
Safe Caching in a Distributed File System for Network Attached Storage

Randal C. Burns, Robert M. Rees Darrell D. E. Long
Department of Computer Science Department of Computer Science
IBM Almaden Research Center University of California, Santa Cruz

frandal,reesg@almaden.ibm.com darrell@cs.ucsc.edu

Abstract

In a distributed file system built on network attached
storage, client computers access data directly from shared
storage, rather than submitting I/O requests through a
server. Without a server marshaling access to data, if a
computer fails or becomes isolated in a network partition
while holding locks on cached data objects, those objects
become inaccessible to other computers until a locking au-
thority can guarantee that the lock holder will not again
directly access these data. We describe a server that acts as
the locking authority and implements a lease-based proto-
col for revoking access to data objects locked by an isolated
or failed computer. When a lease expires, the server can be
assured that the client no longer acts on locked data, and
can safely redistribute locks to other clients. During nor-
mal operation, this protocol invokes no message overhead,
and uses no memory and performs no computation at the
locking authority.

1. Introduction

A distributed system provides an operating environment
to its attached computers. To be useful, this environment
generally has some semantic and performance guarantees.
These often include message delivery semantics, message
ordering, failure detection, and availability and consistency
of distributed data views. For such a computing environ-
ment to besafe, the guarantees must hold when components
of the system fail.

The Storage Tankdistributed file system includes guar-
antees for the continuous availability and sequential consis-
tency [19] of all data in the system, including data cached
at clients. In this work, we present a protocol that ensures
the safety of these guarantees in the presence of network
partitions. The protocol is based upon the concept of us-
ing leases[11] to synchronize actions between a client and
server after communication between them has failed. In our
system, a lease is contract between a client and a server in
which the server guarantees the correctness of the data in

the client’s cache for the specified period. Furthermore, the
client promises to not operate on cached data when it does
not hold a valid lease.

This protocol does not address all elements of safety. In
particular, the protocol does not protect against failures in
the storage subsystem, which can keep data from reaching
disk, and it does not address how we guarantee the avail-
ability of data from servers. Other mechanisms are needed
to address these failures.

1.1. A Storage Area Network File System
A brief digression into the file system architecture in

which we implement safety helps to motivate our solution
and its advantages.

In the Storage Tank project at IBM research, we are
building a distributed file system on a storage area network.
A SAN is a high speed network designed to allow multiple
computers to have shared access to many storage devices.
The goal of Storage Tank is to take advantage of SAN hard-
ware to provide computers with the scalability and manage-
ment benefits of a distributed file system, without the per-
formance penalty expected from client/server file systems.

For our distributed file system on a SAN, clients access
data directly over the storage area network. Most tradi-
tional client/server file systems [29, 20, 16, 7] store data
on the server’s private disks. Clients function ship all data
requests to a server that performs I/O on their behalf. Un-
like traditional file systems, Storage Tank clients perform
I/O directly to shared storage devices on a SAN (Figure 1).
This direct data access model is similar to the file system for
Network Attached Secure Disks [10], using shared disks on
an IP network, and the Global File System [23], for SAN
attached storage devices. Clients communicate with Stor-
age Tank servers over a separate network, called a control
network, to obtain file metadata. In addition to serving file
system metadata, the servers run distributed protocols for
cache coherency, authentication, and the allocation of file
data.

Unlike most file systems, metadata and data are stored
separately [21, 6, 13]. Metadata, including the location of

0-7695-0574-0/2000 $10.00 � 2000 IEEE

(SAN)
Storage Area Network

Control Network

Tape

Server

Server

Server

ClientClientClient

DiskDisk

Server Cluster

Figure 1. Schematic of the Storage Tank
client/server distributed file system.

the blocks of each file on shared storage, are kept on high-
performance storage at the server. The shared disks contain
only the blocks of data for files, and do not contain meta-
data. In this way, the shared devices on the SAN can be
optimized for data traffic, block transfer of data, and the
server private storage can be optimized for metadata work-
load, frequent small reads and writes.

