
LiFSBrowse: a Visual, User Environment for
the Linking File System

Technical Report UCSC-SSRC-07-08
August 2007

Sasha Ames

sasha@cs.ucsc.edu

Storage Systems Research Center

Baskin School of Engineering

University of California, Santa Cruz

Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

Note: this report is a copy of a Masters project report, originally submitted for review in June 2005.



LiFSBrowse: A Visual, User Environment for the Linking File System

Sasha Ames
sasha@cs.ucsc.edu

Master’s Project Report
Department of Computer Science

University of California, Santa Cruz

Abstract

The Linking File System introduces a new storage
paradigm for enhanced user productivity through re-
lationships between files, yet it opens up new chal-
lenges in usability. LiFSBrowse is a GUI for LiFS
that attempts to meet those challenges through giving
customizable graphical views of the file system. LiFS-
Browse supports interaction through link manipula-
tion and file system querying. We describe the layout
of LiFSBrowse in detail and give some examples of its
usability through a sample file system view.

1. Introduction

The Linking File System (LiFS) introduces a new
paradigm in file system organization. Using attributed
links, users of the file system have the potential for
huge gains in productivity, such as through the abil-
ity to provide context for their documents. Links
allow users to express relationships between docu-
ments, where they previously lacked the ability. How-
ever, LiFS is only the infrastructure. LiFS itself does
not have an interface, thus, determining the true us-
ability of LiFS shall be left up to those who can pro-
vide such an interface.

In this paper, I present LiFSBrowse. LiFSBrowse
is a graphical user interface to the Linking File Sys-
tem. The main goal of LiFSBrowse is to provide users
with a better experience in interacting with LiFS over
command-line tools. LiFSBrowse should allow the
user to browse her files and links, list the attributes
on links and files, and display the file when possible.
To enhance browser usability, browse displays should

be customizable to the user’s liking through a series of
view options. Additional functionality should give the
user the ability to interact with LiFS, such as through
creating, modifying, or deleting links. Finally, the
user should have the ability through LiFSBrowse to
query LiFS for a specific set of files and links. This
paper should demonstrate that LiFSBrowse can meet
these functional goals, thus enhancing the usability of
the Linking File System.

This paper is organized as follows. The next sec-
tion gives an overview of LiFS, a description the text-
based LiFS interface, and the advantages to using a
GUI. Section 3 describes the GUI features and lay-
out. Section 4 discusses the LiFSBrowse implemen-
tation. Section 5 gives some examples of the usability
of LiFSBrowse. Sections 6 and 7 discuss related and
future work, and section 8 concludes.

2. Background and Motivation

2.1. Overview of LiFS

In this section I give an overview of the major
features of LiFS. We describe LiFS in more detail
here [1], but I wish to convey the features that best
distinguish it from conventional file systems.

LiFS contains a new file system feature, called a
relational link. These relational links express rela-
tionships between any two files. Thus, in LiFS a
regular file may point or refer to another. Relational
links are different than symbolic links which allow a
user to create additional path names for files or di-
rectories, thus becoming “linked” to additional places
other than the original path. Moreover, relational links

1



may contain metadata in the form of associated at-
tributes. These attributes take the form of key/value
pairs where on a given link, each key must be unique.
LiFS also allows attributes placed on files directly, as
is done using the extended attribute API in the Linux
kernel 2.6.x [9].

The existence of links between files leads us to
a loss of distinction between files and directories.
Hence, having files refer to other files allows files to
“contain” others, a property that was previously re-
served for directories. Thus, directories become, in
essence, simply zero byte files that exist for organi-
zational purposes and backwards compatibility with
conventional file system structures. Moreover, this
implies that a path to any given file shall occur through
a series of files, which themselves may also contain
data and can be opened.

LiFS additionally allows multiple links between
files. This is so a single or multiple users may wish
to have different sets of metadata to show separate re-
lationships between the two files. I will present an
example of this feature in section 5. The caveat to
this feature is that links must be uniquely identifiable
through some combination of their attributes. A sim-
ple identification scheme, but one not required by the
file system, is to have a unique name attribute on each
link.

The proposed implementation of LiFS is to have all
metadata for files, links and attributes reside in mag-
netic RAM. MRAM is a new form of high speed, non-
volatile RAM. It should greatly increase metadata ac-
cess performance over conventional reads and writes
to disk for metadata.

An example related to this research where LiFS
might be used is for a the working directory of a soft-
ware project. Binaries may be linked to object files,
which in turn may be linked to the source files that
generated them, or vice-versa. In addition, we can
compile source code for different hardware architec-
tures by following the appropriate link to the complier
configured for the target architecture, where a link ex-
ists to a compiler for each architecture. The result-
ing object code could be linked to the source with at-
tributes indicating which architecture it should run on.

