
Emulating a Shingled Write Disk

Rekha Pitchumani1, Andy Hospodor1, Ahmed Amer2, Yangwook Kang1, Ethan L. Miller1, and Darrell D. E. Long1

1Storage Systems Research Center, University of California, Santa Cruz, CA
2Santa Clara University, Santa Clara, CA

Abstract—Shingled Magnetic Recording technology is ex-
pected to play a major role in the next generation of hard
disk drives. But it introduces some unique challenges to system
software researchers and prototype hardware is not readily
available for the broader research community. It is crucial to
work on system software in parallel to hardware manufacturing,
to ensure successful and effective adoption of this technology.

In this work, we present a novel Shingled Write Disk (SWD)
emulator that uses a hard disk utilizing traditional Perpendicular
Magnetic Recording (PMR) and emulates a Shingled Write Disk
on top of it. We implemented the emulator as a pseudo block
device driver and evaluated the performance overhead incurred
by employing the emulator. The emulator has a slight overhead
which is only measurable during pure sequential reads and
writes. The moment disk head movement comes into picture,
due to any random access, the emulator overhead becomes so
insignificant as to become immeasurable.

I. INTRODUCTION

Any further significant improvements to the capacity of
hard disk drives demands some major changes to the currently
employed techniques, as they are reaching their limitations
imposed by the laws of physics. Of the new technologies being
explored, Shingled Magnetic Recording (SMR) promises an
areal density increase of about 2.3x [13], and is particularly
appealing as it requires minimal physical changes to the
manufacturing process. A disk employing SMR technology, a
Shingled Write Disk (SWD), shingles (layers) newly written
tracks on top of preceding tracks, and hence new writes destroy
old data on any such previously written shingles that are
overwritten. This forces the SWD to be a largely sequential
write device, but it remains an unrestricted random access
device when dealing with read operations. Without careful
management of the data layout on disk, random writes are
destructive and so simple in-place block updates are no longer
possible. Although it is possible to treat a SWD like a virtual
tape (albeit with better random read performance), exploring
its potential to replace Hard Disk Drives in their traditional
roles is essential and is the topic of ongoing research. To
enable such efforts, we therefore present a novel shingled write
disk emulator that captures the key functional characteristics
of such devices, while offering the flexibility to easily adjust
drive design parameters.

Recent research [1], [4], [5] has explored the design issues
in a shingled write disk system and proposed solutions ranging
from data layout management to system software changes. But
further development and assessment of the proposed solutions
are hindered by both the limited availability of prototype

devices, and the relative difficulty of physically adjusting
prototype device parameters. In this work, we aim to solve this
problem by emulating SWDs atop existing hard disk drives.

Hard disk drive manufactures are already producing shin-
gled write drive prototypes, but the technology is not yet ready
to enter production, and prototypes are not readily available
for the broader research community. Even when the prototypes
are ready to be distributed to researchers, it is not easy to alter
the disk parameters and reconfigure new prototypes as desired
without continually resorting to the manufacturer. But with our
emulator, altering drive parameters is very simple, which is
highly desirable for both researchers and disk manufacturers.
Shingled Disks might not replace traditional hard disks for
applications demanding good random write performance (like
databases), but with appropriate remapping and firmware, they
may be highly suitable for the wide array of applications that
demand increased capacity at ever lower costs (e.g., archival
systems, data logging, referential databases and data ware-
houses). We believe the introduction of SWDs will motivate
research resulting in new hybrid storage architectures, and that
offering a SWD emulator would be of great benefit to such
research efforts.

The basic approach behind our emulator is to mimic the
effect of individual writes on multiple tracks, maintaining in-
formation about the affected tracks and using this information
when responding to subsequent read operations. Producing
realistic behavior from the drive requires some prior knowl-
edge about the underlying disk’s physical geometry. This is
specifically to tell us to which track a write is destined, and
thereby to determine the subsequent tracks and sectors affected
by that operation. We make use of the state of the art in disk
performance profiling to shed light on hard disk drive internals
and this information is used to configure our emulator for a
specific disk.