The SAN environment simplifies the distributed file sys-
tem server by removing its data tasks, and radically changes
the server’s performance characteristics. For servers that
perform data I/O, performance was measured by data rate
(megabytes/second). Performance is occasionally limited
by network bandwidth, but more often limited by the
server’s ability to read data from storage and ship it to
clients on a network. In the SAN environment, a server’s
performance is more properly measured in transactions per
second, analogous to a database server. Without data to read
and write, the Storage Tank file server performs many more
transactions than a traditional file server with equal process-
ing power.

1.2. Failures in the SAN Environment

The Storage Tank server takes responsibility for main-
taining data integrity and consistent views of data across all
clients. This task is significantly complicated when com-
ponents of the distributed system fail. One such problem
arises when a computer that holds locks to access data loses
contact with its server. Such a computer is unreachable and
has either failed or isisolatedfrom its server, separated by
a partition of the control network.

The server cannot know the state of the locks and cache
contents of an unreachable client. Either the computer has
failed, and the locks will not be exercised again, or the con-
trol network between the server and the computer has par-
titioned. An isolated computer may be unaware that it is
isolated and continue operating on locked data.

In many file systems, serverssteal locks from unreach-
able clients to make data highly available [7, 16]. A locking

authority steals a lock when it stops honoring a client’s lock
without notifying the client, and gives a conflicting lock on
the same data object to another client in the system. Steal-
ing locks is desirable when client computers become un-
reachable, because it makes locked data avaliable to other
computers in the system. The alternative to stealing locks
is to honor the locks of unreachable clients, which renders
locked data unavailable indefinitely.

For file systems that read and write data through the
server, a server may safely steal locks from an unreachable
computer, regardless of whether the computer is failed or
isolated. It is safe to steal locks from a failed computer,
because that computer has lost volatile state and no longer
functions as a client. For a computer partitioned from its
server, isolation from the server is equivalent to isolation
from the data store, because the server owns the storage. If
the network partition merges, the client might again request
service on a stolen lock. In this event, the server merely
denies the request.

File systems for SANs, or other network attached storage
environments [9], cannot safely steal locks from an isolated
client. Unlike a failed computer, a computer in a network
partition retains its lock state and may attempt to operate
on file data after it becomes unreachable. Only the control
network has failed, not the storage area network, and a com-
puter in a network partition continues to read and write data
to storage devices. If the locking authority were to steal
the clients’ locks, multiple clients, the old and new lock
holders, could concurrently act on the same data without
synchronization. The consistency and structural integrity of
the file system would be compromised.

A currently accepted solution to this problem is tofence
the isolated client before stealing its locks. To fence a com-
puter, the server instructs the SAN-attached storage devices
to no longer accept I/O requests from the isolated computer.
Fencing may also be performed by instructing a switch to
not route traffic for certain clients. The SAN devices must
enforce this denial of access indefinitely. We will argue
(Section 2.1) that fencing alone is not an adequate solution
to this problem. As the only recovery mechanism, fenc-
ing violates the sequential consistency and cache coherency
guarantees expected from a file system.

In addition to fencing, we propose a lease-based protocol
that Storage Tank uses to make data highly available and
safe in the presence of client and network failures. In our
system, leases are held by clients and granted by servers.
A held lease guarantees the correctness of the contents of
a client’s cache. Also, when not renewed, leases are used
by servers to invalidate by time-out the cache contents of
clients they cannot contact. This protocol allows an isolated
computer to realize it is disconnected from the distributed
system, and write its dirty data out to storage before its locks
are stolen.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

This protocol also has performance advantages when
compared to other lease-based protocols [11, 27]. During
periods of operation without failure, the protocol invokes no
computational or message overhead, and requires no addi-
tional memory at the locking authority. Clients renew leases
opportunistically through existing protocol messages, and
servers are entirely passive, keeping no state about client
leases until a communication error occurs.

2. A Two Network Problem
Due to the differences between the SAN environment

and other distributed environments, Storage Tank addresses
a different class of problems for maintaining data consis-
tency in the presence of failure than traditional file systems.