Figure 1. Usage for the ln2 command.

Figure 2. Example output from the ls2 com-
mand.

2.2. Interface to LiFS

Like any file system with advanced features, LiFS
requires a user interface to expose those features. Ap-
plication programmers may use the LiFS API, but that
is less valuable to an end user of the file system. To
initially make those features available we introduced
the ln2 and ls2 command line utilities. These utili-
ties allow for the utilization of LiFS’ features beyond
what available through conventional tools run through
a shell.
Ln2 is an adjunct utility to the ln program.

Whereas ln allows a user to create hard and
soft/symbolic links, ln2 enables the creation of rela-
tional links in LiFS. Figure 1 shows the usage for this
utility. The source and target files must be existing

2



files to be linked. In addition, the utility requires the
specification of some attribute metadata for the new
relational link.

Ln2 has other features too that are relevant to link-
ing. The utility lets a user modify the attributes, on a
relational link, see all the attributes, or delete a link. In
such cases, the link in question must be uniquely iden-
tified by a set of attributes. Queries that match more
than a single return an appropriate error to inform the
user of such.

The functionality of ls2 is meant to augment ls
for LiFS relational links and attributes. When ls2 lists
the files under a given directory, it displays each file
and all links emanating from the files. It displays at-
tributes on the link as well. Figure 2 shows some
files with their links. It lists the target name and
attributes as comma-delimited strings in the format
”key=value”. At the top of the figure we can see the
output from ls for comparison.

Additionally, ls2 allows a user to query for spe-
cific links returned based on a combination of at-
tributes. At present, the query capability is very sim-
ple. It allows only a conjunction of key/value pairs to
match links.

2.3. Advantages of a GUI for LiFS

While these tools give an end user some ability
to browse in LiFS, they do impose somewhat of a
hindrance on the user. To achieve desired results,
users may be required to perform a series of command
line operations that include the commands described
above. Alternatively, we may turn to a graphical user
interface for LiFS to provide better usability and func-
tionality.

In many ways, a GUI for LiFS can be more advan-
tageous than conventional file browsers are for con-
ventional file systems. Conventional file browsers do
provide views of hierarchical directory tree structures,
conventional metadata, and even extended attributes
on files. However, all those capabilities are available
on a command line. Seeing multiple levels of hier-
archy may require multiple operations via command
line, but should be a relatively straightforward pro-
cess.

With LiFS, the GUI now can represent, in addition
to a tree, the graph structures created by relationships

between the files given by the addition of relational
links. Using our text-based approaches, trying to real-
ize a graph structure though various file lists of source
nodes in a graph can become very cumbersome. How-
ever, the graph visualization grants the user instant
knowledge of the relationships that she is concerned
with.

Another advantage of using a GUI for LiFS is that
it has the ability to present multiple scales of view for
the file system. This becomes more important when
links allow files to refer to one another that may ap-
pear located in disparate directories. While we can get
a good local or partial view of the file system, show-
ing a limited number of files, we obtain the addition
of a more global view where there are more complex
relationships present.

Here is an example of on an operation using several
steps over a command line. We would like to change
the attribute on a link, but we are not precisely sure
how to identify the link. At first, we may guess and at-
tempt to make the modification in one step using ln2,
in which case we must provide a correct source path,
target, and attributes for identifications. Trial and er-
ror come in to play here. At this point, either we may
be correct, or we fail to identify the link correctly or
uniquely. We may try again or try to locate the link
using one or more calls to ls2. If the source path
is correct, we then may look through the output from
ls2 for the link in question. Once identified, we can
correctly use ln2 to make the attribute modification
for that link.

As we can see, it takes several operations and con-
siderable human effort to complete a process that
should be simple. To contrast, let us consider what
is involved in using a GUI. We will have to locate the
source file for the link, but once in view, we should be
able to see all its child links and identify the one we
want. Then, we may change the existing attributes,
either modifying one or adding using a modification
pane, and we are complete. Shortcuts to query the
GUI for the correct source file or by attributes to help
find the link in question even faster make this an even
substantially improved process.

Thus, it is the goal of LiFSBrowse is to grant the
user many of the above listed advantages. The follow-
ing section will describe what features of LiFSBrowse
have been included to satisfy meeting that goal.

3



3. GUI design

The LiFSBrowse GUI is designed to be able to dis-
play file relationships via links, select link metadata
via attributes, and select file content all in one win-
dow. In order to accomplish this, the main LiFS-
Browse window is divided into three sections, one for
plotted file and links, one for attributes, and one for
file content. Additionally, the LiFSBrowse window
atop has a menu bar and below has a status bar, as is
standard for most GUI applications.

