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Abstract

Storage systems manage quotas to ensure that no one
user can use more than their share of storage, and that
each user gets the storage they need. This is difficult for
large, distributed systems, especially those used for high-
performance computing applications, because resource al-
location occurs on many nodes concurrently. While quota
management is an important problem, no robust scalable
solutions have been proposed to date. We present a solu-
tion that has less than 0.2% performance overhead while
the system is below saturation, compared with not enforc-
ing quota at all. It provides byte-level accuracy at all times,
in the absence of failures and cheating. If nodes fail or
cheat, we recover within a bounded period.

In our scheme quota is enforced asynchronously by in-
telligent storage servers: storage clients contact a shared
management service to obtain vouchers, which the clients
can spend like cash at participating storage servers to al-
locate storage space. Like a digital cash system, the system
periodically reconciles voucher usage to ensure that clients
do not cheat by spending the same voucher at multiple stor-
age servers. We report on a simulation study that validates
this approach and evaluates its performance.

1. Introduction

Tracking and enforcing resource usage limits in a large
distributed system is difficult because it requires maintain-
ing a consistent view of total usage when consumption is
occurring in several places concurrently. Storage quota en-
forcement mechanisms are essential for shared storage, es-
pecially when resources are limited. In a file system, for
example, users must not use more than their storage quota.
In the case of scientific applications that involve tens of
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thousands of nodes all cooperating on a problem, all writ-
ing to shared files, nodes often consume from the same pool
of quota in order to bound the amount of storage that a run-
away application can consume.

We concentrate here on distributed storage systems
that use storage servers that provide intelligence simi-
lar to object storage, which track local storage allocation
and enforce access control. For these types of systems
clients make storage requests on behalf of users, receiving
and caching metadata and capabilities from management
servers in order to perform I/O requests directly with the
storage servers. Many systems with this type of distributed
architecture have been proposed [1, 2, 6, 7, 12, 14, 23].
These provide scalable methods for security, load balanc-
ing, reliability, and allocation for this type of architecture;
a scalable solution for quota management has not yet been
proposed. We focus on a distributed quota management
technique that can be used for enforcing resource usage
limits for systems such as these.

In order to enforce quota a storage system must ver-
ify before each resource allocation that the requesting user
can consume the required storage space without exceed-
ing their assigned quota. For local or network file sys-
tems such as CIFS [17] and NFS [20] this can be easily
verified since requests must go through a single machine,
where quotas can then be checked. Similar techniques ap-
ply to distributed or cluster file systems such as SanFS [12],
GPFS [19], and AFS [9] that use block storage devices, as
quota changes imply allocation changes, and block alloca-
tion is typically handled centrally or by delegation from a
central entity, so quota can be tracked together with alloca-
tion. In the case of object-based storage devices allocation
is completely decentralized to the storage servers. For such
a system, requiring that all quota update requests be coor-
dinated through a central server at allocation time is an un-
acceptable bottleneck. Quota enforcement decisions must
be able to occur in parallel, across multiple machines, even
when requests are for the same user.

1



We propose a novel approach to tracking and enforcing
resource limits. This approach borrows from digital cash
mechanisms: there is a management server that acts as a
bank that issuesvouchersto clients, which the client can
spend to allocate resources on any server they want. The
client can withdraw enough vouchers to cover their needs
for some period, during which time the client does not need
to contact the bank. Servers are able to check the vouch-
ers for authenticity. The vouchers are valid for a limited
time, in order to handle clients that fail, and servers periodi-
cally reconcile their transactions with the bank to check that
clients have behaved correctly. Since storage servers op-
erate independently it is possible for a misbehaving client
to cheat by spending the same voucher at multiple storage
servers. However, we provide mechanisms similar to dig-
ital cash systems that allow us to detect cheaters within a
guaranteed amount of time and bound the amount of stor-
age they can allocate during this period.

This approach provides a different trade-off than
other quota management methods. It provides excel-
lent performance—in most cases indistinguishable from
not tracking resource usage at all—while providing byte-
accurate but temporally-coarse accuracy similar to time-
limited escrow. It reduces load on the tracking service well
below that of other mechanisms, thereby achieving excel-
lent scalability. It also decouples quota tracking from allo-
cation policy, so that the quota serveronly needs to track
how much quota a user has consumed, and does not need
to be concerned with where that consumption will occur,
which reduces the load on the quota server and makes it
easier to partition the quota tracking work across multiple
servers. Further, each client can decide for itself where to
allocate resources based on its own needs, which allows
a client to customize its allocation based, for example, on
how a particular file will be used.

2. System context

Figure 1 shows the architecture of the distributed stor-
age systems we are investigating. In these systems,clients
act on behalf of users. The clients communicate with a
file systemmanagement servicecluster to locate files and
authorize actions. The authorization includes both check-
ing permission to access data and permission to consume
resources. The authorization is expressed using location-
independentcapabilities[13] andvouchers, which encode
the client’s rights to access files and to allocate resources
respectively. Once the client has the capabilities and vouch-
ers it needs, it communicates directly withstorage servers
to read and write data and to create and delete files. The
storage server has the intelligence to manage internal re-
source allocation and to check capabilities for validity, sim-
ilar to object store model [6, 10].
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Figure 1. Basic distributed storage system
architecture.