We have implemented a pseudo device driver in the linux
kernel to work in the block layer and perform the above
operations. We used a single platter 160GB Seagate SATA
drive as a test drive to create a virtual shingled block device
using our emulator driver. This shingled block device was
evaluated to measure the overhead incurred by the emulator,
and it was determined that the emulator overhead is negligible
and the shingled block device’s performance is in line with the
underlying disk. This shows that the emulated device can be
used not just for functional experiments (to verify and validate
SWD system software solutions), but can also be used for



performance comparisons reliably, as it does not mask the
physical behavior of the underlying disk.

Our main contribution is a novel solution that can be used
to test shingled disk management schemes, and shingled disk
layouts and parameters, atop a real disk. Since the underlying
medium and the read and write mechanics of a shingled write
disk is expected to be very similar to existing hard disk drives,
the read/write performance measurements on our emulated
disk can serve as a good SWD performance indicator.

II. BACKGROUND

Magnetic data recording technology is fast-approaching the
density limit imposed by the super-paramagnetic effect for
perpendicular recording. Current drives store 400 GB/in2, the
current limit is estimated to be about 1 Tb/in2 [12]. While
shingled write disks [9], [13], [6] are not the only technology
aimed at enabling drives that exceed this limit, it differs from
competing approaches by offering an elegant solution that
does not require any significant physical changes to the drive
mechanics, or to the manufacturing processes and materials
used for the disk drives. However, shingled write disks intro-
duce interesting new challenges, as they result in functional
differences when compared to existing drives, thanks to the
introduction of potentially destructive writes when data is
updated.

The elegant solution offered by shingled disks is to use
a write head with a stronger, but asymmetric, magnetic field.
This approach is made possible by the fact that writes require a
much stronger magnetic field than do reads. Shingled writing
leverages this property by overlapping the currently written
track with the previous track, leaving only a relatively small
strip of the previous write track untouched. The remain-
ing track is therefore narrower than when it was originally
written, but remains readable. In this manner, tracks are
ultimately placed closer together, resulting in the capacity
gain. Achieving further gains in magnetic hard drives will
require a combination of this basic shingled writing tech-
nology, and what is known as Two-Dimensional Magnetic
Recording (TDMR) [11] technology. In this work we focus on
emulating the behavior of basic shingled magnetic recording.
Such disks would allow read operations to be performed
randomly, but writing tracks must now be done sequentially
as long as there is a chance of overwriting subsequent tracks.
The number of tracks affected by such a write, k tracks, is
a design parameter but is expected to be typically 4–8. This
demands very careful interaction on the part of the system
software, or the implementation of firmware that masks this
risk through remapping data (as proposed by our prior work
and Casutto et al. [2], [4]).

Disk data density improvements will eventually be limited
by the superparamagnetic effect, which creates a trade-off
between the media signal-to-noise ratio, the writeability of
the media by a narrow track head, and the thermal stability
of the media; Sann et al. call this the media trilemma [11].
While various approaches to this problem have been proposed;

Track
Width

Main Pole

Track
(N-2) Track

(N-1) Track
(N)

Trailing Shield

Side 
Shield

Direction
 of write

Fig. 1: Corner write head for shingled writes [2].

shingled writing offers perhaps the most elegant solution.
Rather than radically altering the makeup of the magnetic layer
(as is done by technologies that pattern the media surface,
or manipulate it by localized heating using lasers). Shingled
writing does this by using a write head that generates an
asymmetric, wider, and much stronger field that fringes in one
lateral direction, but is shielded in the other direction. Figure 1
shows a larger head writing to track n, as used by Greaves
et al. in their simulations [8]. Shingled writing overlaps tracks
written sequentially, creating effectively narrower tracks after
the once-wider leading track has been partially overwritten,
and is thereby expected to increase storage densities by a factor
of at least 2.5 [13] to 3 [8] times the current theoretical limit
of 1 Tb/in2 with current magnetic recording technology.

