

An important feature of the rank-difference plot is that 
the highest-frequency files are at the right of the graph, 
meaning that observed differences at higher x ranges are 
more significant than differences at the lower (left) x ranges. 
When considering these plots it should be noted that all 
file traces examined showed a tremendous skew in file ac- 
cess frequencies. These traces included multiple comput- 
ers ranging from personal workstations to file servers, and 
were tested for trace periods varying up to several months 
and over a year. 

3. Experimental Results 

To describe the scoring schemes in real-world scenarios 
we present results from experiments conducted on two sets 
of traces collected from Carnegie Mellon University (CMU) 
[8], and the University of California, Berkeley (UCB) [ 1 I]. 
Both sets of traces were processed using the DFSTrace trace 
reading library [8]. These traces offered detailed records of 
all system calls and file accesses performed over a period 
of several years, and spanning a wide range of systems and 
workloads. Tests were run for periods extending over sev- 
eral months and up to a year. 

3.1. LTscore Results 

Figure 2 shows two results from the CMU traces that are 
worthy of comparison. Figure 2(a) represents a personal 
workstation, whereas Figure 2(b) was a server which exhib- 
ited the highest rate of file accesses of the traced systems. 
One would expect the inter-access relationships for a busy 
system to be heavily interleaved and attempts to discern the 
“higher-level knowledge” to be masked by more noise than 
that for a less loaded system with fewer sources of access 
requests. In fact, you can see that Figure 2(a) shows better 
matching for static and dynamic pairing. Whereas in the 
case of the file server (Figure 2(b)), the matching is much 
poorer, with more pronounced divergence. 

It should be noted that the accuracy results remain rea- 
sonably high, and can in fact tend to increase for both static 
and dynamic pairings. This is a result of the most recent 
files accessed being the most likely to be accessed fre- 
quently. As long as new files are being created and used, 
static pairing accuracy values calculated cumulatively over 
an extended period (as for the long-term pair scoring), can 
increase and decrease depending on the degree of inter- 
access dependencies inherent in the current working set of 
files. 
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Figure 2. Plots of a long-term pair score 
for two representative workloads, from the 
Carnegie-Meilon traces [8]. 

Another feature of the long-term pair scores involves the 
divergence of the static and dynamic scores. If the working 
set of files being accessed varies greatly, and is not well- 
conserved, then the rate of divergence between static and 
dynamic pair scores would be expected to increase. If on the 
other hand the working sets were well-conserved, the rate of 
divergence should be much lower. This is supported by the 
increased divergence in the file server results of Figure 2(b). 

It is not possible to discern from Figure 2 whether the 
surprising correlation between static and dynamic pairings 
is due to new files being accessed, or is in fact a true persis- 
tence of static pairings. To answer this question we can use 
the results of the rank-difference plots, which we present in 
the following section. 

100 
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Figure 3. Rank-difference plots. 

3.2. Rank-Difference: The persistence of pairings 

Figure 3(a) demonstrate the difference between the dy- 
namic (last-successor) model and the static (first-successor) 
model for each file. Figure 3(b) demonstrates the difference 
between Noah and the static (first-successor) model. The 
x-axis is simply an ordering of file instances such that the 
most frequently accessed file is at the rightmost point on the 
axis. 

The first thing to notice from these plots is that differ- 
ences tend to occur towards the right of the plot. This is an 
artifact of the access-frequency distribution. Any improve- 
ment in predictions can only happen if a file is accessed 
more than once. And if a file is accessed very few times, 
then any improvement in performance is subsequently lim- 
ited. Algorithms that observe the dynamic access stream to 
make their decisions would also have no time to learn. 

The most important thing to notice about this figure is 
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Figure 4. Prediction accuracy. 

that for Figure 3(a) there is a very wide variation for what 
each file finds to be a good pairing estimator (dynamic vs. 
static). Also worthy of note is how these differences are 
more pronounced for higher-frequency files. This is espe- 
cially.notable when you consider that the distribution of file 
access frequencies is exponentially skewed (this was repeat- 
edly confirmed for all tested workloads at multiple time- 
scales ranging from a day to a year). With such a large 
variation among individual files, i t  is definitely beneficial to 
use a mechanism that can capture the best of both worlds. 