We are investigating quota management as part of the
K2 distributed storage system [7]. K2 provides virtualized
storage across multiple servers. Files are striped and/or
replicated across servers, and a client can perform consis-
tent I/Os to the pieces of a file. The system balances re-
source consumption between servers both as files are cre-
ated, by placing files well, and later in response to changes
in load, by migrating files as needed. K2 also provides se-
curity mechanisms to ensure both traditional file-level ac-
cess control and authorization for management operations.

For scalability reasons, K2 pushes decentralization as
far as possible. Each node is an autonomous agent, act-
ing in its own interest as much as possible while respecting
community needs. We make this possible by each node act-
ing as an enlightened rational agent, with algorithms that
work to meet the node’s needs while avoiding the “tragedy
of the commons,” [8] in which the limits on shared re-
sources are not considered. In concrete terms for a storage
system, this means that we want each client to be able to
make its own allocation decisions that give the best result
for the application the client is running (self-interest),while
ensuring that users do not go over quota and that storage re-
sources are not over-used (community interest).

Different files can have significantly different needs, and
so the system allows a different layout for each file. One
file may be located on a single storage server; another may
be mirrored and striped across many storage servers. The
client decides what the layout should be, based on expected
needs derived either from application hints or inferred from
file attributes. Peak file creation rates can be high in some
scientific applications, and so it is important for good scal-
ability to minimize the dependence on the shared file man-
agement service during file creation.

Scientific applications have characteristics different
from what studies of end-user workstations have shown.
The absolute numbers are several orders of magnitude
larger: petabytes of data are being deployed now, with ag-



gregate transfer rates of gigabytes per second, files in the
terabytes, all being accessed by tens of thousands of clients.
The clients are cooperating to run one application, and both
read- and write-share files. The applications are bursty,
as the clients synchronize as they move through phases of
a computation and write out checkpoints concurrently or
read the results of previous phases. Some of the files are
only temporary, for communication between computation
phases, while others are results of days of computation and
must be carefully protected.

Because K2 is built for large distributed environments,
its design works to minimize the trust required in any one
component—in particular, the client. While many clients
may be part of a single homogeneous compute cluster,
some clients will be different and potentially not under
careful administrative care—for example, user worksta-
tions used for visualizing results. The system assumes that
clients authenticate the users that run on them, and that the
clients can provide evidence of that authentication when
communicating with the file management service and with
storage server [11]. Our design assumes that clients can
crash-fail. While some clients can also be malicious, we
do not focus on them; we do provide mechanisms that en-
sure that cheaters willalwaysbe caught, and we bound the
amount of storage a cheating client can allocate for a user.

3. Protocol operation

Here we give an overview of the operation of the
voucher-based quota system. Figure 2 shows the general
flow of usage. A client first requests a voucher for stor-
age resources from the quota server for the user, then sends
IO requests to storage nodes, including the voucher when
those requests may consume resources. If a client frees
resources on a storage server, the storage server gives the
client a “refund” voucher for the amount freed. The quota
server and storage nodes periodically reconcile the set of
vouchers that have been spent against those that have been
issued, in order to detect clients that overuse a voucher. We
will describe in detail what a voucher is, how vouchers are
obtained, and when vouchers are used. We then show that
this method always provides temporally-coarse byte-level
accuracy, even in the face of cheating and device failures.

Vouchers. A voucher is a record of a decision to allow a
client to consume resources on behalf of a particular user.
It is represented as a cryptographically-protected sequence
of bytes:

{epoch, expiry, user, value, serial}auth

similar to capabilities used to authorize actions in
Amoeba [13] and the T10 OSD [10], the exact authoriza-
tion mechanism is outside the scope of this paper. The

 ! " # $ % $ & " # " % '( ) $ % * + , ! - " % '( . / 0 1 2 " 0 + 2 ' / 0 $ & "2 " 0 3 " 0 4 2 ' / 0 $ & "2 " 0 3 " 0 5
6 7 8 9 7 : ; < 9 : 7 6 = > ? @ A B 9 C ; D

E B 9 F G 7 6
H I 6 7 8 9 7 : ; < E B 9 F G 7 6 D

H I 6 7 8 9 7 : ; < E B 9 F G 7 6 D

F G 7 F J 9 : @ K 7

@ L L B F @ ; 76 7 : B 9 6 F 7L 7 M ; B E 7 6

Figure 2. Sequence of operations. A client
begins by obtaining a voucher for a user
from the quota server, then spending that
voucher during IO requests to different stor-
age nodes. Later, the quota server and
storage nodes check that the client did not
overuse a voucher.

value encodes the amount of storage that may be pur-
chased.Our system can track quota by the identity of the
writer, or by the owner of the file; traditional file systems
use the latter. Theuserfield needs to encode the entity to
which quota and allocation shall be charged, depending on
that choice. The voucher has a uniqueserialnumber, which
is used when storage servers reconcile voucher usage with
the management server. Each voucher also records when it
was issued (theepoch) and when itexpires. The voucher
includes a signature or MAC generated using a secret key
known only to the management and storage servers, which
ensures that a client cannot forge a voucher.

Each voucher is valid for only a limited duration,
as recorded in itsexpiry field. This is used in han-
dling failure—if a client crashes while holding an un-
used voucher, other clients can use that quota once the
voucher expires—and in reconciling storage and manage-
ment servers. These are discussed further below.