Most previous work addressing safety in distributed sys-
tems assumes that network partitions form symmetrically
[8, 5], i.e. if we defineV (A) to be all computers in the net-
work view of computerA, then symmetric partitions imply
that

A 2 V (B) andB 2 V (A), V (A) = V (B): (1)

While reasonable for most distributed systems, this assump-
tion does not hold in the SAN environment. Storage Tank
uses two networks, a general purpose network for control
operations, and a SAN for data traffic. Computers, clients
and servers, can only communicate with each other on the
control network. Storage devices only operate on the SAN.
Anytime a partition, symmetric or otherwise, forms in ei-
ther network, the two networks considered together parti-
tion asymmetrically. If the control network partitions be-
tween clientsC1 andC2 (Figure 2), the disk is in each of
the clients view, and the clients are in the disks view, but
the views all differ: D 2 V (C1) andC1 2 V (D) but
V (C1) 6= V (D), becauseC2 2 V (D) andC2 62 V (C1).
Similarly, if the SAN partitions, the two clients that contain
each other in their network view have different views of the
SAN. With two networks, a symmetric partition in one net-
work can result in an asymmetric partition when views are
considered across both networks.

Recent work has developed safe computing protocols
that handle asymmetric partitions [22, 3], but this work re-
quires all participants to run the protocol. In the SAN en-
vironment, the storage devices are often disk drives, and
cannot maintain state and initiate messages as needed for
safety protocols. Despite significant research support for
distributed processing on active or intelligent disks with
general purpose computation engines [17, 24, 1], these de-
vices are unlikely to be commercially available in the near
future. Disk drives on a SAN cannot execute non-storage
code and consequently cannot maintain views and send data
messages as required.

A simple example suffices to show how asymmetric par-
titions and the limited capabilities of disk drives result in

D
Disk

Control Network

C1

Client ServerClient
SC2

Storage Network

Figure 2. A two network storage system with
a partition in the control network.

data consistency problems when a network becomes parti-
tioned (Figure 2). Assume a small Storage Tank installation
consisting of a server, two clients and a single disk drive.
Let one client (C1) have an open instance with a data lock
that permits it to read and write a file. At some point, the
control network becomes partitioned. The server and the
other clientC2 can no longer seeC1, butC1 can still read
and write data. IfC2 requests permission to write the same
file, the server cannot successfully demand the lock, since it
cannot communicate withC1. StealingC1’s lock and grant-
ing access toC2 would result in multiple writers without
synchronization. Caches would be incoherent and data in-
tegrity lost. The partition results in the server denyingC2

access to the file.
Without a suitable safety protocol, when a client enters

a partition holding a locked file, no other client can access
that file until the partitioned client reappears on the control
network. Something as simple as a network partition can
render major portions of a file system unavailable indefi-
nitely.

2.1. The Inadequacy of Fencing
Adding the ability to fence clients, instructing a disk

drive to deny service to particular initiators, does not solve
all data integrity and cache coherency problems. Returning
to our previous example (Figure 2), if the disk drive sup-
ported fencing, the server could instruct it to not allowC1

to perform any I/O. Then, the server could grantC2 write
access to the file. While fencing does prohibitC1 from per-
forming concurrent conflicting writes, it leaves several op-
portunities for the violation of file system semantics.

Problems arise because the isolated client can have un-
written dirty data at the time that it is fenced. Most dis-
tributed file systems, including Storage Tank, allow clients
to perform write-back caching, where clients write data to
their local cache and the changed data are written back to
persistent storage at some later time. In our example, after
fencingC1, dirty data onC1 are stranded and never reach
disk. If C2 reads this data, it reads the old version from
persistent storage. This is in violation of our consistency

0-7695-0574-0/2000 $10.00 � 2000 IEEE

guarantee –C2 should properly read the most recently writ-
ten version of data.

Also, the isolated client cannot determine immediately
when it is in a network partition, and can potentially con-
tinue operations on a stale cache. The isolated client is
out of touch with the server, and therefore does not receive
cache invalidations. Also,C1’s locks have been stolen and
the cache contents are not protected. UntilC1 attempts to
perform I/O to the SAN, it is unaware that it is fenced. Local
processes continue to read and write data out of the cache,
and any of these data may have been modified on another
client.

While fencing can ensure that clients in the server’s and
disk’s network view have synchronized access to data, it
does not provide the desired data consistency and cache co-
herency guarantees. Fencing fails both in that it prevents
dirty cache contents from reaching persistent storage, and,
it allows fenced clients to operate on stale cached data with-
out detecting or reporting an error.