Figure 3(b) shows one thing very clearly, Noah is suc- 
cessful at eliminating noisy data, and filtering out transient 
successors. By accepting a successor only if it is observed 
as such two consecutive times, Noah captures pairings that 
are indeed stable over extended durations, without confu- 
sion due to once-off differences in the observed successor. 
In this manner Noah can be seen to incorporate the static 
predictor and is unlikely to ever perform worse over an ex- 
tended period of time. 

Figure 4 summarizes the relative predictor performance 
scores (final LTscore or average accuracy) for the two sets 
of CMU traces over two different time periods. Not sur- 
prisingly Noah outperforms the dynamic predictor, which 
in turn outperforms the static predictor. 

4. Related Work 

To overcome latency problems without some form of 
prefetching would not appear to be possible. This explains 
the increased interest in prefetching and predictive caching 
for such applications as web-proxies and file caches. The 
graph-based model for predictive prefetching was first pro- 
posed by Griffioen and Appleton [ 2 ] ,  and has been used in 
a range of applications including web proxies [9]. A model 
based on data compression technology, the Finite Multi- 
Order Context (FMOC) model, was evaluated in compar- 
ison to Griffioen and Appleton’s graph-based model [6]. 
FMOC requires state exponential in the number of unique 

files. This comparison showed both FMOC, and its static- 
space derivatives the Partitioned Context Model (PCM), and 
Extended PCM (EPCM) [5], could outperform equivalent 
graph-based models. Our own experiments demonstrated 
that Noah could improve upon the accuracy of PCM when 
using similar state space, and could match the performance 
of PCM models utilizing more than 10 times more state per 
file. The first to suggest the application of techniques from 
data compression to predictive caching were Curewitz, KJ- 
ishnan, and Vitter [ 1, 141. 

Similar concepts of detecting and prefetching “working 
sets” of data were also used to cache enough data on a mo- 
bile system to allow disconnected operation [4, 71. Among 
the most successful hoarding algorithms developed to date 
is that of the SEER system [7] .  SEER introduced the con- 
cept of “semantic distance” and achieved a high level of 
automation. 

SEER was also based on identifying groups of related 
files. It used “semantic distance” to evaluate how “near” 
one file was to another. This was combined with cluster- 
ing based on a thresholded number of “shared near neigh- 
bors.” This was effectively an efficient version of the Jarvis 
and Patrick clustering algorithm [3] (The original cluster- 
ing algorithm was O(n2)  in the number of files, which 
is obviously impractical for large file systems hoarding), 
utilizing semantic distance as a nearness metric. Unfortu- 
nately, the automation of SEER involved a substantial re- 
search effort to find parameters that provided good perfor- 
mance. Whether the actual hoarding process requires ex- 
tensive user input, or parameter selection was based on ex- 
tensive experimental tuning, we feel that the major obstacle 
to general adoption of file hoarding has been an insufficient 
level of automation. 

Predicting based on a choice between two alternatives is 
a common and well established scenario in the domain ,of 
processor branch prediction [ 131. In branch prediction you 
are attempting to predict whether a branch will be taken or 
not. This is critical for effective pipelining and processor 
hardware utilization, in a similar manner to data access pre- 
diction’s usefulness for improving the performance of the 
storage subsystem. Branch prediction differs from our ap- 
plication in that it is a domain that is limited to only two 
possibilities: a branch is taken or not. In file access streams 
the observed successor could potentially be any file in the 
file system space. The fact that our predictors work so well 
in spite of this observation is indicative of the inherent re- 
latedness in file access events. 

5. Conclusions 

Pairings produced by a dynamic predictor (a last- 
successor guess) are more accurate than static (first- 
successor) pairings, and yet this is only true on average. 
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The suitability of different predictors for different files can 
be seen very clearly using a rank-difference plot. For many 
cases of files that are accessed very frequently we can see a 
distinct tendency for static pairings to remain valid over ex- 
tended periods of time. By using a predictor that attempts to 
capture the stability of a static predictor, while allowing for 
the adaptability of the dynamic predictor, we have seen how 
an improvement over both in terms of prediction accuracy 
can be achieved. 

These results, combined with our argument for the ever- 
increasing penalties of data access latency make a strong 
case for mobile data hoarding, or dynamic placement poli- 
cies, based on the dynamic detection of relationships. The 
latency argument shows it is useful to do this, and the per- 
sistence results show that it is reasonable and feasible to 
detect and exploit dynamic relationships, as they will often 
remain valid for extended time periods. 
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