Obtaining vouchers. While a client could ask the man-
agement server for quota authorization on every I/O, this
would put an unreasonable load on the management server.
Instead, the client maintains a pool of vouchers, and only
periodically communicates with the management server.
The client tries to maintain enough vouchers to cover any
allocation it expects to do in the near future, while allowing
for other clients to share quota. This approach reduces load
on the management server and improves client response la-
tency. We can further reduce the load by piggy-backing
quota requests on other metadata requests.

The client has to decide when to request vouchers and
how much resource to ask for; the management server
has to decide how much of that request to grant. The



management server must maintain the invariant that the
vouchers granted for a user to any client—which represent
potentially-used resources—plus the amount actually allo-
cated do not exceed the user’s quota.

The simplest policy for requesting vouchers would be a
fixed requestpolicy which always requests the same fixed
amount of quota every time it must allocate more quota.
The fixed amount should be larger than the expected aver-
age request size in order to amortize interactions with the
management server over many I/O requests.

Another approach is anadaptive requestpolicy where a
client requests quota from the management server on a reg-
ular schedule based on its usage. This generally makes the
load on the management server proportional to the num-
ber of clients, rather than to the intensity of workload on
those clients. The client uses a moving average based on
its history of recent resource consumption to estimate how
much it will likely use between the current request and the
next request, and asks the management server for the dif-
ference between the estimated usage and the vouchers it
already has on hand. If actual usage is higher than an-
ticipated, then the client will ask the management server
for extra vouchers before its next scheduled request. The
client can estimate the management server’s response time
and the short-term voucher usage rate to predict when to
send a request to the management server before the client
runs out of vouchers. The client may have extra vouchers
when net consumption is lower than anticipated—perhaps
because it has been freeing rather than allocating storage.
In that case the client can return some vouchers to the man-
agement server or just let the vouchers expire, making the
quota available for other clients. This matters, for example,
when one client is cleaning up old files while other clients
are writing new data.

The management server can determine how much to
grant to a client based on its global information, includ-
ing the total value of vouchers outstanding for a user and
estimated demand from all clients consuming that user’s
quota. Granting more to a client can reduce the number
of request messages that the management server must pro-
cess, but giving too much to one client can inhibit sharing
across multiple clients. The management server must also
not issue enough vouchers that a user could go over quota.

In order to ensure that sharing can be done without starv-
ing a client of vouchers, and reserving some quota in case
new clients begin using quota, the management server can
give each client a maximum number of vouchers based
on the remaining amount of quota. Thislimiting policy
satisfies every quota request fully until a user begins to
come close to running out of quota by capping the amount
granted tor/(n+ 1), wherer is the remaining unautho-
rized quota and there aren active clients, defined as clients
that have requested quota for the user in the lastX epochs

(meaning they may still hold valid vouchers). A minimum
amount of quota is set to minimize client thrashing in re-
questing the final bytes.

When there are multiple clients competing for a user’s
quota, and that quota is running low, the policy presented
above will work to give each client a portion of the re-
maining quota. An alternative is to try to give one client
enough quota to get its work done, rather than spreading
the remainder too finely. This can be done byrevocation:
the management server contacts the other clients who are
holding unexpired vouchers, and requests that they return
any unused vouchers. Requests waiting for these vouch-
ers are satisfied as soon as the management server receives
enough returned vouchers from the clients, and all subse-
quent quota requests are queued at the server until they
can be satisfied, or they time out. Revocation allows ac-
tive clients to quickly use any remaining quota, even when
some other clients have stopped their activity but still hold
vouchers. The cost is a possible burst of messages between
the management server and clients to return the vouchers.

Using vouchers. Once a client has obtained a voucher,
it can use the voucher to consume resources. The client
picks which storage server it will use; the problem of se-
lecting the server is outside the scope of this paper, and is
addressed by other components in the K2 system [7] .

In the simplest way of using vouchers, the client sends
its I/O request to the storage server, along with one or more
vouchers that will cover any resource allocations the I/O
request might require. The storage server keeps track of
how much resource was actually consumed by this request,
and may send the client a new voucher for any balance in
its reply. It also keeps track of how much each user has
allocated in total, plus any recently-spent vouchers. The
vouchers are periodically reconciled with the management
server in order to handle failure or to catch cheaters, as dis-
cussed below.

Consider a simple scenario: a client is trying to write
1 MB of data into an existing file. The client obtains a
voucher for (say) 2 MB from the management server, then
sends a write request to the storage server along with the
voucher. The storage server determines how much resource
is consumed. It might consume nothing, if the request only
overwrites already-allocated blocks, or it might consume a
full 1 MB, or something in between. The storage server will
reply with a refund voucher for 2 MB minus the amount
actually allocated. A refund is made by appending this
amount to the voucher outside of the signature:

{

{epoch, expiry, user, value, serial}auth, amount
}

When the storage servers and quota servers validate
vouchers they will keep track of the vouchers they have
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Figure 3. How the storage server main-
tains consumption information over multiple
epochs. X = 3 is the number of epochs be-
fore vouchers expire; K = 5 is the number of
epochs in the past when reconciliation hap-
pens.

seen by serial number and flag a cheater if the user spends
more than 100% of a voucher.

The discussion so far has assumed that a client must use
a voucher in its entirety, just as a person cannot divide a
high-denomination coin themselves. However, it is possi-
ble to allow a client to split a voucher by appending an indi-
cation of what fraction of the voucher it is using on any one
operation, the same way a storage server splits a voucher
when refunding the unused fraction of a voucher. This al-
lows a user to maximize the number of storage servers on
which it can allocate resources concurrently, before having
to request more vouchers.

