
Outshining Mirrors: MTTDL of Fixed-Order SSPiRAL Layouts

Ahmed Amer†∗ Jehan-François Pâris‡ Thomas Schwarz§
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Abstract

We evaluate the reliability of storage system schemes
consisting of n data disks and n parity disks where
each parity disk contains the exclusive or (XOR)
of two of the n data disks. These schemes are in-
stances of the so-called SSPiRAL (Survivable Stor-
age using Parity in Redundant Array Layouts). Even
though they offer the simplicity of mirroring and par-
ity schemes, we show that they approach the perfor-
mance of much more complex schemes based on era-
sure coding. In particular, we show that a SSPiRAL
scheme defined across six disks offers an MTTDL
superior that of three pairs of mirrored disks. Our
scheme also offers a higher MTTDL than any scheme
capable of surviving the loss of two disks.

1 Introduction

Complementary trends in hardware and applications
are driving an increase in demand for data volume
and bandwidth, resulting in an increased risk of data
loss and a growing need for improved storage relia-
bility. There is a growing need to survive the failure
of multiple storage devices in larger storage arrays,
as well as the need to survive the loss of multiple
nodes in clustered storage. The volume of digital
data is growing, as is the need to build reliable stor-
age infrastrcture. In a recent study, the volume of
digital data generated in 2002 was quoted at over
5 Exabytes, 92% of which was written to magnetic
disk drives [14, 13]. To put this in perspective, it
is equivalent to the 500,000 copies of the contents
of the Library of Congress. This estimate does not
include the total amount of new digital data trans-
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mitted across communication channels (which was on
the order of 18 Exabytes). 5 Exabytes represented a
doubling of the volume when compared to the fig-
ures of three years earlier. And yet, in a more re-
cent study, the 2006 volume of data generated was
described as exceeding 160 Exabytes (equivalent to
16,000,000 Libraries of Congress, or twelve stacks of
books - each reaching from the earth to the sun) [2].
These numbers are only ballpark figures for our pur-
poses, and yet they clearly demonstrate the rate of
data growth, and are particularly daunting when one
considers that these figures precede the recent explo-
sion in digital video content online [4]). Such growth
will inevitably be reflected in the storage demands
of data servers, as well as the storage demands of
consumers and producers of such content. This rate
of growth is only compounded by the desire - and
frequently the need - to retain this data, and will in-
evitably result in the accelerated growth of the num-
ber of data storage devices and servers. More com-
ponents implies an increased need to protect against
the failure of individual components. Data storage
devices have a recent history of impressive growth
in capacity, this growth alone (assuming it is main-
tained) could easily be consumed solely by the desire
to retain data, and cannot mitigate the increase in
storage nodes and devices.

Redundant storage schemes are an obvious solution
to increasing reliability, and such applications com-
monly employ one of two strategies: a combination
of replication and parity applied efficiently across an
array of devices, or a failure-recovery scheme based
on erasure coding. Computational efficiency is im-
portant when implementing redundancy schemes for
disks, and so parity is particularly appealing due to
its ease of computation. There are also combinations
of the two approaches, but typically parity schemes
tolerate only a small number of component failures,
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Figure 1: Pairwise parity vs. equivalent RAID array.

while erasure codes tend to be expensive to imple-
ment. Excellent parity-based erasure codes and lay-
out schemes have been devised [18, 8], but prior art
has focused primarily on aiming to survive a specific
number of device failures. We present an argument
for an efficient parity-based scheme that compares fa-
vorably to erasure codes in terms of reliability, and
yet is based on straightforward and efficient parity
computations.

2 SSPiRAL Description

SSPiRAL (Survivable Storage using Parity in Redun-
dant Array Layouts) [5] is a redundant data layout
scheme based solely on efficient parity computations,
offering high reliability and maintainability. Every
SSPiRAL layout is defined by three parameters: the
degree of the system, the x-order, and the total num-
ber of nodes available. The degree of a SSPiRAL
layout is the number of unique data nodes, while the
x-order is the number of nodes that contribute to con-
structing a parity node. A SSPiRAL arrangement of
degree 3 and x-order 2 would use no more than two
nodes to build a parity node, and would need a set
of six nodes to build a complete layout. Figure 1(a)
shows a SSPiRAL layout of degree three and x-order
two. Such a layout uses the same number of devices
as a mirrored array of three striped disks, as shown
in Figure 1(b).

