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Abstract—Large distributed storage systems such as high-
performance computing (HPC) systems used by national or
international laboratories require sufficient performance and
scale for demanding scientific workloads and must handle shifting
workloads with ease. Ideally, data is placed in locations to
optimize performance, but the size and complexity of large
storage systems inhibit rapid effective restructuring of data
layouts to maintain performance as workloads shift.

To address these issues, we have developed Geomancy, a tool
that models the placement of data within a distributed storage
system and reacts to drops in performance. Using a combination
of machine learning techniques suitable for temporal modeling,
Geomancy determines when and where a bottleneck may happen
due to changing workloads and suggests changes in the layout
that mitigate or prevent them. Our approach to optimizing
throughput offers benefits for storage systems such as avoiding
potential bottlenecks and increasing overall I/O throughput from
11% to 30%.

I. INTRODUCTION

High-Performance Computing (HPC) and High Throughput
Computing (HTC) systems deliver ever-increasing levels of
computing power and storage capacity; however, the full
potential of these systems is limited by the inflexibility of data
layouts to rapidly changing demands. A shift in demand can
cause a system’s throughput and latency to suffer, as workloads
access data from contended regions of the system. In a shared
environment, computers may encounter unforeseen changes in
performance. Network contention, faulty hardware, or shifting
workloads can reduce performance and, if not diagnosed and
resolved rapidly, can create slowdowns around the system.

Allocating more resources to mitigate bottlenecks does not
always resolve contention between workloads [1], and it is not
always economically possible to add more system resources.
We define bottlenecks in distributed storage systems as any
situation that results in reduced performance due to contention.
To mitigate contention, system designers implement static or
dynamic algorithms that place data based on how recently
the files have been used similar to the caching algorithm
Least Recently Used. However, existing strategies require
manual experimentation to compare various configurations of
data which is expensive or in some cases infeasible. These
algorithms are not sufficient for all workloads because they do
not adapt as workloads change, and they may not be optimal
for all workloads.

To address this issue, we have developed Geomancy, a tool
that improves system performance by finding efficient data
layouts using reinforcement learning in real-time. Geomancy
targets systems that serve and process petabytes of data, such
as particle collision analysis [2]. Workloads on these systems
are commonly spread across multiple storage devices which
can lead to storage devices becoming contended over time. If
a heavily used storage device becomes contended, the delay
can be felt across the system. Geomancy only interacts with
the system to monitor performance at each storage device of
the system and to move data to a new location in the system.

Performance data includes parameters such as average ac-
cess latencies, remaining storage space, number of previous
reads and writes, restrictions on reads or writes, file types
that are read or written, and number of bytes accessed.
Using this data, we build a predictive model using artificial
neural networks that relates system time, data location, and
performance. Geomancy’s neural network uses this model to
forecast when and where a bottleneck can happen due to
changing workloads. Additionally, it preempts future drops
in performance by moving data between storage devices. If
the model predicts an improved location for a piece of data,
Geomancy sends the new location ID to the target system,
which moves the data to the new location. We experimentally
test our method in a small scale system against algorithmic
modeling, and observe an 11% to 30% performance gain in our
experiments including moving overhead compared to policies
that place data dynamically or statically according to how
frequently or recently the data has been used.

II. BACKGROUND AND MOTIVATION

Dynamic data layout algorithms are algorithms that dynam-
ically change the location of data in response to performance
drop [3]. In such systems, there is a mix of storage devices and
computation nodes, and storage hardware may not necessarily
be local to computation. We will discuss current solutions
to solving performance bottlenecks that involve understanding
how data layouts relate to performance, and how I/O improve-
ments can be achieved in situations where computation cannot
be moved close to data.
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A. Moving the code to the data

Moving “code to the data” is normally achieved by spread-
ing computational resources among many computation nodes
linked to shared storage. Frameworks such as Hadoop [4],
MapReduce [5], and Twister [6] move the code to the compu-
tation, and flow the data needed for collaborative computation
along a mesh network. Such approaches achieve remarkable
gains in computational and I/O performance, however make
several assumptions about the workflow executed. One, the
workflow software can be placed on hardware close to storage
hardware; two, the inter-software flows of network data runs
on a purpose-built network with little other traffic; three, the
workload is not storage bottlenecked. Some workloads, such
as physics workloads, require hundreds of terabytes of data.
In such situations, it remains storage bottlenecked, and thus
we look to improve workloads that cannot be improved by
moving code. Such workloads may also run on a shared
network, where mice flows (small bursts of tiny packets of
data) from highly distributed computing may impact the work
done by other users not conducting the same work. Another
approach to optimizing the performance of a workload is the
EMU [7] architecture, a processor-in-memory architecture for
data objects in DRAM shared memory. Such an approach
works excellently on data that can fit in memory, however
Geomancy targets large data sets in a distributed computing
environment.

Additionally, moving compute to the data requires special-
ized system architectures. Most institutions will not support
the ability to allocate a node per user. In highly distributed
environments, the ratio of storage and compute power is
highly variable (e.g., storage vs. compute servers), so it is
often necessary to move data. Further, in many workloads,
some data is used more than other data. In these cases,
moving compute maximizes locality but lengthens makespan
due to less parallelism; load balancing then requires data
movement. Geomancy would be useful in those situations
since it rearranges the data for a workload with regards to other
workloads running on the system. Hence, Geomancy targets
the problem space where it is more desirable to move data
rather than compute.

B. Data layout strategies

Adjusting a system’s data layout adjusts I/O performance
based on the data distribution across storage devices. In a
way, placing data is a multi-dimensional knapsack problem [8]
where performance changes based upon how data is placed
in locations that individually could hold all the data. Letting
users decide where to put data puts the system at risk of one
storage point being contended because it is popular. Several
solutions have been proposed, and many have attempted to
solve the complex problem with equally complex solutions
such as particle swarm optimization [9] and the Sliding
Window algorithm [10]; however, these solutions are rarely
seen in production systems.

Heuristics cannot determine if a change in latency is tempo-
rary or long lasting. Some heuristics spread the files all over

the system which may cause the system to incur penalties
from moving many files to attempt to achieve a small speed-
up. Also, distributed systems may be designed for a single
purpose, in which case their data layout algorithms may only
work in that environment. Chervenak et al. [11] discuss how
data layout algorithms are developed in scientific computing
environments, highlighting how many of these algorithms are
developed in isolation for the workloads available at that
institution. Thus, the performance gain from those algorithms
may vary from one system/workload to another.

All of the previous approaches are limited by their inability
to quickly search through enough data layout to identify
ones that can increase performance. Neural networks can
efficiently search large search spaces and adapt to changing
environments. In our data placement problem, the search space
is all the potential locations a piece of data can be placed in
a system. Using this, we can model how a system reacts to
moving data around by observing past accesses and how they
affect present ones.