Tracking and reconciling usage. The storage server
keeps track of how much a user has consumed, and periodi-
cally reconciles voucher usage with the management server
to catch cheaters and recover from failures. It is important
that I/O operations that allocate storage can continue while
reconciliation occurs. If they could not, applications would
observe an unacceptable interruption in performance. As a
result, we avoid synchronously polling every server, and in-
stead use a method that asynchronously reconciles vouch-
ers that have expired and are no longer in use.

We summarize the formal model for tracking and recon-
ciling quota for a single user as follows. The exposition for
a single user is clearer than for multiple users, but the rules
are the same. The user has a quotaQ, and the management
server has authorized some allocationA; the system works
to keepA≤ Q.

The system divides time intoepochs, as illustrated in
Figure 3. Each voucher is associated with the epoch in
which it was issued, and the storage server keeps a list of
vouchers that it has received for each epoche, and the total
amount of storage allocated using vouchers up to and in-

cluding each epoche, Se. At some point there can be no
more activity associated with an epoch, because all vouch-
ers from that epoch will have expired. If vouchers expire
after X epochs then the storage server has the final value
for Sc−X−1, wherec is the current epoch. Since this value
will not change it can now be sent to the quota server for
reconciliation. After reconciliation, the storage servercan
forget this value since the storage is accounted for inSe for
all e> c−X sinceSe includes the total amount of storage
allocated using vouchers up to and includinge. We allow
the storage servers an additionalK−X epochs to reconcile
Sc−X−1 with the quota server, so they do not need to be ag-
gressive about updating the quota server and we can handle
transient communication problems as long as they do not
last more thanK −X epochs. Note that reconciliation for
an epoche cannot occur until all the vouchers issued for
that epoch have expired, soK ≥ X +1.

The quota server tracksVe, the total value of all vouch-
ers issued in epoche. From reconciliation with the stor-
age servers the quota server knows how much has been
stored on them before epochc− K; however, the quota
server can’t accurately estimate how much storage has
been allocated since then. The quota server must make
a conservative estimate of the current allocationA for
a user for this period by assuming that all the vouch-
ers issued by the quota server during the pastK epochs,
∑0≤i<K Vc−i, have been spent. Therefore the quota server
must maintain the amount of vouchers it issued for the past
K epochs, to calculate the current allocation for a user as
A = ∑∀d Sc−K(d) + ∑0≤i<K Vc−i, whereSe(d) is the stor-
age allocated in epoche on deviced. Using this method to
calculateA we can guaranteeA≤ Q (except in the case of
cheating, which is discussed in detail in the next section),
meaning no user will ever exceed their quota using this ap-
proach.

Deletions and refunds. When a user deletes data we
need to credit them back for the space they have deallo-
cated. The simplest way to do this would be to update all
of the values ofS being tracked for the storage server the
deallocation takes place on. At the next reconciliationA
would be updated to accurately reflect the change for the
user. The problem with this method is that it takes usually
one and at mostK epochs for a user to be credited back
their space, which can be problematic if a user is near the
end of their quota. To solve this we allow storage servers
to issue vouchers in order to refund deallocated storage.
The user can use this voucher to allocate storage on any
of the other storage servers, or equivalently refund it to the
quota server, or simply let it expire afterX epochs. In order
to maintain an accurate measure ofA at the quota server
the refund voucher is set to the current epochc, and the
refunding storage serverd decrements its value forSc(d).



If the voucher is spent at another storage serverd′ it will
be added to that server’s value forSc(d′) (as described in
the previous section) balancing the refund whenSc for all
involved storage servers is ready to be reconciled with the
quota server. There is no scheme for which a user can spend
more than it actually deletes since reconciliation for the
deletion and the refund (if spent) will be for the same epoch
c. If the refunded voucher is not spent and voucher expires
at c+ X + 1 the storage server that issued it will have just
finalized itsSc(d) value, which it decremented earlier for
the value of the voucher, so at reconciliation with the quota
server the refund will be reflected in the total allocationA
of the user.

Cheating. Since the management server does not track
where a voucher is spent, and the storage servers do not up-
date the management server after each allocation, a client
can cheatbriefly by using a voucher more than once on
different storage servers. A cheater willalwaysbe caught
within K epochs, whereK is the number of epochs storage
servers have to reconcile vouchers with the quota manage-
ment server, as discussed in the previous section.

Similar to digital cash, the protocol addresses this issue
in two ways: first, the quota management server catches
multiple usage across storage servers during reconciliation,
and second, each storage server protects against a client us-
ing a voucher twice at that server. The quota management
server detects cheating at reconciliation for an epoch by
checking if the total allocation for a user using vouchers of
the reconciled epoch is greater than the amount of storage
allocated using vouchers granted during that epoch. Since
each voucher has a unique serial number and the storage
server records the vouchers that have been sent to it dur-
ing the lastK epochs, a storage server can reject any I/O
request that that reuses a voucher. Then, during reconcil-
iation for a particular epoch, each storage server sends to
the quota server a list of all the vouchers it received in that
epoch, so that the quota server can cross-check for dupli-
cate usage by serial number. Storage servers can also send
used vouchers to the quota server earlier in order to catch
cheaters sooner. The cross-checking is not strictly neces-
sary for correctness; however, it allows the quota server to
determine which client (or clients) misbehaved, in addition
to the user. Cheaters can be caught sooner if the storage
servers send their voucher information earlier.