These nodes can be individual devices, servers, or

Data Disk

1
Data Disk

2
Data Disk

3

Parity Disk

1 ⊕ 2
Parity Disk

2 ⊕ 3
Parity Disk

3 ⊕ 1

Figure 2: SSPiRAL data layout and the loss of three
nodes.

storage arrays. SSPiRAL arrangements thereby dis-
tinguish between data and parity devices. As long
as no devices have failed, the parity updates are ef-
ficient to compute, and SSPiRAL has performance
comparable to purely striped RAID layouts such as
RAID-0 arrays or striped storage clusters such as the
original SWIFT distributed storage system [10]. In
the example layout of Figure 1(a), data can be writ-
ten across all three data blocks in parallel, increasing
bandwidth, and parity nodes can almost always be
calculated without requiring a read from an other-
wise busy disk.

An interesting strength of a SSPiRAL layout can
be demonstrated through Figure 2, which shows the
loss of three of our six devices. In spite of this loss, it
is possible to recover all lost data nodes. While a mir-
rored array can survive the loss of three nodes, there
are instances where it cannot survive the loss of two
nodes (e.g., it cannot survive the loss of any matched
pair of mirrored nodes). There is no combination of
two node losses that will cause the SSPiRAL layout
in Figure 2 to lose data.

3 Reliability Analysis

In this section we evaluate the mean time to data
loss (MTTDL) of a SSPiRAL disk array consisting
of three data disks and three redundant disks and
compare it with the respective MTTDLs of (a) a 3-
out-of-6 disk array using an erasure code and (b) an
array consisting of three pairs of mirrored disks. All
three disk arrays consist of three data disks and three
parity disks.

Our system model consists of a disk array with in-
dependent failure modes for each disk. When a disk
fails, a repair process is immediately initiated for that
disk. Should several disks fail, the repair process will
be performed in parallel on those disks. We assume
that disk failures are independent events exponen-
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Figure 3: 3+3 disk SSPiRAL array.

tially distributed with rate λ, and that repairs are
exponentially distributed with rate µ.

3.1 3+3 SSPiRAL array

Building an accurate state-transition diagram for a
3+3 SSPiRAL disk array is a task that exceeds the
limitations of this paper as we have to distinguish
between failures of data disks and failures of parity
disks and consider the relations between each data
disk and the two parity disks it shares with the two
other data disks. Instead, we present here a simplified
model.

Observe first that the rate at which an array that
has already two failed disks will experience a third
disk failure is 4λ. Out of a total of 20 possible out-
comes of this failure, only four will cause a data loss.
These outcomes are

1. The failure of one data disk and its two parity
disks

2. The failure of all three data disks

As a result, we will assume that the rate at which
an array that has already two failed disks will incur a
disk failure resulting in a data loss will be 4/20×4λ =
4λ/5 and the rate at which the same array will incur
a disk failure resulting that will not affect the data
will be is 16/20× 4λ = 16λ/5

Figure 3 displays the simplified state transition
probability diagram for a 3+3 SSPiRAL array. State
〈0〉 represents the normal state of the array when its
six disks are all operational. A failure of any of these
disks would bring the array to state 〈1〉. A failure of
a second disk would bring the array into state 〈2〉. As
we saw before, a failure of a third disk could either
result in a data loss or bring the array to state 〈3〉.
Any fourth disk failure will result in a data loss.
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Figure 4: 3-out-of-6 array.

Repair transitions bring back the array from state
〈3〉 to state 〈2〉, then from state 〈2〉 to state 〈1〉 and,
finally, from state 〈1〉 to state 〈0〉. Their rates are
equal to the number of failed disks times the disk
repair rate µ.