3. A Protocol Based on Leases
A safety protocol that protects the consistency of data

and guarantees cache coherency must 1) protect the con-
tents of a file by preventing isolated clients from writing
data to disk after their locks are stolen, and 2) allows iso-
lated clients to write the dirty contents of its cache to shared
storage before its locks are stolen. Fencing fails to address
the second point and clients behave incorrectly, giving stale
data to local processes and losing written data. Storage Tank
uses a protocol based on leases, similar to the leases defined
in theV operating system developed at Stanford [11], that
allows clients to determine that they have become isolated
from the server. Upon determining their isolation, clients
have the opportunity to write dirty data to disk before dis-
carding their cache contents and ceding their locks. Leasing
improves the semantics of failure and recovery when clients
become isolated. For client failures or failures of the SAN,
leasing offers no improvements over fencing.

Our lease-based safety protocol has performance advan-
tages when compared to other leasing systems. These in-
clude optimizations that allow leases to be renewed oppor-
tunistically, eliminating message traffic during normal op-
eration, and a design that allows for a “passive” server that
participates in the protocol only when an error occurs.

Before developing the protocol, we state the network en-
vironment and assumptions required for the protocol to op-
erate correctly. The goal of the protocol is to ensure data
integrity and cache coherency among clients accessing net-
work attached storage devices. To this end, our protocol ad-
dresses arbitrary partitions in the control network, including
asymmetric partitions. Our protocol requires clocks at the
clients and servers that are rate synchronized with a known
error bound�, i.e. an interval of lengtht when measured on

one computers clock has length that falls within the interval
(t=(1+�); t(1+�))when measured on the clock of another
machine. It does not require absolute or relative time syn-
chronization, or Lamport clocks [18]. The protocol operates
in a connection-less network environment, where messages
are datagrams. However, many messages between the Stor-
age Tank client and server are either acknowledged (ACK)
or negatively acknowledged (NACK), and include version
numbers for “at most once” delivery semantics.

A lease in this protocol defines a contract between a
client and a server in which the server promises to respect
the clients locks for a specified period. The server respects
the contract even when clients are unreachable. A client
must have a valid lease on all servers with which it holds
locks, and cached data become invalid when a lease expires.

Servers use leases to time-out client locks. If a server
attempts to send a message that requires an ACK from a
client, and the client does not respond, the server assumes
the client to be failed.

Clients that are isolated instead of failed have missed
a message. They either have stale metadata or have not
properly participated in a locking protocol. However, this
does not yet result in a violation of file system semantics.
Missing a metadata message is tolerable, because file sys-
tems only guarantee that metadata are weakly consistent1.
Missing a lock protocol message is also acceptable, because
locks and locked data are protected until the lease expires.

Having decided the client is failed, the server starts a
timer that goes off at a time�(1 + �) later, where� is the
contracted lease period. The server knows that�(1 + �)
represents a time of at least� at the client. Once the server
waits out this timer, it may steal the clients locks. The client
is responsible for ensuring that all dirty data are written out
by this time, and that the data and metadata it caches with
respect to this server are invalid.

The key feature of the server’s protocol is that it retains
no state about client leases. During normal operation, the
server merely grants locks and ignores leasing altogether.
No lease-specific operations are performed and no server
storage used. Only when a delivery error occurs does the
server get involved by starting a lease timer. This passive
design simplifies the implementation of the server and lim-
its the performance impact of leasing.

3.1. Obtaining a Lease
For the server’s decision to steal locks having waited

time �(1 + �) to be correct, the client must be aware that
its lease has expired before that occurs. Because clocks are
rate synchronized by a factor of�, a client whose lease starts
before the server starts its timeout counter provides an ade-

1Modifications to metadata by one process are guaranteed to be re-
flected on the metadata view of another process eventually, but no instan-
taneous consistency guarantee exists.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

τt C1

t S1

C2t

+

Server

C1Lease
Period

Lease
Active

t
message

ACK t S2

Client

Figure 3. Client lease renewal.

quate guarantee. Since our system does not keep an absolute
time, we use ordered events, a client to server message and
the server ACK, to ensure that the server timer begins after
the last lease that the client obtained.