III. EMULATION

Our goal here is to make a faithful Shingled Write Disk
emulator, one that closely mimics the SWD’s functional be-
havior and can be used to verify and validate proposed disk
management schemes. Storage simulation has been widely
used by systems researchers as it aids evaluation of proposed
storage systems architectures and systems software. Examples
of such successful simulation systems include DiskSim [3],
NandSim and DRAMSim [14]. But in our work, we seek to
emulate the behavior of a SWD, and allow experimentation
using existing physical drives.

Simulation systems have taken special care to report real-
istic performance characteristics of systems by studying and
simulating the physical timing characteristic of the concerned
storage systems. But the big issue with SWDs is not its phys-
ical timing but rather it’s the functional behavioral difference.
Hence, we leave the physics of the underlying mechanics to
a real physical device, thereby emulating a SWD on top of a
real hard disk drive. In this section, we detail how to emulate
a SWD on a traditional hard disk.

A. Track Shingling

The difference between a SMR hard disk and a PMR hard
disk is track shingling. Thus, any modern hard disk can be
made to look like a SMR disk by viewing track shingling as



(a) SMR drive (b) Emulating Track Shingling on a PMR drive
using a Map Table

Fig. 2: Original and Emulated Track Shingling. Shingling results in wider
write tracks and narrower read tracks.

using multiple (k, where k is the number of tracks affected
by shingling) tracks for writing and single track for reading.
Figure 2a illustrates track shingling in a SWD with k = 4.

Figure 2b illustrates how to emulate multiple track writes
and single track reads in a modern disk drive using a map table.
A write to a track is written to only one track, but the mapping
table is modified to indicate that subsequent (k - 1) tracks were
written with data from the track that was written to. Every
read request first checks the map table and is redirected to a
different track if required.

For example, in Figure 2b a write to track 1 is written to
track 1 and track 2 is marked as overwritten by track 1 (here,
k is 2). Every read operation first checks the map table to
determine whether the track was overwritten earlier.

B. Sector Level Mapping

Disk Reads and Writes do not happen at track level, they
happen at sector level. Hence, the mapping also has to be
performed for individual sectors and has to take the underlying
hard disk’s physical geometry into account.

1) Hard Disk Physical Geometry: As hard disks have
become more complex, they hide detail behind Logical Block
Addressing. Today, host operating systems see data written to
a disk as being written to consecutive sectors and address the
sectors by their Logical Block Addresses (LBA) and the disk
takes care of mapping the LBA to the sector’s physical location
on the disk. Hence, determining in which track a sector with
a given LBA resides and determining the LBAs of the sectors
that lie in the subsequent tracks (and will be affected by a
shingled write) requires an understanding of the underlying
disk’s true physical geometry.

Modern hard disk drives have a complex physical ge-
ometry that is tailored to individual drives. The geometry
of a particular drive is determined by a combination of
the disk surface characteristics and the drive’s write head
characteristics. Hence the geometry of two disks from the same
manufacturer with the same specification can differ [10]. Even

the disk’s controller learns the drive’s geometry during the
final manufacturing process, meaning that the final geometry
is established post-production.

Disk drive physical geometry can be extracted by leveraging
existing research [7]. Obtaining accurate values is neither easy
nor necessary. It is a known fact that when the HDD firmware
detects a physical sector as not usable anymore, it remaps the
LBA of the sector to one of the sectors in its spare locations.
We are aware that even if the extracted LBA mapping is very
accurate, it is subject to changes due to the above remapping.
For our purposes, approximation of the physical geometry was
sufficient and hence, ignoring the intended sector remapping
is justifiable, as we are focusing on the mapping indicated by
the disks observed performance when carefully benchmarked.
Hence, we parameterize the disk drive geometry and fit the
extracted values into the following parameters:

• Number of Heads The number of heads gives the
number of writable surfaces in a disk drive and can be
obtained from the drive’s specification.

• Sector Layout Mechanism Different hard disk man-
ufacturers use different sector layout mechanisms [7].
Figure 3a illustrates the most commonly used schemes,
surface serpentine, cylinder serpentine and hybrid serpen-
tine schemes. A complex sector layout mechanism can
make the mapping scheme quite complicated.