III. HARDWARE FOR LIVE TESTING

Our experiments with Geomancy utilizes one computation
node with six mounted storage devices from PNNL’s Bluesky
system [12]. On this node, we have access to a NFS mounted
home directory (people), two temporary RAID 1 mounts (var,
tmp), a RAID 5 mount (file0), a Lustre file system (pic), and
an externally mounted hard disk drive (USBtmp). The archi-
tecture of this system is illustrated in Figure 1, and we refer to
those mounts interchangeably as storage devices. The RAID 5
storage device has the highest I/O throughput performance
while the externally mounted HDD has the lowest. The NFS
home directory is connected via 10 Gbit Ethernet to a shared
storage server used by multiple users who conduct work that
stresses the system at all hours. In particular, the home NFS
storage server can have long latencies of several hours if other
users run I/O heavy workloads. This interference affects the
performance of the workload, and is a obstacle that a model
must detect and overcome.

On this system, Geomancy is tasked to model how the
placement of each file affects overall I/O throughput to a
targeted workload. Maximizing I/O bandwidth to the workload
lowers the time this experiment needs to run, and Geomancy
must learn how workload demand, individual storage I/O, and
external user demand is balanced to deliver the most I/O
bandwidth.

IV. MOTIVATING WORKLOADS

Geomancy was motivated by workload analysis of two
workloads: traces generated from a Monte Carlo physics
workload provided by Pacific Northwest National Laboratories
(PNNL) and workload traces from CERN. The exact methods
to generate the traces do not matter for the purposes of our
experiments, however each trace follows a similar setup. The
traces used all have features that describe the I/O throughput
of the system one wishes to optimize. For example, the CERN
EOS trace contains information about when a file was opened,
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Fig. 1: A visual representation of the storage devices on the
Bluesky system. This system is shared among many other
users.

closed and where the action took place. We care about when
the file was opened since if a file is opened at a time when the
storage device is contended it will affect the access latency.
We also care about where since some storage devices are more
contended then others.

The EOS file system [13] is a storage cluster with an
analysis, archive and tape pool. An analysis pool is a low
latency disk base caching storage [14]. We did not get access
to this system to test Geomancy live; however, because of
the great number of storage devices and wide range of instru-
mentation for metric collection, workloads from this system
provide a unique insight into work conducted on the Large
Hadron Collider. Although we are not running a live version
of Geomancy on the EOS system, we use workload traces
from this system to determine an adequate neural network
architecture for the purposes of modeling system performance.

Traces are used as a proof of concept to test out the rela-
tionship between placement features and performance features
(throughput or latency). The EOS trace trained neural network
is not used in the live system experiment, and any training data
used to train the neural network is gathered solely from the
live systems telemetry.

The PNNL BELLE II [15] workload utilizes data from
the specialized particle detector from the SuperKEKB [16]
collider in Japan. One BELLE II workload processes gigabytes
of data from particle collisions and executes several I/O
intensive Monte Carlo simulations. A Monte Carlo simulation
provided to us utilizes 24 ROOT [17] files of size from 583 KB
to 1.1 GB on the Bluesky computation nodes at PNNL. The
workload acts as a suite of many applications reading and
writing many files individually, not as a singular application.
The BELLE II workload is representative of workloads com-
mon on the PNNL systems. We created our own measurement
software to measure throughput between storage devices in the
PNNL provided Bluesky system, generating a workload trace
that we use as training data.

The workload emulates an experiment that has run on the
BELLE system using ROOT files, a framework for the Monte-
Carlo simulations used by most high energy particle detectors.
These simulations study the passage of particles through
matter and their propagation in a magnetic field, enabling a
physicist to easily simulate the behavior of a particle detector.
In these read-heavy simulations, each file is accessed 10–20
times in succession. We want to show how Geomancy acts in
an actual scientific system faced with a common workload for
such a system.

V. GEOMANCY DESIGN

Geomancy uses reinforcement learning to predict perfor-
mance fluctuations of different storage devices. Geomancy
is trained with file access patterns containing features such
as the location of the file accessed and file ID to calculate
future data layouts that increase throughput. It builds a model
of how an entire system’s file access patterns affects total
I/O throughput of the system, including transfer overheads
of moving files. If file access patterns indicates that moving
some data can produce higher I/O throughput, then Geomancy
instructs the system to move that data from one storage device
to another. Once completed, it measures the new performance
of the system, and uses any increase in the throughput of
the workload as a positive reward indicating that the new
location was beneficial to performance. A negative or 0 reward
indicates that moving files to the selected location will not
improve performance. All new performance metrics, positive
and negative, are saved into a database to record the results
of a data movement. Figure 2 illustrates the components that
embody the Geomancy system. Geomancy’s neural network
(DRL engine) and database (ReplayDB) are decoupled from
the target system to lower Geomancy’s impact on the target
system’s performance, and to offer high scalability. We con-
sider Geomancy and the target systems to be separate entities,
only communicating via a network, and any performance data
that Geomancy requires must be sent to it from the target
system.

A. Architecture

Monitoring agents collect access features from the target
system and send back performance information from each
I/O operation that happens at their location. We refer to the
software located in the target agent that is used to monitor
and control data movement as agents. Each monitoring agent
only measures the performance of one storage device to allow
for parallel data collection, individually communicating all
collected metrics to Geomancy. When a file is detected to
have been accessed, the monitoring agent flags the start of the
access and the end of the access and measures the number
of bytes read and written on the file. That is then used by
Geomancy to calculate the throughput of the access.

The system administrator can set when Geomancy should
train and calculate a new location for the data. When a new
data layout is determined, Geomancy sends the updated data
layout to Control Agents. Both agents execute on the nodes
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Fig. 2: Geomancy’s architecture. The control agents and the
monitoring agents are located on each available location on
the target system. Thick arrows represent the communication
between the target system and Geomancy. Thin arrows repre-
sent the communication between the agents of Geomancy. Red
arrows represent the data flow during the decision process.
Blue arrows represent the data flow during the performance
data collection.

of a target system; however, they do not interfere with the
system’s activities except for instructing the target system
to move data in the background and measure performance.
Geomancy limits how often and how much data can be
transferred at once without creating a bottleneck in the network
for other workloads which is caused by the transfer cost
outweighing the benefits.

After access features are collected, the Interface Daemon
stores the raw performance data into the ReplayDB, a SQLite
database located outside the target system. The Interface
Daemon is a networking middleware that allows parallel
requests to be sent between the target system, Geomancy,
and internally within Geomancy. Geomancy captures groups
of accesses as one access to lower the overhead of transferring
the performance data from the target system to Geomancy’s
database. Overall transferring data from the target system
to Geomancy’s dataset takes around 3ms on average. The
ReplayDB stores new performance data at each action taken
by Geomancy, and each action is indexed by a timestamp
representing the time when Geomancy changed the data layout
to show an evolution of the data layout and corresponding
performance.