A client implicitly obtains or renews a lease with a server
on every message it initiates (Figure 3). AttC1, the client
sends a message to the server. The server receives this
message attS1 and acknowledges receipt attS2. Without
synchronized clocks, the client and server have an abso-
lute ordering on eventstC1 � tS2. Upon receiving the
ACK at tC2, the client obtains a lease valid for the period
[tC1; tC1 + �). This lease’s period starts from when the
client initiates the message, not when it receives the ACK,
because initiating the message is known to occur before the
server’s reply. While this lease is valid from[tC1; tC1+ �),
from the client’s perspective, it does not activate untiltC2,
when the client receives an ACK, indicating it is in contact
with a server. The client operates under this lease for the
period[tC2; tC1 + �).

For correctness, we require the server not to ACK mes-
sages if it has already started a counter to expire client locks
(seex3.3). This ensures that the server cannot steal locks
from a client until after the client lease expires.

Clients are not granted leases when servers initiate com-
munication. Because the client did not send an initial mes-
sage, it has no discrete event that is known to precede the
server message, and cannot safely choose a point in time at
which the lease starts.

Theorem 3.1 If a client and server have rate synchronized
clocks by a factor of�, the server cannot steal locks before
the client lease expires.

Proof. Referring to Figure 3, the client’s lease begins at
tC1 and times out at client relative timetC1 + �c, where�c
indicates� counted on the client’s clock.

The server acknowledges the clients message at timetS2,
and therefore has not begun a lease timeout counter. The
server expires the client lease and steals its locks no earlier

Lease Expected
FailureValid Suspect

τ

Lease

Phase 2Phase 1 Phase 3 Phase 4

time = 0 time =

Renewal
Period

Figure 4. The four phases of the lease period.

thantS2 + �s(1 + �), where�s indicates� counted on the
server’s clock.

Relatively synchronized clocks imply that�c < �s(1 +
�). Message ordering implies thattC1 � tS2. We conclude
thattC1 + �c < tS2 + �s(1 + �). �

A client obtains a new lease on every acknowledged mes-
sage that it initiates. In this way, clientsopportunistically
renew leases with regular Storage Tank messages to read
and write metadata and obtain locks. For regular operation,
clients send no additional messages, because the frequency
of lock and metadata messages is much higher than the lease
interval. Because of opportunistic renewal, the lease proto-
col incurs negligible overhead. However, we do provide an
extra protocol message, with no metadata or lock function,
for the sole purpose of renewing a lease. Clients that are no
longer actively operating on data, but still cache data and
hold locks, use this message to preserve their cache.

3.2. The Lease Interval
The client subdivides the lease period into multiple

phases in which it conducts different activities consistent
with its lease contract. The client breaks down its lease into
four phases (Figure 4). In phase 1, a recently obtained lease
protects access to all data objects locked on that server. Lo-
cal processes request data read and write, and object open,
close, get attributes, etc., which the client performs. Any
new message ACK received during this period renews the
client lease. For this reason, an active client spends virtu-
ally all of its time in phase 1.

If a client receives no message acknowledgments in
phase 1, often because it is inactive and not initiating com-
munication, the client tries to obtain a new lease. To do
this, the client uses a special purposekeep-aliveprotocol
message. The keep-alive message encodes no file system or
lock operations – it is merely a NULL message requesting
an ACK from a server. In phase 2 of the lease period, the
client continues to service file system requests on behalf of
local processes.

A client that fails to attain a lease in phase 2 assumes that
it is isolated from the server. Its active attempts to re-obtain
a lease have failed. In phase 3, the client stops servicing file
system requests on behalf of local processes. In-progress
file system operations continue until the end of the phase.
The purpose of this phase, holding back new requests and
continuing started operations, is to quiesce file system ac-
tivity.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

send

retry

retry

partition
transient

timeout
begin

ACK

interval

Client Server

NACK

send

send

Figure 5. Servers negatively acknowledge
messages when timing out clients.

At the end of phase 3, all actions against the files in ques-
tion are stopped. In phase 4, any dirty data protected by
locks associated with the expiring lease are flushed out to
disk. By the end of phase 4, no dirty pages should remain.
If this is true, the contents of the client cache are completely
consistent with the hardened copy written to the storage sys-
tem.

After the lease expires at the end of phase 4, the lease
and its associated locks are no longer valid. The server can
steal the client’s locks and safely redistribute them to other
clients interested in the files. Assuming that the client suc-
cessfully completed all transactions in phase 3, and finished
writing out data in phase 4, sequential consistency for file
data is preserved in the presence of a network partition.