Once cheating has been detected, the system must de-
cide how to respond. Many responses are possible, includ-
ing notifying a human, disallowing further allocation, or
automatically compressing or removing redundancy.

Though cheating is possible in the system for a brief
amount of time, the amount of damage cheaters can do is
bounded. Since storage servers immediately detect voucher
reuse the amount is bounded by(Q−A)n whereQ−A is

the amount of quota the cheating user has left according
to the quota server, andn is the number of storage servers
it has permission to store data on. The amount of storage
it could consume is also bounded byKµ whereK is the
number of epochs storage servers have to reconcile vouch-
ers with the quota management servers, andµ is the maxi-
mum throughput available to the cheating user (this would
depend on the number of clients it could corrupt to cheat).
In practice the limit would be the minimum between these
two bounds. If the system is sensitive to cheatingK could
be adjusted to be very short in order to reduce the amount of
storage a client can over allocate with a fairly small effect
on performance. This trade-off is explored quantitatively
in the experimental results section. In order to slow a pos-
sible denial-of-service attack the length of an epoch could
be a function of the amount of storage space left, therefore
decreasing the amount of time it takes to detect a cheater;
however, the investigation of this idea is the topic of future
work.

The time in which it takes to detect cheaters is a perfor-
mance trade-off. If we shorten the time in which we catch
cheaters the load on the quota management server increases
since voucher requests and reconciliation will be more fre-
quent. Our experiments in the next section illustrate this
trade-off and show that by allowing the risk of temporary
cheating for a very brief period we get a significant perfor-
mance gain over a centralized method.

For our system we consider cheating to be a rare event.
Incentives not to cheat are very clear since cheating users
and clients willalwaysbe caught quickly, within at leastK
epochs.

Failures. When one of the system components fails, the
quota management system will always maintain its in-
tegrity. When storage servers fail, all information about
what was allocated on them disappears. The management
server will reliably learn of the failures and exclude those
storage servers from its computation of the total authorized
allocationA, which will make additional quota available
for clients to allocate (presumably for recovering the data
by rebuilding redundancy or restoring from backup). Once
all epochs are reconciled up to and including the one when
the failure occurred, the estimate will have decreased by
exactly the amount that had been used on the failed servers.

When a client fails, it may be holding unused vouchers.
The management server will learn what vouchers were ac-
tually used as it reconciles with storage servers. Any unre-
deemed vouchers the client held at the time it failed will
not be counted against the user after they expire.

When a quota server fails, the clients will not be able to
obtain more vouchers for users. During the failure clients
can still use the vouchers they already have and storage de-
vices will continue to work as normal. In practice the quota



server will be made highly reliable, preferably using a clus-
ter of servers. However, in the highly unlikely case that
the quota server has to be entirely rebuilt using only the
quota limits of the users, the quota server can run for the
first K epochs (whereK is the number of epochs storage
servers have to reconcile vouchers with the quota manage-
ment server) issuing only a very conservative number of
vouchers based on each reconciliation, and afterK epochs
the server will be completely up-to-date on the system-
wide consumption. In order to speed the quota server re-
covery epochs can be issued at a higher rate untilK epochs
have passed.

4. Experimental results

The voucher approach to maintaining quota is designed
to promote good scalability by minimizing the amount of
work that the shared management service should have to
do on behalf of clients, and so we have evaluated the per-
formance as various system scale factors increase. In addi-
tion, there are several design choices to be made, such as
the policy for how a client determines how large a voucher
to request. We have evaluated the performance, scalability
and design choices for the proposed system; the results are
presented in this section.

4.1. Simulation

We implemented a discrete event simulation to evalu-
ate the voucher approach. We chose to use simulation for
two reasons: first, we wanted to evaluate different options
quickly without the effort of implementing them in our full
storage system; and second, we wanted to evaluate perfor-
mance at scale points far larger than we could achieve with
our actual testbed cluster. All of the I/O operations a system
would normally perform, such as reads and metadata-only
requests, were run in the system in addition to writes and
voucher requests, in order to better model the overall im-
pact that quota enforcement would have on a real system.

The simulator used simple models of the client, net-
work, and storage server since the focus of the experiments
are on the scalability of the management service for quota
enforcement. The client cache was represented by a uni-
form probability of a cache hit or miss on I/O requests. The
network was modeled as a constant transfer time, without
contention. The storage server included a cache, modeled
as a uniform hit/miss probability, and a simple disk, with
fixed seek time and transfer rate, and queuing at the disk.

The simulator modeled the approaches for tracking
quota described in the previous section. For client voucher
request policies we compared thefixedandadaptivemeth-
ods, and for the quota management server we compared the
limiting andrevocationpolicies for issuing vouchers. The

0

1

2

3

4

5

6

7

0 1 2 3 4 5

Time run (minutes)

A
v
e
ra

g
e
 r

e
q
u
e
s
t 

la
te

n
c
y
 (

m
il
li
s
e
c
o
n
d
s
)

Figure 4. Average request latency over sim-
ulated time. The system stabilizes quickly in
the first minute.

simulation also included a centralized management service
for comparison, where all quota allocation decisions are
made at the management server cluster, and quota is as-
signed for each I/O operation. The management server
tracks quota in a centralized database, and the simulation
models the overhead for processing transactions. Clients
stripe data sequentially across storage servers in 4 MB
stripes.