Once the data is stored in the ReplayDB, the Deep Rein-
forcement Learning [18] (DRL) engine determines any updates
needed to be done to the target system’s data layout. The
DRL engine re-trains a neural network using the most recent
values stored in the ReplayDB to calculate future values of
the throughput.

Fig. 3: Neural network architecture. Z is the number of per-
formance metrics used to describe an access. In the BELLE II
experiment, we used 6 performance metrics. In the experiment
provided by CERN, we used 13 performance metrics. Discus-
sion of the layer sizes can be found in Evaluation.

B. Unsupervised Deep Reinforcement Learning

We approach the layout problem as a unsupervised deep
reinforcement learning problem where the throughput of the
system is the reward. Our neural network predicts the through-
put of accessing a piece of data at every potential location
it can exist. To calculate the future throughput of an access
at a certain location, we model how each input feature (file
location, file size, or any feature describing the action executed
on the file such number of bytes read or written) interacts with
other input features. Additionally, to avoid future bottlenecks,
Geomancy needs to know when to change the data layout
to preempt potential accesses that could cause a bottleneck.
Given a large trace of throughput measurements, file locations,
and transfer overheads, we use these features from the traces to
train a neural network. As seen in Figure 3, the width of our
neural network will increase as the number of performance
metrics are given to it, thus allowing the ability to handle
additional performance metrics.

We have first chosen to experiment with fully connected
dense neural networks to determine relationships between
input features. As a fully connected neural network, its weights
are determined by the backpropagation of all input features.
We use the Rectified Linear Unit (ReLU) activation func-
tion [19], which limits outputs to be positive. This is useful
when predicting throughput since throughput is greater than
or equal to zero, and our predictions should be as close
as possible to the target values. Because we are focusing
on modeling contention, trends become important to model,
which means that a linear activation function may produce
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comparable results when combined with ReLU.
Using dense layers enables Geomancy to calculate future

values by finding relationships between all input features.
Because any training feature can influence the behavior of
another, dense networks are a useful model type that can
discover such interactions. When input features vary between
training cycles, the new weights that are calculated by taking
the dot product of the input values and the previous weights
influence the activation function. The output of the dense
neural network is what the network believes is the next pattern
it should expect in the next cycle. This is what we consider a
prediction generated from a hypothesis function.

C. Modeling target

Geomancy will model the throughput of the system during
the run of the workload. This value will allow Geomancy
to measure if the changes to the data layout is actually
increasing the performance of the target system. Since there
exist workloads that are more latency sensitive, we will explore
modeling latency of the system in the future. The throughput
of access number i is calculated using the following equation,
with rb representing the number of bytes read, wb being
the number of bytes written, ots and otms being the open
timestamp (the second and millisecond parts), and the cts and
ctms (the second and millisecond parts).

Tpi = (
rbi + wbi

(ctsi +
ctmsi
1000 )− (otsi +

otmsi
1000 )

)

Geomancy calculates the throughput for the location chosen
in the training data. This means that a batch of data contains
the information of the data with every row only having the
location varying between each locations the data can be
located on. Using that information, Geomancy calculates the
throughput for each row. This will then allow Geomancy to
select the location with the highest value and move the data at
that location. One of the rows uses the current location of the
data since we wanted to include the possibility that moving
the data will not improve the performance of the system.

D. Discovering Features

To model the change in throughput, we identified per-
formance values that are correlated with the average I/O
throughput of workloads running on the system. Correlated
values (referred to as features) will directly influence or change
another aspect of the system when the feature changes, and we
measure correlation using the Pearsons correlation coefficient.

The EOS access logs tracks an enormous variety and
amount of storage system features, and from these records we
were able to narrow down types of features that are prevalent
across many other systems and determine how they affect the
throughput of the system. Doing so, we can identify potential
features that can be used to model the throughput of the
workload. Every entry in the EOS access logs corresponds
to one file interaction, from open to close. Each access is
described by 32 values, such as EOS file ID (fid) and file
open time as a UNIX timestamp (ots). The closer the average

correlation of a feature over all available inputs is to one
or negative one demonstrates how positively or negatively
correlated that feature is to throughput, respectively. Choosing
the features with largest absolute correlation values (positive
or negative) usually improves model accuracy [20]. Many
features in the EOS access logs [21] are uncorrelated with
changes in throughput, and training the neural network with
these features may prevent the neural network from converging
quickly, increasing training time and decreasing accuracy.
Some features that are less correlated, such as which day
the access happened, might bring valuable information to
understanding how varying demand affects performance.

Fig. 4: Correlation between the raw access features found in
the EOS logs and the throughput. We choose features (orange)
that are commonly found in scientific systems that also happen
to be positively correlated.

We identified six features from the workload traces in the
EOS system, as seen in Figure 4. These features range in
correlation since we did not want to limit the scope of what
the features represent.

• Bytes read (rb)
• Bytes written (wb)
• Open time stamp in seconds (ots) and milliseconds (otms)
• Close time stamp in seconds (cts) and milliseconds (ctms)
• File ID (fid)
• File System ID (fsid)
We use correlation to identify features that are correlated

with the measured throughput. By using such features, we
gain an approximation of how the measured throughput will
impact a throughput sensitive workload.

First, the amount of data written to a file will affect the
throughput since larger pieces of data need more time to
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transfer than smaller files. Second, the timestamp when a file
is open or closed indicates how many processes are accessing
the system at a certain time, which may cause drops in the
throughput. Third, the file ID, or data ID, is not correlated to
the throughput, but it shows that not all files are accessed
the same manner. Fourth, the location of the data on the
system also affects the system since accesses vary at each
node. Strongly negative correlated features such as read time
(rt) and write time (wt) were not used for our live experiment
since we wanted to model the access to the file independantly
of the action which means that we want to capture the entire
time to file is opened from the start, with open time stamp in
seconds (ots) and milliseconds (otms), to the end, with close
time stamp in seconds (cts) and milliseconds (ctms).

The client group (secgrps), client role (secrole), the applica-
tion identifier (secapp) and the number of write calls (nwc) are
all features that we will look into more in the future. However
those identifyers are not all readily available on all systems
and therefore we chose to forgo them.

The analysis of the EOS traces demonstrated that certain
features common across many systems were valuable towards
modeling I/O performance. By doing such modeling, we show
that Geomancy was able to adequately model access patterns
before we attempted to tune a real system. From there, we
translated the success of I/O modeling to practical tuning of
I/O.