The Kolmogorov system of differential equations
describing the behavior of the array is

dp0(t)
dt

= −6λp0(t) + µp1(t)

dp1(t)
dt

= −(5λ + µ)p1(t) + 6λp0(t) + 2µp2(t)

dp2(t)
dt

= −(4λ + 2µ)p2(t) + 5λp1(t) + 3µp3(t)

dp3(t)
dt

= −(3λ + 3µ)p3(t) +
16
5

λp2(t)

where pi(t) is the probability that the system is in
state 〈i〉 with the initial conditions p0(0) = 1 and
pi(0) = 0 for i �= 0.

The Laplace transforms of these equations are

sp∗0(s) = −6λp∗0(s) + µp∗1(s) + 1
sp∗1(s) = −(5λ + µ)p∗1(s) + 6λp∗0(s) + 2µp∗2(s)
sp∗2(s) = −(4λ + 2µ)p∗2(s) + 5λp∗1(s) + 3µp∗3(s)

sp3(s) = −(3λ + 3µ)p∗3(s) +
16
5

λp∗2(s)

Observing that the mean time to data loss
(MTTDL) of the array is given by

MTTDL =
∑

i

p∗i (0),

we solve the system of Laplace transforms for s = 0
and use this result to obtain the MTTDL of the array:

MTTDL =
265λ3 + 137µλ2 + 37µ2λ + 5µ3

60λ3(5λ + µ)

3.2 3-out-of-6 array

Figure 4 displays the state transition probability dia-
gram for a 3-out-of-6 disk array, that is, a disk array
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Figure 5: Single pair of mirrored disks.

tolerating up to three simultaneous disk failures with-
out data loss. State 〈0〉 represents the normal state
of the array when its six disks are all operational. A
failure of any of these disks would bring the array to
state 〈1〉. A failure of a second disk would bring the
array into state 〈2〉 and a failure of a third disk would
always bring the array to state 〈3〉. A failure of fourth
disk would result in a data loss. Repair transitions
are identical to these of a 3+3 SSPiRAL array.

The Kolmogorov system of differential equations
describing the behavior of the array is

dp0(t)
dt

= −6λp0(t) + µp1(t)

dp1(t)
dt

= −(5λ + µ)p1(t) + 6λp0(t) + 2µp2(t)

dp2(t)
dt

= −(4λ + 2µ)p2(t) + 5λp1(t) + 3µp3(t)

dp3(t)
dt

= −(3λ + 3µ)p3(t) + 4λp2(t)

with the initial conditions p0(0) = 1 and pi(0) = 0
for i �= 0.

Using the same techniques as in the previous case,
we obtain the MTTDL of the array:

MTTDL =
57λ3 + 23µλ2 + 7µ2λ + µ3

60λ4

3.3 Three pairs of mirrored disks

Figure 5 displays the state transition probability di-
agram for a single pair of mirrored disks. State 〈0〉
represents the normal state of the array when its two
disks are both operational. A failure of either of these
disks would bring the array to state 〈1〉 and a failure
of a second disk would result in a data loss. The sole
repair transition is from state 〈1〉 to state 〈0〉

The two differential equations describing the be-
havior of the array are

dp0(t)
dt

= −2λp0(t) + µp1(t)

dp1(t)
dt

= −(λ + µ)p1(t) + 2λp0(t)
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Figure 6: MTTDL vs mirrored disks.

with the initial conditions p0(0) = 1 and p1(0) = 0.
Using the same techniques as in the two previous

cases, we obtain the MTTDL of the mirrored pair:

MTTDLpair =
3λ + µ

2λ2

The MTTDL of an array consisting of three pairs
of mirrored disks is then:

MTTDL =
3λ + µ

6λ2

3.4 Results

Figure 6 displays on a logarithmic scale the MTTDL
of SSPiRAL and a mirrored array. We assumed that
the disk failure rate λ was one failure every one hun-
dred thousand hours, that is, slightly less than one
failure every eleven years. Disk repair times are ex-
pressed in days and MTTDLs expressed in years. As
we can see, the SSPiRAL disk array provides much
better MTTDLs than the array consisting of three
pairs of mirrored disks. Both schemes offer identical
space utilization, but the SSPiRAL scheme is capa-
ble of surviving all two-disk failure scenarios, unlike
the mirrored arrays which cannot survive the loss of
a matched pair of disks.