For all tests, vouchers expired after two epochs and
epochs were 10 minutes long. Storage servers reconciled
allocation information with the management servers after
two epochs. Each test was run 10 times, and the 95% con-
fidence intervals are plotted in the graphs. Every test was
run for an hour in simulated time to allow the system to
stabilize, and measurements were recorded over the last
10 minutes of the run. This allowed vouchers to expire
and required reconciliation between the quota management
servers and the storage servers during this period. Figure 4
demonstrates that the system reaches equilibrium in less
than a minute in simulated time. In order to verify that our
simulation correctly modeled the management server bot-
tleneck we verified our results against an M/D/1 queuing
system. Clients sent requests exponentially (M) and the
quota management server responded deterministically (D).
For an M/D/1 queuing system the average time a request
waits in the queue at the server is:

λ
µ −λ

·
1

2µ
,

whereµ is the mean service rate andλ is mean interar-
rival rate. Figure 5 shows this theoretical time and sim-
ulated time under increasing load. The number of clients
and storage servers were scaled with the I/O load in order
to keep their queues empty, while the number of manage-
ment servers was held constant.
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Figure 5. Average queue time at the quota
management server for the simulated sys-
tem and for the system modeled as an M/D/1
queuing system.

4.2. Workloads

We evaluated the system using two different workloads.
The user workload provides a fairly steady flow of I/O
requests with low sharing, while thescientificworkload
is highly bursty and involves significant write sharing.
We implemented both workloads using synthetic workload
generators based on published measurements.

For our user workload, each user generated 10 IO re-
quests per second using the system call statistics taken from
a set of institutional machines with mounted home directo-
ries for a few hundred (student) users [18]. This workload
was heavily dominated bystats andreads, with only 2% of
the total load being writes. The average request size used
was 4 KB. Each user in this workload spread its work over
10% of the available clients. This workload can be scaled
by increasing the number of users.

Our scientific workload was modeled after a physics
application [22] where each node has similar responsibil-
ities and alternates between a computation phase and large
write-intensive phases, in which it writes out a checkpoint
of intermediate results. This workload modeled a single
user using all clients to run the application. This workload
scales by increasing the I/O rate for the user.

4.3. System overhead

The first evaluation answers the the main question:
which approach gives the lowest overall latency for user
I/O requests while scaling to handle heavy loads? Figures 6
and 7 show the main results.

These experiments vary the I/O load on the system, and
measure the resulting I/O request latency. The load varies

from a low baseline to the point where the system sat-
urated. To ensure that the bottleneck causing saturation
comes from the quota mechanism, the number of clients
and storage servers are scaled with the I/O load, while the
number of management servers is held constant.

Figure 6 shows the overall results for the user work-
load. Performance is dominated by ordinary file metadata
traffic, including retrieving file layout for both reads and
writes and checking authorization, and by communicating
with the storage server. Since most files in this workload
are small, most quota-related operations can be combined
with these metadata operations. As a result, both central-
ized and voucher quota management schemes impose less
than 0.2% overhead compared to no quota management,
while the system is below saturation. However it is im-
portant to note that when using the centralized method the
system saturates at around 1500 users (15000 I/Os per sec-
ond), while the system using no quota enforcement and the
voucher-based method saturate around 1600 users (16000
I/Os per second).

Figure 7 shows the results for the scientific workload.
This workload is bursty and involves large files, which
places more importance on the performance of quota man-
agement. At loads below saturation, the voucher approach
gives performance essentially identical to no quota enforce-
ment, while centralized quota management imposes about
8% overhead. More important, using the voucher approach
saturates at the same load as does no quota checking, while
the centralized approach saturates at about half the load.
One of the contributing factors is that the system using cen-
tralized quota tracking requires more quota-related messag-
ing than the system using vouchers because it must make
quota requests for every I/O. In addition, the centralized
management server takes longer to satisfy quota requests
since it must commit transactions to a centralized database.
Using the voucher approach very few extra messages must
be sent to request quota since clients cache vouchers, and
the management server only needs to update a very small
set of data for tracking quota.

4.4. Client adaptivity

For the voucher-based method to be effective clients
must request enough vouchers to satisfy some number of
future requests without requesting so many vouchers that
it hinders sharing of quota between clients. We compared
the adaptive and fixed policies discussed earlier for how
clients decide on the number of vouchers to request. Recall
that in the adaptive request policy the client tries to predict
the user’s allocation rate over some window of time using
a moving average in order to make quota requests only pe-
riodically. For the fixed request policy the client always
requests the same fixed amount of vouchers. We also com-
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the user workload, under an increasing user
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Figure 7. Average I/O request latency for the
scientific workload, under increasing I/Os
per second. The system cannot support
more than 5000 I/Os per second using 10
quota servers with or without quota enforce-
ment, and using the centralized method it
cannot support more than 1500 I/Os per sec-
ond.

pared these policies to anexpectedmethod in which the
client requested the average amount a user consumed over
a period of time based on the known rate and distribution
the user generated requests from, so it can be thought of as
what the adaptive request policy attempts to predict for this
set of experiments.