3.3. NACKs for Inconsistent Clients
Transient failures and communication errors can result

in a client, that believes it is operating on valid leases, com-
municating with a server that is in the process of running a
timer to steal the client’s locks. For correct operation, this
asymmetry must be detected and addressed in the lease pro-
tocol.

For example, a client that experiences a transient net-
work partition misses a message and recovers communi-
cation with a server, without knowing it missed the mes-
sage. The server knows this client to have missed messages
and begins timing out the lease, with the knowledge that
its cache is invalid. Having recovered communication, the
client sends new requests to a server (Figure 5). The server
can neither acknowledge the message, which would renew
the client lease, nor execute a transaction on the client’s be-
half. Ignoring the client request, while correct, leads to fur-
ther unnecessary message traffic when the client attempts to
renew its lease in phase 2. Instead, the server sends a nega-
tive acknowledgment (NACK) in response to a valid request

from a suspect client.
The client interprets the NACK to mean that it has

missed a message. It knows its cache to be invalid and en-
ters phase 3 of the lease interval directly. The client, aware
of its state, forgoes sending messages to acquire a lease, and
prepares for recovery from a communication error.

4. A Comparison with Leases in V
Leases as a synchronization construct were introduced

in theV operating system at Stanford [11]. While our work
draws upon the concepts and semantics of leases in theV
system, Storage Tank implements a significantly different
lease abstraction. In theV operating system, a lease repre-
sents a period of ownership over a data object, and allows
the holder to safely operate on that data object for the lease
period. This lease is analogous to a data lock with a built in
time-out, and a client holds one lease for every data object
that it can write.

Implementing all data locks as leases either introduces
a runtime overhead or effects caching policies. Before a
lease expires, the holder can renew it, which is required to
keep the data in its cache, or purge its cache of that object.
The renewal has a message cost, and discarding data effects
caching policies.

To reduce the overhead associated with maintaining
leases, Storage Tank uses a lease abstraction more congru-
ous with failures in distributed systems. Clients and server
stop interacting when the client fails, server fails, or a net-
work partition isolates the two machines. In these cases,
all locks held with a single server become invalid. A sin-
gle lease between each client and server more accurately
describes these failures.

5. Related Research
In this work, we have described a protocol for detecting

network failures in distributed file systems, and ensuring
that caches are consistent when they occur.

Some file systems choose a simple model, where fail-
ure detection is not necessary. In the Network File System
(NFS) [29], clients poll the server to find out when the file
was last modified, and determine whether the cached ver-
sion is valid. This scheme cannot keep caches coherent.
However, it is simple in that servers keep no lock state and
do nothing when a failure occurs.

Other file systems choose to steal locks when clients fail.
Locks are stolen in the fashion described in Section 1.2. Ex-
amples include the Andrew file system [15], Sprite [4], and
the DEcorum file system. Since these file systems marshal
all I/O requests through a server, stealing locks is safe.

In file systems that are peer based, and have no server, or
use direct access to network addressable storage, stealing
locks is not safe. A prevalent and successful alternative to

0-7695-0574-0/2000 $10.00 � 2000 IEEE

stealing locks is to implement a file system in conjunction
with group management and replication software that per-
forms failure detection and manages consistent distributed
data views. For these systems, safe caching is a by-product
of the safe computing environment. Examples include: the
Deceit file system [26] built on top of the Isis computing
environment [5]; and, the Calypso file system [7] imple-
mented on another group service [14].

Other file systems built on replication services take an
optimistic approach, and allow unsynchronized concurrent
updates to data. Conflicting updates to data must be de-
tected and repaired as best as possible. These systems
choose high availability before strong cache consistency.
Examples include the CODA file system [25], the LOCUS
distributed file system [28] and the Ficus replicated file sys-
tem [12].

The solutions most closely related to ours are other time-
out or lease based locking schemes. The Global File System
[23] is also a SAN file system. To synchronize actions be-
tween clients they use thedlock construct, implemented by
the disk drive, which locks a range of disk addresses. These
locks have timeout counters, enforced by the disk drive, so
that they are available to other file system clients after fail-
ure. In Storage Tank, locking is logical, locking distributed
data structures, rather than physical, locking a disk address
range. For this reason, we feel that thedlock alone is not
adequate for our distributed file system.