• Number of Zones A Zone is a set of adjacent tracks that
have the same number of sectors per track. For example,
in Figure 3b there are 4 zones.

• Zone Size The Zone Size is measured in terms of number
of tracks. In Figure 3b, there are two tracks in every zone
and hence the zone size is 2 for all 4 zones.

• Track Size per Zone Denotes the number of sectors per
track in a zone. In Figure 3b, the outermost zone has 20
sectors per track and the zone next to it has 16 tracks per
track.

• Track Skew The start LBA of a track is placed at an
angle past the start LBA of the previous track. This angle
is given by the track skew.

2) Write request handling: On a Write, the Logical Block
Addresses of the sectors that will be overwritten by the current
Write has to be determined. Once determined, the overwritten
sector information has to be stored in a sector level map table.
A simple Hash Table where every entry is a tuple of the
form 〈originalLBA,mappedLBA〉 would be sufficient. On a
Write, new entries must be added for every overwritten sector,
mapping it to the LBA of the current sector being written to.
Further, if there exists an entry for the LBA of the current
sector, it has to be deleted from the hash table.

Determining Overwritten Sectors Figure 4 illustrates the
parameters required to determine overwritten sectors. To make
it easier to understand, imagine a line from the disk OD to
ID starting at the lowest LBA of the first track on OD. It is
known that the sector boundary of subsequent tracks may not
align with this imaginary line. But lets take the first sector
after this line to be the start and lay the circular track out in



(a) Sector Layout Mechanisms. (b) Surface Layout is determined by Zoning and Track
Skew.

Fig. 3: Simplified View of Hard Disk Physical Geometry. Modern hard disk drive’s geometry is determined post-production. Hence, the geometry of two
disks from the same manufacturer with the same specification can differ.

Fig. 4: Emulating Sector Overwrite. Determining the LBA of the sectors
being overwritten by a Write W requires physical geometry information.

a horizontal manner as shown in Figure 4.
Let TN(LBA) be the track number of the track where the

sector with the given LBA resides. In the figure, i to i+4 are
the track numbers of the tracks shown and TN(LBA) for any
LBA residing in i will be i. SA(Track) denotes the starting
address of (or the lowest LBA in) the given Track.

As seen in Figure 4, the starting addresses do not align with
our imaginary line because of Track Skew and are placed at an
angular offset and after a period realigns with our imaginary
line. In the figure, this Skew period is 4 tracks. Skew(Track)
gives the Skew for the Track in terms of number of sectors.
Tracks with the same number of sectors per track is grouped
into a Zone. The figure shows tracks from two Zones, Zn and
Zn+1. Z(Track) gives the Zone number of a given Track and
TS(Zn) is the Track Size, the number of sectors per track for
the Zone Zn.

The values obtained from TN, SA, Z, TS, and Skew are all
determined based on the extracted disk geometry information.
Hence, the accuracy of the calculations are heavily dependent
on the accuracy of extracted disk geometry. Determining the
overwritten sectors on a write is a two step process. The first
step is determining the absolute position ABS POS of the
Write W from our imaginary line. The next step is finding the
LBA at ABS POS for subsequent tracks.

First step: Let LBAW be the Logical Block Address of the

Write W and t = TN(LBAW ). Then,

POS = LBAW − SA(t) + Skew(t)

If POS > TS(Z(t)), then

ABS POS = POS − TS(Z(t))

Else,
ABS POS = POS

Second step: This step gives how to determine the LBA
of the affected sectors at Track t + j. If Skew(t + j) <
ABS POS, then

LBA = SA(t+ j) + (ABS POS − Skew(t+ j))

Else,

LBA = SA(t+j)+(TS(Z(t+j))−Skew(t+j))+ABS POS

If the affected track falls in the next zone, like track i+ 4
in the figure, then ABS POS is first adjusted as below.

ABS POS = (ABS POS/TS(Z(t))) ∗ TS(Z(t+ j))

3) Read request handling: Read requests have to be
checked to determine if the sectors being read would have
been (for an SWD) overwritten by a previous write. In other
words, the Hash Table has to be checked for the presence
of sector entries for all sectors being read. If there exists no
entry, then the read is straightforward - forward the read to
the underlying real disk and proceed with the read as is done
normally.