Figure 8 shows the number of withdrawal messages the
client must send to the management server that could not
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Figure 8. Total number of messages clients
make to the management server to request
vouchers under increasing load for the fixed
and adaptive client request policies.

be grouped with a metadata request. As in the previous ex-
periments, to ensure that the bottleneck causing saturation
came from the quota mechanism, the number of clients and
storage servers were scaled with the I/O load, while the
number of management servers were held constant. The
adaptive policy performs close to the expected measure-
ment that is set at the actual average request size for the
time window used, showing that the adaptive request pol-
icy predicts the expected usage well. For a real system
the adaptive policy is likely preferable since the exact con-
sumption rate of storage for each user per client is usually
unknown beforehand, and will probably vary over the life-
time of the system.

For the fixed request policy the performance overhead
of quota enforcement is heavily dependent on the fixed
amount chosen and the write load on the system, while the
adaptive policy depends on the size of the prediction win-
dow and the accuracy of the prediction. Figure 9 shows
that the adaptive policy is fairly insensitive to its window
size parameter for the workloads we tested. There are di-
minishing returns for larger window sizes as vouchers are
more likely to expire before a client has the need to spend
them when the prediction is not exact. The above results
were all for the user workload, but results for the scientific
workload exhibited the same behavior as the user workload
in these cases.

4.5. Running out of quota

Quota systems behave differently when a user has plenty
of quota left and when they are running low. In the first
case, the system just has to keep track of usage, while in
the second, it has to actually enforce the quota limit.
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In the voucher approach, the management server has to
determine how much of a client’s voucher request to grant
in order to maintain the invariant that authorized use is
bound by the user’s quota. The management server also
should ensure that one client does not starve another. Both
these goals are more difficult when there is little available
quota.

To compare the two policies we have proposed for the
management server, we simulated a scenario where one
user consumes all their quota. This scenario used the same
workload as in previous experiments, with 10 management
servers, 1000 users, and 100 clients (using adaptive re-
quests), and 100 storage servers. The quota for one user
is set so that it will run out after about 30 minutes. After
that user runs out of quota, it stops issuing writes that could
consume space and continues with all other operations. Re-
call that each user’s activity is spread over 10 clients. We
report the average I/O request latency taken at 30-second
intervals, with the statistics for the user that runs out of
quota separated from those for all other users.

Figure 10 shows the response when using the revocation
policy, where unused vouchers are revoked from clients
when a user needs more vouchers to spend at other clients.
The user that runs out of quota suffers a large increase in
latency during its final write requests. This occurs because
the last writes wait for vouchers to be revoked from other
clients, or time out. This is the worst possible case for the
revocation server, since all clients are trying to consume re-
sources steadily and so must all contend for the last bits of
quota.

Figure 11 shows the response obtained using the limit-
ing management server policy. This policy does not show
any noticeable performance difference as the user runs out
of quota. All the user’s clients run out of quota together
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Figure 11. Average I/O request latency sam-
pled every 30s for the user workload using
the limiting server method, where one user
runs out of quota after 30 minutes.The av-
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quest latency is averaged together.

gradually as their requests are tapered down by the man-
agement server.

Note that in both cases traffic from other users is not
much affected.
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vouchers.

4.6. Balanced deletes and writes

We expected the voucher approach to cause a notable
reduction in quota-related traffic between clients and man-
agement server when a client’s consumption is approxi-
mately balanced by the resources it frees, because the client
can use the vouchers it gets from storage servers when
deleting one file to allocate for another file. This may
happen in the case of a scientific workload that writes out
checkpoints, and after writing a checkpoint it deletes the
previous checkpoint to conserve storage. Figure 12 shows
that even when using the adaptive request policy on the
clients, the requests to the quota server are drastically re-
duced when consumption and deletion are balanced for
the scientific workload. The number of requests would be
even lower if the the load was not distributed across mul-
tiple clients since deletes and writes do not always happen
evenly on each client.

4.7. Granularity of quota enforcement

Our quota enforcement method requires several config-
uration parameters to determine the granularity of quota
tracking, the length of an epoch, the number of epochs a
voucher is valid for, and the number of epochs the storage
servers have to update the quota server. Figure 13 shows
that performance improves very slightly for longer epochs.
This is because vouchers can be requested in larger batches
since they can be cached at the clients longer, and reconcil-
iation doesn’t happen as frequently. Both of these factors
should reduce load on the quota server. Similar tests were
run for varying the number of epochs a voucher is valid for
and the number of epochs the storage servers have to up-
date the quota server. These showed no significant effect
on performance and have been omitted for space.
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Figure 13. Average I/O request latency for the
user workload using different epoch lengths.

4.8. User distribution

The more clients used by each user, the less effective
caching vouchers may become as the load is more dis-
tributed. Figure 14 demonstrates the effects of users dis-
tributing a fixed load across an increasing number of clients
for the user workload with 1,000 users and 100 clients. We
see less than a 0.5% increase in average latency as we in-
crease the number of clients each user is using from 0 to
100. By fixing the load of the user the voucher method be-
haves more similar to the centralized method as the num-
ber of clients increase since clients are less likely to make
enough requests per epoch for caching to be beneficial. If
the users were to increase their load on any of the clients
then caching at that client should become more effective as
long as there is enough quota to support the demand. An-
other effect of sharing is that when a user is low on quota
the more clients it uses, the more competition there is for
the last of the vouchers, leading to poorer performance as
well.

5. Related work

The voucher approach to quota management is obvi-
ously inspired by the extensive literature on digital cash
systems [16]. The voucher approach is considerably sim-
pler than those systems, however, because vouchers do not
provide anonymity. Vouchers only require that a storage
server can verify that they have not been forged or cor-
rupted.