E. Smoothing/Normalizing Features

When the DRL engine wants to update the neural network,
the DRL engine requests training data from the ReplayDB via
the Interface Daemon. The Interface Daemon will select the
most recent X accesses which are used as values to predict
the next Y values. Before the data from the ReplayDB can
be used by the DRL engine for training, the numerical data
is normalized by the Interface Daemon to decimal values
between zero and one, and the categorical data into numerical
parameters in the same range. One item of categorical data that
is converted to a numerical value is the file path. To convert a
file path, we assign a unique numerical index to each level of
the path. Each index is combined together to form a unique
number that describes one path. We considered using inodes,
however having the same inode for two different files could
cause problems for creation and deletion of files. Additionally,
we did not use hashes since we want files located in similar
locations to have close IDs to maintain a sense of locality. For
example, a unique path and filename foo/bar/bat.root
can be translated into 123 if foo is assigned to 1, bar is
assigned to 2, and bat is assigned to 3.

We remove smaller variations from data in the ReplayDB by
applying a moving average [22]. Because the neural network
is trained, validated and tested using 12,000 entries, we need
to apply some smoothing technique to mitigate outliers. In
total, it takes around 6ms ± 1ms to train, validate and test
the neural network using 12,000 values of 6 features on
our experimental platform. Other smoothing methods such as

cumulative average can be used, however they lose short term
fluctuations that can indicate a rapid decrease in performance.

All requests for data contain the X most recent accesses
for each of the storage devices from the ReplayDB, thereby
creating a batch. This enables Geomancy to retrain the DRL
Engine with the most recent data, learning from the changing
workloads and actions it took on the system. The data is
batched by data ID, and each batch contains performance
information for the data over all available storage devices. The
target values are the performance of the most recent accesses
for each data ID at each location.

F. Location generation

Before any predictions are made, any potential storage
points that the file can be put on are refreshed and saved as a
configuration file. Thus, whatever prediction a neural network
makes is constrained by where the file can go. When the neural
network makes a prediction, it creates a data structure that
represents what the throughput I/O of a storage mount will
be if a file of a certain type is moved there. For example,
if a root file is moved to storage location A, it will have a
performance X, and if the root file were to be moved to storage
location B, it would have a performance Y. This prediction
also encompasses if the file is not moved from its current
location, with an accompanying predicted I/O throughput.
Since Geomancy knows that the file is currently at location
A (for example), a prediction that indicates that moving the
file from A to B implies that there will be a performance gain
if the file is moved.

Geomancy does not sample from an exhaustive map of
where all file types can go on the system. Like a board
game, Geomancy can only take a limited amount of actions
from a space of actions, and cannot move the files wholesale.
Specifically, the situation that Geomancy takes all root files
from all unique storage points and crams it into another storage
point cannot happen immediately, but if predicted throughput
improvements indicates that this situation is most beneficial
for performance, Geomancy will direct the system to rearrange
itself into this configuration over time. To tackle larger storage
systems of millions of files and dozens of mount points, we
will need a data movement scheduler (implemented either
as a second neural network or algorithm) that determines
a cooldown between file movement. We have left this as
future work, and we intend on implementing this as further
development in improving larger and multi-user workloads.

G. Hyperparameter Tuning

To determine a useful model, we compared 23 neural
network architectures and report their performance in Table I.
We used Z features that we selected from the PNNL server,
equalling six. Each layer in the neural networks is represented
using the following format: number of neurons (type of layer)
selected activation function. Architectures in bold are the
networks that performed the best out of the 23 networks
in terms of accuracy when predicting future throughput of
each storage point on the PNNL system. A through model
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TABLE I: Model architectures

Model number Components

Model 1 16Z (Dense) ReLU, 8Z (Dense) ReLU, 4Z
(Dense) ReLU, 1 (Dense) Linear

Model 2 16Z (Dense) ReLU, 8Z (Dense) ReLU, 1
(Dense) ReLU

Model 3 16Z (Dense) ReLU, 8Z (Dense) ReLU, 4Z
(Dense) ReLU, 1 (Dense) ReLU

Model 4 16Z (Dense) ReLU, 8Z (Dense) ReLU, 1
(Dense) Linear

Model 5 16Z (Dense) Linear, 8Z (Dense) Linear,
4Z (Dense) Linear, Z (Dense) Linear, 1
(Dense) ReLU

Model 6 16Z (Dense) ReLU, 16Z (Dense) ReLU,
16Z (Dense) ReLU, 16Z (Dense) ReLU, 1
(Dense) ReLU

Model 7 16Z (Dense) ReLU, 16Z (Dense) ReLU,
16Z (Dense) ReLU, 16Z (Dense) ReLU,
16Z (Dense) ReLU, 1 (Dense) ReLU

Model 8 Z (Dense) ReLU, Z (Dense) ReLU, Z
(Dense) ReLU, Z (Dense) ReLU, Z
(Dense) ReLU, 1 (Dense) ReLU

Model 9 Z (Dense) ReLU, Z (Dense) ReLU, Z
(Dense) ReLU, Z (Dense) ReLU, 1 (Dense)
ReLU

Model 10 Z (Dense) ReLU, Z (Dense) ReLU, Z
(Dense) ReLU, Z (Dense) ReLU, 1 (Dense)
Linear

Model 11 Z (Dense) ReLU, 1 (Dense) Linear
Model 12 Z (LSTM) ReLU, 1 (Dense) Linear
Model 13 Z (GRU) ReLU, 1 (Dense) Linear
Model 14 Z (SimpleRNN) ReLU, 1 (Dense) Linear
Model 15 Z (GRU) ReLU, Z (Dense) ReLU, 1

(Dense) Linear
Model 16 Z (GRU) ReLU, Z (Dense) ReLU, Z

(Dense) ReLU, 1 (Dense) Linear
Model 17 Z (GRU) ReLU, 4Z (Dense) ReLU, Z

(Dense) ReLU, 1 (Dense) Linear
Model 18 Z (SimpleRNN) ReLU, 4Z (Dense) ReLU,

Z (Dense) ReLU, 1 (Dense) Linear
Model 19 Z (SimpleRNN) ReLU, Z (Dense) ReLU,

Z (Dense) ReLU, 1 (Dense) Linear
Model 20 Z (SimpleRNN) ReLU, Z (Dense) ReLU,

1 (Dense) Linear
Model 21 Z (LSTM) ReLU, Z (Dense) ReLU, 1

(Dense) Linear
Model 22 Z (LSTM) ReLU, Z (Dense) ReLU,Z

(Dense) ReLU, 1 (Dense) Linear
Model 23 Z (LSTM) ReLU, 4Z (Dense) ReLU,Z

(Dense) ReLU, 1 (Dense) Linear

search can reveal other architectures with better accuracy,
however for the scope of the paper we limit our search to
these 23 architectures. This gives us a wide range of networks
to experiment with from fully dense networks to common
recurrent networks.