The Frangipani file system [27] uses a lease most similar
to Storage Tank’s. Each computer holds a single lease with
a locking authority and the lease protects cached data until
it expires. Frangipani uses heartbeats and loosely synchro-
nized clocks between the locking authority and computers,
rather than ordered events and rate synchronized clocks.
Also, Frangipani stores lease information at the locking au-
thority, rather than having a passive authority.

6. Comments and Future Directions
This work addresses cache coherency in the presence of

network failures, server failures and client failures. No-
ticeably absent is a discussion of availability, consistency,
and recovery at the server from server failure. Distributed
file servers, like Storage Tank, that maintain lock and client
state must recover that state after a server failure. File sys-
tems can do this through replication [26, 12, 27], replication
with hardware support [13], client-driven lock reassertion
[16, 7, 4], server polling of client state [2, 4], and by main-
taining non-volatile state at the server [4]. Storage Tank
uses a combined policy of lock reassertion and hardware
supported replication. For this work it is assumed that Stor-
age Tank servers are highly available and recover from fail-
ures.

One of the assumptions in the lease-based safety proto-
col is that clocks are rate synchronized, which implies that

computers do not exhibit partial failure by executing com-
mands slowly. This assumption is reasonable for most com-
puters, which have hardware clocks that continue to operate
even when the computer’s software has failed, but cannot
necessarily be guaranteed by the network and storage sub-
systems. To address slow computers, we use fencing in ad-
dition to the lease protocol. At the same time the server
times-out a client’s locks, it constructs a fence between that
client and its storage devices. The fence prevents late com-
mands, from a slow computer, from accessing the disk after
locks are stolen. While fencing cannot guarantee data con-
sistency, it can prevent unsynchronized conflicting accesses
that the lease-based protocol does not detect.

Analytical results [11] and experimental results [27]
show that leasing has little impact on system performance.
With our improved lease semantics, opportunistic renewal
and lazy server evaluation, we feel strongly that leases will
have little effect on performance in Storage Tank. While
lease performance is well accepted in file system research,
measurement of modern file system workloads are required
to experimentally verify our design. A next step in our re-
search is to validate our leasing design on a Storage Tank
prototype.

7. Conclusions
The emergence of network addressable storage, like

SANs, makes it more difficult for a file system to provide
high availability in the presence of failures. In particular,
stealing locks, the accepted solution for recovering from
client failures, no longer provides adequate cache coherency
and data consistency. By implementing a data safety proto-
col in a distributed system using leases, Storage Tank pro-
tects the consistency of data at little or no runtime cost. This
approach addresses cache coherency as well as data consis-
tency, even for isolated computers, allowing them to report
errors correctly.

Storage Tank reduces the overhead associated with a
lease-based safety protocol by both obtaining leases oppor-
tunistically, and requiring no server processing during reg-
ular operation. Leases, which were shown to have little
impact on server and network performance [11] in theV
operating system, should perform even better given these
optimizations.

References
[1] A. Acharya, M Uysal, and J. Saltz. Active disks: Pro-

gramming model, algorithms and evaluation. InProceedings
of the 8th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
November 1998.

[2] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patter-
son, D. S. Roselli, and R. Y. Wang. Serverless network file

0-7695-0574-0/2000 $10.00 � 2000 IEEE

systems. ACM Transactions on Computer Systems, 14(1),
February 1996.

[3] O. Babaoglu, R. Davoli, L. A. Giachini, and M. G. Baker.
RELACS: A communications infrastructure for constructing
reliable applications in large-scale distributed systems. In
Proceedings of the 28th Hawaii International Conference on
System Sciences, 1995.

[4] M. L. G. Baker. Fast Crash Recovery in Distributed File
Systems. PhD thesis, University of California at Berkeley,
1994.

[5] K. P. Birman. Replication and fault-tolerance in the ISIS
system. InProceedings of the Tenth ACM Symposium on
Operating Systems Principles, 1985.

[6] L.-F. Cabrera and D. D. E. Long. Swift: Using distributed
disk striping to provide high I/O data rates.Computing Sys-
tems, 4(4), 1991.