But, reads could get a little complicated if tracks are not
written sequentially. For example, in Figure 5, a write to track
1 overwrites tracks 2 and 3, and a write to track 2 overwrites
track 3. Lets consider three writes happening one after another,
Writes 1, 2, and 3 in the figure. After all 3 writes, Track 3
has segments pointing to other tracks.

There are three choices as to what to do when an over-
written sector, i.e., a sector that was overwritten by write to a
different sector, is read back. As such, the emulated drive can



Fig. 5: Random writes may result in data corruption. Read (4) after random
writes (1, 2, 3) may return corrupted data or error.

operate in three modes, depending on the user’s requirements,
and the modes determine how the emulated drive behaves.

Data Centric In this mode, the overwritten data (as per
the mapping information) will be retrieved, thereby emulating
the behavior of the Shingled Write Disk with no overwrite
error checking in-place. For example, in the above scenario,
the Read request, happening 4th in sequence, is split into four
requests, each sent to their track and the read information is
returned back. Read splits do not happen if tracks are written
sequentially.

Performance Centric If retrieving the overwritten data
back does not matter, then the emulator performance can
be improved further by keeping it simple and maintaining a
bitmap structure to indicate overwrites. In that case, reads can
be proceeded as usual, but the data buffer containing the data
from overwritten sectors is to be filled with garbage data. In
other words, invalid data is not retrieved if known to be invalid
a priori.

Development Centric Since a primary purpose of emulat-
ing the shingled disk is to aid system software researchers and
developers, a mode that returns an error when an overwritten
sector is read back will be beneficial. This mode can be
combined with either of the above two modes as needed. And
it is up to the upper-level layers to determine whether the
overwrite was intentional or unintentional.

IV. IMPLEMENTATION

Our requirement can be best fulfilled by a pseudo device
driver in the kernel that receives block read and write requests
and performs the mapping as described above. We use the
Device Mapper infrastructure available in the Linux 2.6 kernel,
a generic framework for constructing new block devices and
mapping them to existing block devices.

We implemented dm-shingle, a bio-based device-mapper
target module. Linux provides a dmsetup utility to manage
the logical devices that use the device-mapper driver. Once our
dm-shingle driver module is loaded, dmsetup can be used to
create a logical shingled block device with desired parameters
on top of the block device representing the hard disk. The
resulting I/O stack can be seen in Figure 6.

The mapping table is implemented as a sector-level hash
table as described earlier. The number of buckets in the hash
table can be chosen during device setup and multiple entries in
a bucket are linked as a list. The hash function is a simple LBA

Fig. 6: Emulator in I/O Stack. We implemented the Emulator as a pseudo
block device driver in the Linux kernel.

mod number of buckets scheme and the number of buckets
should be a power of two for faster hash function execution.
This ensures even distribution of entries across buckets when
writes are mostly sequential.

The emulator driver allows for some customization of the
emulated SWD and provides flexibility in deciding suitable
parameters. The parameters that are customizable are the num-
ber of tracks overwritten by the shingled write (k), extracted
underlying disk geometry and the hash table size. The various
read behaviors detailed above has not been implemented and
can be another such parameter. The read behavior that has
been currently implemented and used for the evaluations in
the next section is the Data Centric behavior.

Since the emulator is implemented in the block layer,
adding new commands is also straightforward. New commands
can be easily serviced by implementing new ioctls. Since the
Shingled Write Disks are still under prototype development
and the best interface for it is not yet known, this feature
becomes crucial. Researchers can have the flexibility to work
on new command sets and interfaces best suited for SWDs.

V. EVALUATION

The experiments for the evaluation were run in a host
with a dual-core 3.20 GHz Intel(R) Core(TM) i5 processor
with hyper-threading and a 8GB RAM. To keep it relatively
simple, the test disk drive we used was a 160GB single platter
Seagate SATA drive. We chose a single platter disk to avoid
a complicated sector layout mapping.