For all models, the training set of data is represented by 60%
of the available data. The next 20% (not used in training) is
used in validation. The final 20% of the data is used as a
test set. All three of these sets are separate sets of data that
never appear in another set. Additionally all models ran for 200
epochs, and use standard gradient descent as an optimization
function. We tested out the Adam optimizer but it ended up
giving us a higher mean and standard deviation of the abso-
lute relative error. Keeping these hyperparameters consistent
across all the models ensured that we fairly compared all 23

TABLE II: Model comparisons on predicting performance
over all mounts

Model
number

Mean of Absolute
relative Error (%)

Training time (s) Prediction
time (ms)

1 18.88 ± 16.92 25.657 ± 0.801 55.4 ± 3.6
2 Diverged 24.043 ± 1.008 49.2 ± 3.6
3 44.30 ± 21.48 25.208 ± 0.388 54.4 ± 2.6
4 20.07 ± 17.77 22.746 ± 0.502 46.5 ± 2.5
5 Diverged 26.290 ± 0.478 60.2 ± 3.0
6 17.63 ± 15.95 40.266 ± 0.341 70.0 ± 3.3
7 17.72 ± 16.02 47.956 ± 0.447 80.6 ± 3.7
8 18.50 ± 16.42 23.822 ± 0.498 61.0 ± 2.8
9 44.30 ± 21.48 21.931 ± 0.421 54.4 ± 2.4
10 42.67 ± 22.70 21.925 ± 0.439 54.3 ± 2.5
11 42.68 ± 22.72 15.755 ± 0.661 35.6 ± 1.6
12 29.77 ± 21.64 42.608 ± 0.549 111.5 ± 3.6
13 28.67 ± 20.83 36.860 ± 0.801 96.5 ± 3.1
14 28.96 ± 22.02 23.187 ± 0.930 63.3 ± 3.5
15 24.66 ± 19.51 38.597 ± 1.247 107.2 ± 6.5
16 25.57 ± 20.33 39.008 ± 0.625 111.2 ± 3.7
17 21.72 ± 18.80 39.659 ± 1.136 113.9 ± 6.1
18 18.77 ± 16.83 27.102 ± 0.807 78.0 ± 3.3
19 42.70 ± 22.74 26.371 ± 0.708 77.1 ± 3.1
20 28.00 ± 22.78 25.378 ± 1.386 73.3 ± 4.9
21 42.70 ± 22.74 44.136 ± 1.476 121.5 ± 6.9
22 21.47 ± 19.40 43.760 ± 0.701 125.0 ± 4.1
23 23.81 ± 20.25 44.066 ± 1.462 126.7 ± 4.5

Diverged: A model that diverged is a model that completely failed to
capture the mean and variation of the target value. Usually resulting in
the same prediction happening over and over again.

architectures.
Since we do not assume any pre-defined relationship be-

tween the selected features, we test dense layers which enabled
us to model relationships between all features. Additionally,
since modeling throughput is a time series problem, we also
experiment with recurrent networks. We targeted three com-
monly used layers: Long Short Term Memory (LSTM [23]),
Gated Recurrent Units (GRU [24]) and Simple RNN (the base
RNN structure).

In Table II, we report the accuracy of all 23 models when
modeling throughput on the people mount. Models 6 and 7
have some of the lowest absolute error between the prediction
and target values, however they also have higher than average
prediction time, 70.0 ms ± 3.3 ms and 80.6 ms ± 3.7 ms.
Although the accuracy is acceptable, a high prediction time
makes the latency between prediction and application of file
movement unacceptably high. We can also see that model 8
and 1 have similar accuracy values and training time. For this
paper, we chose to go with model 1 because of a slightly lower
training and prediction time. Models 1 and 18 also have some
of the lowest absolute error and prediction times between all
the models, plus the variance in absolute error is lower than
those of the rest of the models. Model 18 has the highest
training and prediction time between both models, however it
also has the lowest mean and standard deviation of the absolute
error between the target and predicted throughput over all the
models. Models 6 and 18 have similar mean and standard
deviation, however model 18 saves around 13s when training,
which is beneficial we increase the number of training features.
As seen, there is a delicate balance that needs to be struck

7



TABLE III: Prediction accuracy of model 1 on each individual
Bluesky’s storage points

Storage point Absolute Relative Error
(%)

USBtmp 14.73 ± 12.70
pic 16.78 ± 15.14
tmp 15.68 ± 14.61
file0 23.62 ± 19.53
var 16.03 ± 12.82
people 20.76 ± 18.99

between prediction accuracy and training/prediction time.
We chose model 1 since many other models diverged on

one or more other storage points other then the people mount.
Model 1 is the only model that correctly captures the rise and
fall in throughput for all storage points, while other model
architectures diverged (failed to produce useful predictions).
Model 18 did similarly to model 1 on the other mount however
on the USBtmp Model 18 had a Mean Absolute Relative Error
(44.96% ± 21.78%) about 2 × higher then Model 1 (23.91%
± 21.66%). Since we wanted a model that accurately modeled
all the available ports, we decided to go with model 1.

Table III lists the prediction errors for model 1 using each
available storage point on the Bluesky system. We observe
that model 1 has no worse than 56.85% prediction accuracy
for the files0 mount, despite many users bombarding the
system with requests, with an average accuracy of about
81.12% over all the mounts. This means that the model can
correctly capture the normal rise and fall in I/O throughput on
individual devices with reasonably high accuracy. With this
knowledge, we argue that model 1 is sufficient for modeling
our experimental workload on the Bluesky system. We can
increase this accuracy using more features such as number of
write and read calls, etc.

In the future we will experiment with other models that
can enable us to get a higher accuracy on mounts like the
files0 mount, for which our model only got a 76.38% accuracy.
Additionally, we expect that a user of Geomancy should tune
the neural network to the system Geomancy is applied to.
Here, we demonstrate how we tune the neural network to work
on the performance data collected from PNNL system.

The low standard deviation of model 1 means that we will
be able to readjust the prediction using the mean absolute error.
To determine if we have to add or subtract MAE×prediction
to prediction, we can take the sign of the average relative
error to indicate if most of our current predictions are under
or over the target values. If the sign is positive, we are
underpredicting by some amount, and vice versa. For model 1,
the relative error was 2% when applied to the people mount,
meaning that all predictions are adjusted by the following
formula:

AdjustedPrediction = predictioni±MAE×predictioni

A potential barrier against scalability is the model search
and hyperparameter adjustments needed if workloads become
more diverse or a large number of new metrics are used for
training. In this situation, a new model search, similar to the

one conducted on the Bluesky system, would be required
to account for the new computing environment since the
environment drastically changed. We see this happening in
the model search conducted for the EOS dataset and the live
system metrics. We were constrained by what metrics were
available to Geomancy, and thus had to restrain the metrics
taken from the EOS dataset to those also available on Bluesky
such that the model chosen would effectively model a target
given what features were available.