Vouchers are also similar to capabilities. In par-
ticular, they are similar to the kinds of capabilities
used in Amoeba [13], which implemented capabilities
as cryptographically-protected sequences of bytes. This
model was taken up for the NASD [6] and T10 OSD [10]
object storage model, which added the notion of expiration.
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Figure 14. Average I/O request latency for the
user workload where the load is distributed
among an increasing number of clients.

One application of vouchers is the use of distributed
quota to control spam [21]; that system uses astampmech-
anism very similar to our vouchers, but lacks the reconcili-
ation necessary for a robust storage system.

Many file or storage systems implement quotas. They
can be divided into three classes: those that perform file
management in band with I/O request processing; those
that perform file management out of band but have file
management decide which resources are to be allocated;
and those where file management and resource consump-
tion are completely separated.

Most network-oriented file systems perform file man-
agement in band, including NFS [20] and CIFS [17].
AFS [9] would appear to have a more complex quota man-
agement scheme, but in reality, quota management is done
on a volume group granularity, which allows quotas to be
managed with the storage allocation.

Several more recent file systems allow clients to perform
I/O directly to storage devices, while dealing with file man-
agement out of band. GPFS [19] and SanFS [12] are two
examples of file systems that perform block allocation in
the file management path. GPFS, being optimized for very
large clusters, uses a quota management system that resem-
bles our vouchers: clients request quota from a server, and
independently update their quota information locally. The
GPFS system lacks epochs and reconciliation, and can not
correctly handle either failures or cheating of clients, with-
out the manual use of repair tools.

Object-based file systems derived from the NASD [6]
model, including the Panasas [14] file system, determine
how much resource on which OSD a client should be able
to use. Although the clients can make requests directly to
the storage devices, quota enforcement is still done at the

storage manager. Capabilities are for specific devices and
are created with offset and size limitations to restrict the
storage clients from exceeding their quotas.

Peer-to-Peer storage systems have much more difficult
problem because they are not able to manage quota and al-
location together. PAST [4], for example, uses smart cards
to manage storage quotas. These cards are trusted by the
peer storage devices to reliably keep track of the allocations
and quotas of their owners. As storage is used the cards will
increment the allocated storage. The cards are also able to
process reclaim receipts that will decrement the allocated
storage. The use of smart cards in PAST binds the stor-
age user to a single client machine. Such an architecture is
not well suited for storage users that use multiple machines
concurrently.

Samsara [3] and SHARP [5] provide a way to ensure
that users of a peer-to-peer system contribute as much re-
sources as they use. Both systems use cryptographic signa-
ture chains to enable peers that contribute storage to use
storage on other peers. In peer-to-peer systems this is
roughly analogous to quota enforcement; however, in sys-
tems with trusted servers quota enforcement can be done in
a simpler and more efficient manner, and catch cheaters in
a guaranteed fixed time rather than a probabilistic time.

Another peer-to-peer system [15] focuses on fair sharing
by performing random audits of resource usage. Each peer
lists the storage available, the storage it is using, and the
storage used by other peers. The information is structured
in such a way that a peer can check claims of storage usage
for random peers that it is using storage from or providing
storage to. If lying is detected, appropriate action can be
used to eject the peer from the system. For our quota en-
forcement technique the risk of being caught cheating is not
dependent on random checking, a cheater will always be
caught within a bounded period of time. The incentive not
to cheat is clear as cheaters will always be caught quickly
at which time some corrective action will be taken.

6. Conclusions

We have presented a system for scalable tracking and
enforcing quota in distributed storage systems. This sys-
tem minimizes the load on a central management server
by issuing clientsvouchersthat the clients can use to con-
sume storage on whichever storage server is appropriate.
The vouchers can be used any time after issued until they
expire, thus trading temporal granularity for performance.
The storage servers periodically reconcile actual usage with
the management server in order to verify that all clients
have behaved properly. Misbehaving clients are always
caught within a short period of time, and the amount of
damage they can do is bounded. In the future, we can en-
vision generalizing this quota mechanisms to control usage



of other storage QoS metrics, such as bandwidth or server
utilization.

The simulation we have conducted indicates that this ap-
proach will work well. For workloads characterized by low
I/O rates per user and small files, in which ordinary meta-
data operations like checking file permissions and getting
file layout dominate, the voucher approach gives perfor-
mance essentially as good as not checking quota at all. In
a workload with larger files, there are more I/O requests
for each metadata operation and so the difference between
a centralized quota system and the voucher approach is
more pronounced. For one class of workload, where there
a client frees resource at about the same rate that it con-
sumes, the client can use the “refund” vouchers it gets for
its allocations and thus needs to get new vouchers from the
management server only rarely.

There are several design options, and this study explored
a few of them. The storage client has a policy for when it
will request vouchers, and how much it will request. We
found that an adaptive policy, which uses a moving average
of recent consumption to predict near future consumption,
works well and is insensitive to a broad range of moving
average windows. In the future we intend to look at other
ways to predict near future consumption, especially ways
that can react quickly when scientific applications finish an
I/O phase.

The management server also has a policy for how much
of clients’ requests to grant. We found that the revocation
policy induces a large burst of traffic when a user runs out
of quota, while the limiting policy produced a smoother
result. Finding policies that predict changes to the degree
of sharing are future work.
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