[7] M. Devarakonda, D. Kish, and A. Mohindra. Recovery in
the Calypso file system.ACM Transactions on Computer
Systems, 14(3), August 1996.

[8] C. Dwork, C.-T. Ho, and R. Strong. Collective consistency.
In Proceedings of the Distributed Algorithms 10th Interna-
tional Workshop, 1996.

[9] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,
E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel,
D. Rochberg, and J. Zelenka. File server scaling with
network-attached secure disks. InPerformance Evaluation
Review, volume 25, 1997.

[10] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, H. Gob-
ioff, E. Riedel, D. Rochberg, and J. Zelenka. Filesystems for
network-attach secure disks. Technical Report CMU-CS-97-
118, School of Computer Science, Carnegie Mellon Univer-
sity, July 1997.

[11] C. G. Gray and D. R. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency. In
Proceedings of the 12th ACM Symposium on Operating Sys-
tems Principles, December 1989.

[12] R. G. Guy, J. S. Heidemann, W. Mark, Jr. T. W. Page, G. J.
Popek, and D. Rothmeier. Implementation of the Ficus repli-
cated file system. InProceedings of the 1990 Summer Usenix
Conference, 1990.

[13] J. H. Hartman and J. K. Ousterhout. The Zebra-Striped net-
work file system. InProceedings of the 16th ACM Sympo-
sium on Operating System Principles. ACM, 1993.

[14] F. Jahanian, R. Rajkumar, and S Fakhouri. Processor group
membership protocols: Specification, design, and implemen-
tation. InProceedings of the IEEE Symposium on Reliable
Distributed Systems, 1993.

[15] M. L. Kazar. Synchronization and caching issues in the An-
drew file system. InProceedings of the USENIX Winter Tech-
nical Conference, February 1988.

[16] M. L. Kazar, B. W. Leverett, O. T. Anderson, V. Apostolides,
B. A. Bottos, S. Chutani, C. F. Everhart, W. A. Mason, S. Tu,
and R. Zayas. DEcorum file system architectural overview.
In Proceedings of the Summer USENIX Conference, June
1990.

[17] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A case for
intelligent disks (IDISKs).ACM SIGMOD, 27(3), Septem-
ber 1998.

[18] L. Lamport. Time, clocks and the ordering of events in a dis-
tributed systems.Communications of the ACM, 21(7), July
1978.

[19] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs.IEEE Transac-
tions on Computers, C-28(9), 1979.

[20] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.
Howard, D. S. H. Rosenthal, and F. D. Smith. Andrew: A
distributed personal computing environment.Communica-
tions of the ACM, 29(3), March 1986.

[21] K. Muller and J. Pasquale. A high performance multi-
structured file system design. InProceedings of the 13th
ACM Symposium on Operating Systems Principles, 1991.

[22] J. Palmer, R. Strong, and E. Upfal. Nonblocking member-
ship protocols with asymmetric safety. Technical Report RJ–
10096 (91912), IBM Research Division, December 1997.

[23] K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erickson,
E. Nygaard, C. J. Sabol, S. R. Soltis, D. C. Teigland, and
M. T. O’Keefe. A 64-bit, shared disk file system for Linux.
In Proceedings of the 16th IEEE Mass Storage Systems Sym-
posium, 1999.

[24] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for
large-scale data mining and multimedia. InProceedings of
the 24th International Conference on Very Large Databases,
1998.

[25] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A highly available
file system for a distributed workstation environment.IEEE
Transactions on Computers, 39(4), April 1990.

[26] A. Siegel, K. Birman, and K. Marzullo. Deceit: A flexible
distributed file system. InProceedings of the 1990 Summer
Usenix Conference, 1990.

[27] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A
scalable distributed file system. InProceedings of the 16th
ACM Symposium on Operating System Principles, 1997.

[28] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel.
The LOCUS distributed operating system. InProceedings of
the 9th ACM Symposium on Operating Systems Principles,
1983.

[29] D. Walsh, B. Lyon, G. Sager, J. Chang, D. Goldberg,
S. Kleiman, T. Lyon, R. Sandberg, and P. Weiss. Overview
of the Sun network file system. InProceedings of the 1985
Winter Usenix Technical Conference, January 1985.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