H. Checking Actions

The Action Checker is a separate module that acts as the
last sanity check for file movements in case permissions or
availability changes in the system. The DRL engine sends a list
of storage devices with their corresponding predicted through-
put to the Action Checker. The Action Checker removes any
invalid storage devices. Using the remaining storage devices,
the model predicts the throughput of the location where each
file can be moved to, including not moving the file at all. Once
the prediction is done, we will move the file to the location
with the highest predicted throughput.

In case all storage devices are invalid, a random movement
is performed. The random movement allows Geomancy to
learn more about the relationship between file movements and
the changes in performance in the system. If we were to not
move the files, Geomancy would not know whether or not
moving it would help the performance or not. Additionally,
moving the files allows for Geomancy to discover more of the
target system such as new mounts.

Overall, random decision are used by Geomancy 10% of
the runs to keep an updated list of storage availability on
the system and performance changes in the system. This
means that as hardware, data and workloads change in the
system, Geomancy is able to adapt and change the data layout
accordingly.

VI. EXPERIMENTAL SETUP

a) Experiment 1: performance improvements: As there
are many potential policies to spread files, we use a basic
spread policy (evenly across all available mounts) as a baseline
for this paper. The policies we compare Geomancy against
are inspired by common caching algorithms, and we refer to
them by the name of the original algorithm. In the algorithms
below, we evenly spread the files across all available storage
devices, however it is possible to spread files based upon the
capacities of the storage devices. Before any experiments are
executed, BELLE 2 is run until Geomancys monitoring agents
can capture 10000 accesses for each file used by the workload.
The data collected gives Geomancy and the other basecases
enough information to start modeling the performance over
time.

Our base cases are the performance of the BELLE II
workload when it uses heuristics to determine the placement of
data or uses a static layout of data calculated from Geomancy
or random placement. Our base case with a static layout of data
is a simulation of manually tuning data layouts. In the base
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case, the data is stored once and does not change to account for
system performance fluctuations. Hence, our experimentation
is aimed to demonstrate that learning file access patterns
to forecast slowdowns and respond to them is an effective
strategy to improve performance.

LRU: The effect of a LRU policy causes the least recently
used files to move to the slowest storage device, and the
most recently used files move to the fastest storage devices
available. This experiment starts by taking the current total
average throughput at each storage device using data collected
in the ReplayDB. Next, all 24 files, described in Section IV,
are divided evenly across the available six storage devices
in groups of four. The group containing the most recently
accessed files is placed into the fastest storage device, the
second group is placed on the second fastest storage device,
and so forth. In case a file was not used or the files cannot
be evenly divided, the remaining files are put on the slowest
node. All storage device performance information is updated
between every run.

MRU: The Most Recently Used (MRU) algorithm, as
described by Chou et al. [25], places the most recently used
files on the slowest storage devices. This algorithm has benefits
for files that are scanned in a looping sequential access pattern,
similar to how the BELLE II workload accesses files.

LFU: The LFU policy, as described by Gupta et al. [26],
places heavily accessed files on fast nodes and lower accessed
files on slower nodes. Like the previous heuristics, we start by
ordering the available storage devices by throughput. Then we
sort the files from most to least accessed, and the sorted files
are divided equally into groups. The group containing the most
accessed files are placed into the fastest storage device, the
second group is placed into the second fastest storage device,
and so forth. If a file was not used or the files cannot be evenly
divided, the remaining files are placed on the slowest node.

Random and dynamic random: In random static, we
randomly shuffle the locations of every file requested by the
workload. The files are never moved again once they are
moved the first time. We additionally compared Geomancy
to random dynamic which shuffles the locations of the data
between several runs of the workload.

Geomancy static placement: Geomancy static uses one
prediction of Geomancy when trained with a database of past
performance metrics. This prediction assigns files to their
storage points, and never moves them again. This component
of the experiment uses approximately 10,000 performance
metrics from the dynamic random experiment, and this data
is used to train the DRL engine’s neural network to produce
the placement.

Geomancy dynamic placement: Finally in Geomancy dy-
namic, Geomancy moves data every five runs of the workload.
We only run Geomancy every five runs of the workload
since we observed that adding a cool down period after file
movement increased performance benefits. Moving files less
frequently caused new placements to be less relevant, and
lowered performance benefits. Also, if Geomancy moves files
too often on Bluesky, the additional overhead from moving

the files diminishes the performance increase achieved by
Geomancy. Hence, we run Geomancy every five workloads
over 9,000–16,000 accesses.

All the base cases described above are executed individually
to gather their effect on the workload, with no input from
Geomancy or other algorithms. Dynamic base cases (LRU,
LFU, MRU and random dynamic) are repeatedly run during
the execution of the workload to rearrange data as those algo-
rithms deem best. By updating the layout, dynamic base cases
become more accurate when calculating future performance
value since they can access the updated performance values
from the ReplayDB.

In all experiments, we represent the progression of time
using access number since the file access time window is not
constant. At the beginning of each run, the workload requests
the current locations of the files from a configuration file
that Geomancy configures after any data movement. Currently
Geomancy moves whole files in one movement; however, in
the future, we will incrementally move a file to address parallel
accesses. Whenever the experiment needs to read files, it will
look up within this configuration file the latest locations of the
files and read them from those storage devices. Throughput of
the workload is measured after every I/O access. Each node
has a monitoring agent that observes the file accesses on that
node. Using the node’s clock, the monitoring agent records
when the access starts and ends. It also uses the difference
between these values and the amount of bytes accessed to
calculate the throughput using the following formula described
in Section V-D. On average, Geomancy moves between 1–14
files in one movement.

A file movement is determined if its location has changed
in the entries in the ReplayDB. Using that information in
addition to the timestamp of the data movement, we create
clusters of data movement that happen every five runs of the
workload. These clusters are used to identify how many files
were moved by Geomancy during the creation of a new layout.
We represent these values under the performance graph as bars
that align with the dotted vertical lines on the performance
graph representing the timestamp where Geomancy applied
one of the data layouts it created.

Each file accessed by our workload can be placed on every
location available to the workloads. In our case, our workload
uses 24 files (at most) over 6 potential locations, creating
a search space of potential layouts of 246. This gives us
191,102,976 potential ways to distribute the data. Because
our search space is not as large as it can get, we found that
a polynomial representation, as shown by the dense model,
produced the most accurate predictions. The benefit of dense
networks over heuristics such as exponentially moving average
is that neural networks are able to update their weights over
time unlike heuristics which will need human input to update
and therefore they might not be able to capture sudden changes
in performance. This is why we have opted for the use of
neural networks over heuristics.