In Figure 7 we compare the 3+3 SSPiRAL arrange-
ment to the optimal 3-out-of-6 scheme and the less
resilient 4-out-of-6 scheme. The former does not suf-
fer data loss as long as a minimum of three disks are
available, while the latter survives the loss of any two
disks (requiring four out of six disks to remain avail-
able). While it is not surprising that the 3+3 SSPi-
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Figure 7: MTTDL vs optimal erasure coding.

RAL arrangement falls below the 3-out-of-6 scheme,
it is interesting to note it offers a higher MTTDL
than the optimal 4-out-of-6 scheme. This is due to
the 3+3 SSPiRAL arrangement’s ability to survive
the failure of three disks. While it cannot survive all
such failures, it is nonetheless an improvement upon
the 4-out-of-6 erasure coding.

In summary, a simple pairwise SSPiRAL scheme,
defined across six disks offers higher MTTDLs than
mirroring three disks. It does so while requiring the
same 50% space efficiency and the additional effort of
inexpensive pairwise parity computations. The par-
ity computations for a SSPiRAL array involve data
for only two disks, and are a simple block-wise XOR,
which is much more efficient than an optimal erasure
coding. The most efficient erasure coding to survive
two disk failures offers an improvement in space effi-
ciency, but at a much higher computational cost and
a lower reliability than the 3+3 SSPiRAL arrange-
ment.

4 Related Work

Like most of the original RAID layouts [7, 15], SSPi-
RAL is based solely on parity computations, and like
more recent efforts [1, 9, 3, 6] SSPiRAL aims to sur-
vive the failure of multiple disks, and to achieve this
goal efficiently. SSPiRAL diverges from prior efforts
in its definition of efficiency. Unlike row-diagonal par-
ity [6], SSPiRAL does not pursue the goal of opti-
mizing capacity usage, and yet maintains the goals of
optimal computational overhead and ease of manage-
ment and extensibility. SSPiRAL replaces the goal of
surviving a specific number of disk failures with the

goal of surviving the most disk failures possible within
the given resource constraints. The basic SSPiRAL
layout discussed above can be described as an appli-
cation of Systematic codes [16] across distinct stor-
age devices. Similarly, such basic SSPiRAL layouts,
in their limiting of the number of data sources, are
similar to the fixed in-degree and out-degree parame-
ters in Weaver codes [8] and the earlier B̂ layouts [18].
Weaver and B̂ are the most similar schemes to SSPi-
RAL, and all are parity-based schemes using prin-
ciples first applied in erasure codes for communica-
tions applications such as the Luby LT codes, and the
later Tornado and Raptor variants [17, 12, 11]. These
codes all belong to the class of erasure codes known
as low-density parity-check (LDPC) codes. They dis-
tinguish themselves from earlier Reed-Solomon and
IDA codes by being more efficient to compute at the
expense of space utilization. SSPiRAL differs from
these prior applications of erasure codes in two major
respects: it promises to be more efficient to maintain,
and it is implemented with a direct consideration of
available system resources, and departing from the
requirement to tolerate only a fixed number of device
failures.

5 Conclusions & Future Work

The analytical results we present in this paper
demonstrate how a basic SSPiRAL array defined
across six disks, and using simple pairwise parity,
achieves an MTTDL superior to the mirroring of pairs
of disks. This SSPiRAL layout offers lower MTTDLs
than a complete three-out-of-six erasure code, but de-
pends solely on the simplest pairwise parity compu-
tations, and still manages to offer a higher MTTDL
than any scheme capable of surviving the loss of two
data disks. SSPiRAL arrays are defined based on
the degree of parity and the required space efficiency.
In this work we have presented a SSPiRAL arrange-
ment that only makes use of pairwise parity oper-
ations (thereby limiting the required interconnection
bandwidth), and 50% space efficiency (allowing a fair
comparison to mirroring schemes). They can be ex-
tended to larger numbers of disks and higher parity
degrees, offering a trade-off of bandwidth and com-
putational demands against reliability and space ef-
ficiency. We plan to investigate the extent and effec-
tiveness of such tradeoffs.
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