We have used Disk Geometry Analyzer (DIG) to perform
geometry extraction on our test drive and is explained in detail
below. We used fio to generate desired IO patterns, to test and
verify our emulator. The results shown in this section were
measured using fio.

All tests were run on block devices using Direct IO,
bypassing the kernel buffering, because we did not want the
buffering to interfere with our mapping. For example, a read
call to sectors overwritten by an earlier write, if serviced by



(a) Zone Determination. (b) Track Skew - Entire Disk. (c) Track Skew - Smaller Scale.

Fig. 7: Geometry Extraction. Physical Geometry of a 160 GB single platter test disk extracted using Disk Geometry Analyzer (DIG).

the kernel block buffers, will give a different result than if
read from the disk. But it has to be noted that this is a
problem that will be faced even when using a real Shingled
Write Disk. A shingled disk management scheme, that is not
absolutely sure that it will not read sectors that was overwritten
unintentionally, cannot use buffering as-is.

A. Geometry Extraction

We used Disk Geometry Analyzer (DIG), a disk charac-
terization tool to extract the disk geometry of our test drive.
DIG determines the number of tracks and the size of each
track in terms of number of sectors. Figure 7a shows a plot of
the DIG output. Even after ignoring some of the variations in
the measured result as noise, the results only show a zoning
pattern and do not give clear zoning information, as expected.

Krevat et.al. [10] call this behavior as adaptive zoning,
where track sizes are determined by the capabilities of disk
surfaces and head combination post-production. Since we
are only modeling the Shingled Disk behavior, approximate
zoning is sufficient and the desired level of approximation
can be chosen. Figure 7a shows how we can fit a curve to
the measured values and obtain zoning information based on
that. One is free to choose the number of zones and hence
the level of approximation they desire to have, by varying the
curve parameters or the number of zones.

DIG measures the time taken to reach the first sector of
individual tracks from the first sector of the outermost track,
to calculate Skew as explained in [7]. Figure 7b shows the
plot of this result for the entire disk and 7c shows the plot at
a smaller scale for 100 tracks. Once again there is some noise
in the results obtained, but a pattern can be observed.

Access time gradually increases with track number and then
drops significantly after a certain number of tracks. If this
number of tracks is n tracks, then track skew corresponds
to an angle of 2π/n. For our test disk, this period alternates
between 6 and 7 tracks.

B. Verification

We used fio to run Write-focused workloads on the emu-
lated SWD and then to read the written data back and perform

Fig. 8: Write Verification. As expected, random writes on the emulated SWD
destroy data, while sequential and banded writes don’t.

MD5 checksum verification on them. We wrote 64MB of data
in each case and hence totally 16,384 4KB blocks were written
in each case. Figure 8 shows the result of the verification.

As expected, sequential write does not result in any data
loss. Next, we verified random writes in 3 cases, one where
the random write is performed in a total space 100GB, another
in a space of 10GB and the last in a space of 1GB. As
expected, all three random writes result in some blocks being
overwritten and the number of blocks overwritten grows as
the space decreases.

Finally, we performed banded write, where tracks are
grouped together into bands, with some tracks serving as
inter-band gap between them. The bands are written to in a
log manner. As expected, the results show that there are no
overwritten blocks in case of banded write. Banding requires
some geometry information, and careful evaluation at the end
of bands to ensure they do not affect subsequent bands is
essential.

C. Performance Evaluation

The goal of the evaluations presented in this section is
to measure the performance overhead incurred by the SWD
emulator. We have used fio utility to generate the desired IO
workload and measured the performance. For all scenarios
below, the tests were run multiple (5-10) times and the average



Fig. 9: Emulator Performance Overhead. A slight overhead is visible during
Sequential IO, but becomes negligible as disk head movement comes into
picture.

Fig. 10: The number of tracks overwritten by a shingled write does not affect
reads, but adds a slight overhead for every overwritten track during writes.

aggregate bandwidth reported by fio is reported here.
As mentioned earlier, all IOs are Direct IOs without kernel

buffering and the IO bandwidth of the virtual shingled block
device is compared to that of the underlying raw block device.
A virtual shingled block device was created to mimic a
Shingled Disk that overwrites 3 tracks on a write and the
IO block size was 4K. Figure 9 shows the performance of
sequential and random reads and writes.