At worst, with the selected model, Geomancy takes 26.5
seconds to train and predict a new layout. In total, Geomancy
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runs at least 4.5 times per run of the BELLEII workload (the
BELLEII workload takes around 2 minutes to run). Over the
300 runs of the workload, Geomancy created at least 1350
potential layouts, of which 60 are ever applied to the Bluesky
system. This is not an exhaustive search, it only applies layouts
that the NN predicts will increase throughput performance. In
the future, we will increase the frequency of file movements
when we add another model that allows us to know when best
to move individual files.

b) Experiment 2: drawbacks of placing all data on a
single storage point: In experiment 2, we measure the I/O
performance of each storage point if all files are placed and
read solely on those points. We compare those performance
metrics against a data layout proposed by Geomancy. The
evolution of the performance over time allows us to compare
the variation of each approach over time. In Figure 6, the
data points of Geomancy and the mount points represented the
average accesses throughput done by the workloads over 500
accesses. When Geomancy does not access a mount point, we
repeat the past observed value for that mount in the graph. We
are looking to demonstrate the learning pattern of Geomancy
over time.

Although it would seem that Geomancy s data layout
throughput should be the sum of all the throughputs at each
storage point, this is not the case. The workload does not
access all of the files at once at every single data access.
For example, if we had 4 files, two storage points (A being
less contended than B), Geomancy may choose to put more
files on point A. But, this does not mean that all of the files
being used will come from A or B solely. It may be that
one file from A is being used, and one file from B is being
used, causing the average to appear to be lower than the total
potential throughput of B and A for all files.

c) Experiment 3: impact on other workloads: To demon-
strate Geomancy’s data movement overhead on other work-
loads in the system, we measure Geomancy’s throughput
when it moves data at specific data movement milestones.
The blue line indicates a duplicate workload (not tuned by
Geomancy) accessing a different set of data. In this situation,
the contention of storage devices has changed, and Geomancy
must now respond to the changed environment. We ran a
version of the workload without Geomancy tuning it alongside
a version of the workload that the data layout was tuned by
Geomancy, shown by the orange line. The common part of
both workloads is the fact that they access common mounts,
but they do not use the same data. Here again we show the
average performance change over time for both the tuned and
non-tuned workloads.

VII. EVALUATION

Geomancy outperforms both static and dynamic data place-
ment algorithms by at least 11%, as shown in Figure 5. In all
figures, a vertical gray line represents when Geomancy decides
to move data. The blue lines below each graph corresponds
to how many files are moved by Geomancy at that access
number. We can see that most of the time Geomancy only

moves a small subsets of the file to other nodes. Most static
placement methods have lower performance, and only a few
randomly chosen data placements challenges the performance
gain made by Geomancy.

In our first experiment, as seen in Figure 5a, only the LFU
experiment, with an average throughput of 4.46 GB/s, some-
what approaches Geomancy’s overall average performance of
4.98 GB/s. We also observed that placement policies like
LRU have difficulty dealing with nodes—such as the RAID-
5 node—that have large imbalance between read- and write-
speeds. The effect that Geomancy had upon this system
was a predictive move of data to counter the fluctuations in
performance before it occurred, demonstrating that learned
access patterns were able to predict and prevent the slowdown.

In our second experiment, as seen in Figure 5b, Geomancy
outperforms all naive policies. Compared to random static
which has an average throughput of 4.01 GB/s, Geomancy has
a 24% increase over the 16,000 accesses. Similarly, Geomancy
static has an average throughput of 3.81 GB/s while Geomancy
has a 30% increase over it for 16,000 accesses. Hence, even if
an optimized layout is created for a single period of time, the
optimized layout is better than randomly shuffling the data.

In our third experiment, as seen in Table IV, we compared
Geomancy’s performance to the individual storage device’s
performance. We can see that on average the USBtmp storage
device has a throughput of 0.63 GB/s, the pic storage device
has a throughput of 2.05 GB/s, the var storage device has
a throughput of 1.26 GB/s, the people storage device has
a throughput of 1.69 GB/s, the file0 storage device has a
throughput of 7.61 GB/s and the tmp storage device has a
throughput of 1.65 GB/s. The files0 storage device saw the
least amount of external traffic during the experiment and the
pic and people storage devices received the heaviest. The files0
storage device has the highest average throughput; however, if
we were to move all files onto files0, its performance would
suffer greatly. Geomancy was able to not only move files to
files0 to best utilize it, but also use it without deteriorating its
performance into uselessness.

What we observe from these comparisons are threefold.
One, by allowing Geomancy to forecast bottlenecks, we can
prevent the large peaks and valleys in performance seen in
static placements of data. Because contention on each storage
storage device changes, we can see that the fluctuations in
contention negatively impact performance on data that is stuck
on contended storage devices. Hence, when data is moved
before the drops in performance, overall performance fluctu-
ates little. Two, there is significant performance improvement
over never moving the data, or only manually placing the data
once. As we have hypothesized, an ideal placement of data at
a certain period of time will not be ideal later during a work-
load’s execution. Thus in all static placements, they perform
worse overall, and they fluctuate in performance. Three, the
mechanism to improve performance does not require moving
all of the workload’s files at once. At most, 14 files were
moved every five runs of the workload, which is a minimal
load upon a network that can transfer thousands of files every
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(a) Geomancy’s performance compared to LRU and its
variations

(b) Geomancy’s performance compared to static ap-
proaches and random dynamic

Fig. 5: Geomancy’s performance compared to dynamic and static solutions on the live system. Gray lines represent data
movements done by Geomancy dynamic. Size of the data that Geomancy moves ranges from 583 KB to 1.1 GB.

second. Therefore, there is no need to decide with heuristics
which files should be moved.

Unlike the other approaches that strictly use the accesses to
the data as information on where to put the data, Geomancy
uses time, location, and per storage device performance to gain
a more complete view on performance. Doing so, Geomancy
is able to adapt the layout as the performance of the system
changes and other workloads are started. Approaches such as
LRU, LFU or MRU that only use whole-file frequency for
placement suffers from bottlenecks or creates placements that
work for only brief periods of time.