The pane comprising the left side of the application
contains LiFSBrowse’s representation of the files and
links from within LiFS. The GUI represents files by
blue circles with a black outline and links by black
arrows. It labels each link using the name compo-
nent of the link’s target file path. A user may select
a link by clicking on the label or the link itself. When
selected, a link and its label changes color to the hi-
light color, which is red by default. Having both the
link and label hi-lighted together is especially helpful
in identifying the selected link when the user views a
file system with many links and labels plotted in tight
proximity of one another. Additionally, the content in
the content pane and attributes shown in the attribute
pane may change when a user selects a new link.

The GUI plots files on the display as they are found
using a depth-first search of the file system. It plots
“deeper” files, i.e. children to the right of a parent file.
Files with a “sibling” relationship are plotted top to
bottom along the same vertical axis. There is a maxi-
mum depth setting (default of 10) that controls when
to stop exploring for new links from a starting source
file. As the DFS operation is called recursively on a
child link, the value is decremented until it reaches 0.

LiFSBrowse offers the user a number of view-
ing options for customizing the file and link display.
There are three general on-off options to be switched
between, resulting in eight potential views. First is
the structural drawing mode. This option is mainly
cosmetic, affecting only the look of the output dis-
play. The first option for this mode are right angle
links, where the first link from a source file shall be
drawn as a horizontal arrow to the right of the plotted
file. All subsequent files are drawn down and to the
right, in an ”L” shaped fashion with a longer horizon-
tal component, this mimicking many file browsers that

use tress to display directory hierarchies. Labels ap-
pear directly below the horizontal component of the
link they identify. The other alternative is the ”fan-
out” view, where the child links of a source file are
drawn out still to the right of the file, but at different
angles, starting close to the top of the circle for the
file, working its way to the rightmost point, and to the
bottom. Having both these views gives the user alter-
natives, as some file systems may be geared to appear
better in a particular mode.

The second option is tree versus graph view modes.
Under tree mode, ALL child links of a source file are
drawn, until the max depth is reached. This means
that target files and links are drawn even if they are
redundant, i.e. already drawn elsewhere in the dis-
play for the file system. In such cases, a selected
link redundantly drawn shall be hi-lighted in all places
that it was drawn. Additionally, any cycles created by
files referring to one another are drawn out (redundant
display) until the maximum depth is reached. Graph
mode eliminates all such redundancy and cycles. In
this mode, new child files are plotted as discovered in
the search algorithm. However, for a file in question if
one of its children has already been plotted as child of
a another previously plotted file, then we draw a link
directly from the newer source to that target child.

In “L” plotting mode combined with graph mode:
if a case arises perhaps a link may be drawn through
a file representation, LiFSBrowse draws the link as
an arc. Additionally, in both plotting modes, LiFS-
Browse draws arc-shaped links for situations where
files lie on the same horizontal row, save for those
initially discovered with a parent-child relationship.
Otherwise, links are drawn as straight lines from the
source file to the target. Some files are not pro-
tected by the provision for arc drawing in graph mode
that exists for tree mode. Having these two different
mode choices gives the user a great deal of power
for viewing through a choice between focusing on
source/target relationships for individual files, as done
in tree mode, or all relationships, shown in graph
mode.

The third option is whether or not LiFSBrowse
should automatically expand all files to plot their child
links. Turning ”expand off” forces the user to manual
click on files that concern her to view their children.
This may make more easily readable file system dis-

4



plays by limiting the amount of data plotted. More-
over, it may often be the case that a user is only con-
cerned with a limited set of links and files to be plotted
at any one time. “Expand on”, of course, provides the
convenience of having all links and files plotted auto-
matically.

Additionally, a user may modify the view by
changing the size of the drawn components. Con-
sequently, this feature behaves similarly to the zoom
tool in many graphics application. Presently there are
5 size modes to choose between, ranging from “Tiny”
to “Bigger.” The chosen size affects the length and
width of links, size of the file circles, and the font size
of the labels. This mode is what should be primarily
responsible for providing the functionality of switch-
ing between small and large file system views.

The user may add new links, modify or delete ex-
isting ones through the main pane. Adding a link re-
quires the user to click on the source file, the target
file, and fill in the attribute data (discussed later). To
modify a link, the user simply must select the link she
wishes to modify and change the attributes. Deletions
require the user select the link to be deleted and con-
firm1. At present, Link sources and target files may
not be modified in a single LiFSBrowse operation. If
a user wishes to do so, she may delete the link and add
a new link with a new desired source and target, but
the same attributes as the deleted link.