The emulator incurs a slight overhead, but it is observed
only during pure sequential reads and writes, as seen in the
figure. The bandwidth obtained from the virtual device is very
similar to that of the underlying block device in case of random
reads and random writes.

To understand the overhead incurred during sequential reads
and writes better, we varied the number of tracks overwritten
by the shingled device and measured the sequential read and
write bandwidth. Figure 10 gives the result of the above
experiment. The first subplot shows the raw underlying disk
bandwidth and the second bigger subplot shows the bandwidth
of the emulated SWD as the number of tracks overwritten
increases.

Fig. 11: Banded Write Performance. Emulator overhead is negligible and
the banded write performance can be improved by increasing the IO block
size.

The emulated SWD when the number of tracks overwritten
is 1 is behaviorally the same as the regular disk. Hence,
the difference in bandwidth of these two is pure overhead,
irrelevant of how the emulated device is being used. The
pure overhead for reads is higher than that of writes, but it
is not affected by varying the number of tracks overwritten by
shingled write, whereas write bandwidth decreases as number
of tracks overwritten increases.

The above behavior is expected, because for reads every
sector has to be verified against the hash table to check whether
it was overwritten by a previous write, which explains the
higher overhead. Lower the number of hash table buckets,
higher the chances of collision and the decrease in bandwidth,
as the number of entries in the hash table grows. Having a hash
table with high number of buckets reduces collision, and hence
the reads are unaffected by the number of tracks overwritten
in our results.

During writes, the emulator checks the hash table for every
sector being written to, in order to delete the entries if present.
This explains the pure overhead for writes. Further, the work
to be done increases as the number of tracks overwritten by
a write increases. Hence, each additional overwritten track
incurs roughly 2% overhead.

We believe some form of banded write is the most likely
write scenario to occur with a Shingled Write Disk and hence
evaluate the emulated SWD performance overhead for banded
writes. We divided the disk into 16 bands and wrote randomly
to all 16 bands. In each band, the write is sequential, and
hence, we varied the block size of the writes from 4KB to
1MB, and the result can be seen in Figure 11.

Figure 11 shows three things. First, the emulator overhead
becomes negligible with banded write. Hence, our emulated
SWD can be a really good performance indicator, since writes
in a real SWD are most likely to follow some form of similar
banded writing. Second, emulator performance is unaffected
by IO block size. Third, banded write performance can be
improved greatly if write block size is increased. There is an



Fig. 12: Emulator Performance is not impacted by the Number of Bands.

anomaly where at the 128K block size, the emulated SWD
performs better than the real disk. We believe this is due to
buffer size mismatches in the regular block IO path in the
Linux kernel.

In the final test, we check the impact of the number of bands
on performance. We chose a 32KB block size and divided
the test disk into fixed sized bands. The data to be written
was split across the bands and written to the bands randomly.
Figure 12 shows the number of bands does not affect the
emulator performance. Further, as expected, the bandwidth
decreases as the data gets spread across many bands. But
after 16 bands, the number of bands does not affect write
performance.

VI. CONCLUSION

Shingled Magnetic Recording technology can increase the
areal density and hence the storage capacity of hard disks
at least two-fold. Its successful adaption may be the key to
meeting the ever-growing storage demands. Since SMR drive
changes the way a disk behaves from the host operating system
perspective significantly, it requires system software support,
or complex firmware, to aid its integration into existing storage
systems. To further research in this area, and provide access
to realistic SWD behavior, we have implemented a novel
emulator that can be easily deployed as a linux driver atop
existing physical disks.

We have presented a novel method to readily emulate
SWDs on any existing hard disk. We also implemented the
proposed method as a pseudo device driver and evaluated
the overhead incurred. We have shown that there is a slight
overhead in the cases of pure sequential reads and writes, but
the overhead incurred is so negligible as to be imperceptible in
cases of random IO and banded IO (the latter being the most
likely configuration for future SWDs). We will be making our
emulator available for use by the research community.