VIII. OVERHEAD STUDY

TABLE IV: Performance and utilization of storage points
available to Geomancy

Storage point Average throughput (GB/s) Average usage (%)

USBtmp 0.63 ± 0.47 0.1
pic 2.05 ± 3.85 0.3
tmp 1.65 ± 3.44 21.175
file0 7.61 ± 13.73 64.8125
var 1.26 ± 2.81 6.25
people 1.69 ± 3.46 7.3625
Geomancy 5.49 ± 11.59 100

To demonstrate Geomancy’s data movement overhead, we
measure Geomancy’s throughput when it moves data at spe-
cific data movement milestones. In Table IV we can see that
even though file0 has higher potential throughput, it also has

higher deviation in its performance. Geomancy was able to
lower this inconsistent performance by spreading files across
other devices. The standard deviation shown in the table seems
to go below zero, but that only indicates that at some times
the transfer may halt due to contention.

In Table II, we showed that the prediction overhead of our
selected neural network was at most 53.7ms and the training
overhead was on average 25.3s when the neural network was
trained using six features. When training our neural network
architecture, on a dedicated machine using a TITAN Xp GPU,
with 13 input performance metrics selected from the CERN
EOS logs, our neural network takes 23.1s to train and 48.2ms
to predict future placement. The predicting overhead can be
mitigated by having the prediction be done in parallel with
the target system which means that the perceivable overhead
of Geomancy is only visible when the prediction is sent to the
target system.

Figure 6 shows the effect of Geomancy when the system
receives a sudden change. The blue line indicates a duplicate
workload (not tuned by Geomancy) accessing a different set
of data. In this situation, the contention of storage devices has
changed, and Geomancy must now respond to the changed
environment. As seen, Geomancy was able to respond to the
changes, and is working to restore performance. In some
occasions, such as around timestep 20000, Geomancy had
the added benefit of increasing the performance of other
workloads running in parallel by lowering the performance
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Fig. 6: When Geomancy is faced with a new environment,
such as when another workload is started, it will take time to
adapt to the new changes. Although the original performance
drops, Geomancy is able to respond to the changes and attempt
to push performance back to what it once was.

of the workload it was tuning for a brief period. This was not
the initial goal of the reinforcement learning but it does show
a larger impact of running Geomancy for other workloads
running on the system.

IX. RELATED WORK

Geomancy positions itself as an unsupervised and gener-
alizable tool among a growing number of data placement
modeling techniques. In production situations, standard ap-
proaches such as algorithms and heuristics begin to show
brittleness when accesses suddenly change. Our tool reacts
faster than standard heuristic approaches to drastic changes
in performance. Thus stabilizing the performance much more
then other approaches.

A. Static approaches

Early work in data layouts involves distributing data evenly
across a majority of hardware pieces present in systems. MM-
Packing [27] utilizes replication and a weighted scheduling
algorithm to distribute video files across N servers, achieving
fairness by making every server have at most N −1 copies of
the same video. Randles et al. compared three different load
balancing techniques on experiments set up on Repast.net [28].
Their experimental honeybee foraging allocator outperformed
random walk and active clustering allocators if the system
contains a diverse set of nodes. They concluded that finding
the best trade-off between several of their discussed algorithms
is needed, and finding a way to switch between algorithms will
benefit the system as a whole. Nuaimi et al. surveyed several
other load balancing algorithms [29], and concluded similarly
about the trade-off situation of different algorithms.

B. Applying dynamic solutions to tuning system performance

Model-less, general purpose approaches usually treat the
target system as a black box with knobs and adopt a specific
search algorithm, such as hill climbing or evolutionary algo-
rithms [30], [31], [32]. ASCAR [33] directly tunes the target
system and can automatically find traffic control policies to
improve peak hour performance. These search-based solutions
are often designed as a one-time process to find the efficient
parameter values for a certain workload running on a certain
system. The search process usually requires a simulator, a
small test system, or the target system to be in a controlled
environment where the user workload can be repeated again
and again, testing different parameter values.

Li et al. designed CAPES [34] (Computer Automated
Performance Enhancement System), which demonstrated how
neural networks can be used to enhance system performance.
Our approach resembles the one used in that work, in that
it uses system performance metrics to update a target system
and re-trains a neural network to produce a prediction. Unlike
CAPES, however, it observes and learns from the executing
workload, and uses the observations to propose data layouts
that improve the target system’s performance.

C. Automated data placement techniques

Other approaches have been taken to create dynamic
caching for large scientific systems such as the one described
by Wang et al. [35]. They created a data management service,
Univistor, that provides a unified view of the available nodes in
the system. In cases where a fast NVRAM cache is available,
existing software may not be aware of how to best utilize it.
Like Geomancy, Univistor analyzes the workloads running,
and finds chances to cache data on a fast burst buffer to
increase performance. In contrast, however, is the requirement
of a tiered storage cluster with performance strictly going up as
storage densities decrease. Subedi et al. [36] proposes another
approach. They created Stacker, a framework that achieves
similar data management between components of a workload
in a scientific system using n-gram Markov models to predict
when a data movement should occur. Like Univistor, it too
utilizes a fast cache to increase performance by staging and
unstaging hot data.

Geomancy presents itself as an analogy to such approaches,
yet does not require the existence of a fast burst buffer to
increase performance. In our experimentation, we have varying
levels of performance, but no one storage layer dedicated to
caching. We also do not interact with striping, such as the
approach done in Rush et al.’s work [37]. Although smart
striping techniques do increase storage performance, it has
moderate gains in performance and comparable dampening
effects on performance variation, yet requires modification
of the file system. LWPtool [38] provides a similar service,
and also adds tools to change a workloads code to point it
to a new data’s location. Like that of Geomancy, workloads
are instructed to use the new data’s location, however this
approach requires rewriting running source code.
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X. CONCLUSION AND FUTURE WORK

Geomancy accurately captures changes in performance as
the workloads runs on the target system. Those predictions are
then able to be used to change the data layout of the system.
Experimentally, we demonstrate inter-workload congestion
reduction and increases in overall throughput from 11% to
30%. Compared to algorithmic or manual data placement,
Geomancy is superior in that it reduces bottlenecks and can
anticipate when performance fluctuations may happen. By
predicting when and where performance may drop, moving
data before the slowdowns occurs stabilizes performance and
prevents fluctuations in throughput. With our modeling tech-
nique, we gain adequate accuracy and low error variations
between predicted and real values while keeping a low training
and prediction time as seen in table II.

In the future, we will create a separate model which will be
used to predict gaps in accesses for files on the system. Gaps
are defined as periods of time, where the individual file is not
accessed by any workloads, that is long enough for Geomancy
to move the file to the new location. We will not consider
moving files that are always accessed and never released since
there can be no way to optimally move it. Geomancy will
concurrently generate new locations for all the files based on
observations. Once a gap is found, the control agents on the
system will move the file to the new location determined by
Geomancy s algorithm when the predicted gap starts. Using
this model, we will be able to get a better idea on how our
workload scales when the system and the number of clients
increases.
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