Our emulation approach provides us a unique opportunity
to do a little more than Shingling. Since the best interface or
command sets for a Shingled Write Disk are as-yet unknown,

the emulator can be used to experiment with those as well. A
few of the interesting ways in which this can be used include:

• Report an Overwrite error when overwritten sectors are
read back.

• Add additional Banding commands by means of ioctls
and present a Banded device to the upper layers.

• Add commands to report the disk’s geometry information
to the upper layers, say, to perform dynamic banding
as desired, or to implement a simple read-modify-write
mechanism.

REFERENCES

[1] AMER, A., HOLLIDAY, J., LONG, D. D. E., MILLER, E. L., PARIS,
J.-F., AND THOMAS SCHWARZ, S. Data management and layout
for shingled magnetic recording. In IEEE Transactions on Magnetics
(2011).

[2] AMER, A., LONG, D. D. E., MILLER, E. L., PARIS, J.-F., AND
SCHWARZ, T. Design issues for a shingled write disk system. In 26th
IEEE Symposium on Mass Storage Systems and Technology (2010).

[3] BUSY, J. S., SCHINDLER, J., SCHLOSSER, S. W., GANGER, G., AND
CONTRIBUTORS. The disksim simulation environment version 4.0
reference manual. Tech. Rep. CMU-PDL-08-101, Carnegie Mellon
University, May 2008.

[4] CASSUTO, Y., SANVIDO, M. A., GUYOT, C., HALL, D. R., AND
BANDIC, Z. Z. Indirection systems for shingled-recording disk drives.
In Proceedings of the 26th IEEE Conference on Mass Storage Systems
and Technologies (May 2010).

[5] GIBSON, G., AND GANGER, G. Principles of operation for shingled disk
devices. Tech. Rep. CMU-PDL-11-107, Carnegie Mellon University,
2011.

[6] GIBSON, G., AND POLTE, M. Directions for shingled-write and two-
dimensional magnetic recording system architectures: Synergies with
solid-state disks. Tech. Rep. CMU-PDL-09-014, Carnegie Mellon
University, May 2009.

[7] GIM, J., AND WON, Y. Extract and Infer Quickly: Obtaining Sector
Geometry of Modern Hard Disk Drives. ACM Transactions on Storage
6, 2 (2010).

[8] GREAVES, S., KANAI, Y., AND MURAOKA, H. Shingled recording for
2–3 Tbit/in2. IEEE Transactions on Magnetics 45, 10 (Oct. 2009),
3823–3829.

[9] KASIRAJ, P., NEW, R., DE SOUZA, J., AND WILLIAMS, M. System
and method for writing data to dedicated bands of a hard disk drive.
United States Patent 7490212.

[10] KREVAT, E., TUCEK, J., AND GANGER, G. R. Disks are like
snowflakes: No two are alike. In 13th Workshop on Hot Topics in
Operating Systems (May 2011).

[11] SANN, C. K., RADHAKRISHNAN, R., EASON, K., ELIDRISSI, R.,
MILES, J. M., VASIC, B., AND KRISHNAN, A. R. Channel models
and detectors for two-dimensional magnetic recording (TDMR). IEEE
Transactions on Magnetics 46, 3 (Mar. 2010), 804–811.

[12] SHIROISHI, Y., FUKUDA, K., TAGAWA, I., TAKENOIRI, S., TANAKA,
H., AND YOSHIKAWA, N. Future options for HDD storage. IEEE
Transactions on Magnetics 45, 10 (Oct. 2009).

[13] TAGAWA, I., AND WILLIAMS, M. High density data-storage using
shingle-write. In Proceedings of the IEEE International Magnetics
Conference (2009).

[14] WANG, D., GANESH, B., TUAYCHAROEN, N., BAYNES, K., JALEEL,
A., AND JACOB, B. Dramsim: a memory system simulator. SIGARCH
Comput. Archit. News 33, 4 (Nov. 2005), 100–107.