The attribute pane, located in upper-right quadrant
of the application frame, displays attributes of the cur-
rent selected link. Rows hold each attribute key/value
pair, with the keys in the left-hand column and val-
ues on the right. In cases of multiple links between
a pair of files, a user may discern different attribute
sets for each through having the background of the at-
tribute text be painted alternating colors. The attribute
data rows from the first link have a red background
followed by the rows from the second link contain a
blue background, and so on, Additionally, attributes

1LiFSBrowse running over the prototype PostgreSQL backed
LiFS will not delete links that result in removing the target file
permanently. Moreover, the next version of LiFS will let you re-
move the file when the final link targeting it is removed (reference
count reaches 0), unless it contains child links of its own. Those
links and all subsequent children must be removed first.

on the target file of the links will have a third unique
background color, set to green by default.2

Furthermore, the attribute pane also incorporates
the functionality for attribute entry and querying.
When the user creates a new link or selects a link for
modification, the pane switches from attribute display
mode to attribute entry. The user may then add new
attributes or modify the existing keys and/or values.
A submit button finalizes the user’s changes. More-
over, the attribute entry view allows the user to enter
queries. These queries come in a set of key/value pairs
to match attributes on links in the file system. Once
submitted, the query will return a new display of files
and links in the main display pane on the left.

Below the attribute pane is the content display
pane. In this pane, a user may see the content of
the target file of the currently selected link. Presently,
LiFSBrowse supports plain text and some image files.
LiFSBrowse requires that a link targeting the file or
the file itself be tagged with the attribute “file type=”
in order to display its content. The values “text” or
“image” support those particular file types.

Finally, the bottom of the LiFSBrowse application
frame contains the status bar. The status bar gives var-
ious messages to the user. These include the current
link source and target paths, instructions to the user
for a pending operation, and error operation success-
ful messages. An example of an instruction is when
a user selects “Add” from the “Link” menu, the status
bar instructs the user to select a source file.

4. Implementation

I have implemented LiFSBrowse in the Python
scripting language. I chose this because it is high
level, interpreted and may lead to more rapid develop-
ment than lower level languages such as “C” that are
more appropriate for actual file system development.
Moreover, I selected to use the tkinter GUI toolkit for
this implementation as it is considered the de-facto
standard for user interface tasks within Python [14].

The version of LiFS I used is not the one discussed
above (section 2.1) that will utilize MRAM, but a pro-
totype to serve as a proof of concept for LiFS. This

2Attributes on files were not available to read from the LiFS
prototype. Hence we cannot demonstrate this feature, but I look
to correct it with the next version of LiFS.

5





Figure 6. Resulting graph after addition of a new link. Some additional links and files are shown by
expansion

The user has just successfully added a link, and we
can see the resulting graph displayed in Figure 6. The
newly added link is from the file “RollingStones.gif”
to “ledzep.gif”, and is hi-lighted. We may notice that
layout of the graph has changed since the last figure.
While this may appear disconcerting to the user, it can
be beneficial because the new layout may better ar-
range the files and links for the new graph configura-
tion than the previous layout. Moreover, we should
notice that the font, file and link sizes have all grown.
This is because our user must have changed the view
size mode for LiFSBrowse to a larger size. An addi-
tional change to the display is apparent in the status
bar, which now displays the source and destination
files of the hi-lighted link.

The hi-lighted link in this figure has different meta-
data describing the relationship between the two files
than shown in the previously considered view. This

link suggests a relationship of influence between the
two bands, and we may see that the level of influence
is “moderate” In addition, we are given a sense that
the bands may overlap in their years active, given the
attribute for “time=overlap” Finally, we see that the
file type is that of an image in this case, and the image
(band photo) is displayed instead of text.

The file system graph plot in Figure 6 also contains
additional files and links that were not present in the
previous view. These files and links are for releases
(albums or compilations) and songs for Led Zeppelin.
In this case there are two releases which between the
two of them point to a total of six song files. Where
the release files point to the same song shows that that
song appears in both release. Since the track number
for that song may vary between release, an attribute
given that information can be found on the link.

8



Figure 7. Panel to input a query to LiFS-
Browse. A similar panel is used for attribute
entry and modification

Suppose we wish to perform a query in LiFS-
Browse, that is, create a display of files and links
based on a search traversing links that match some
key/value pair input. Figure 7 is the panel display for
inputing attributes to form our queries. In our case,
the user has entered a key of “influence” and the value
“strong into the query box. Additionally, this display
doubles in use for entering attributes when creating or
modifying links.

Figure 8 shows the results of the user’s query. The
number of links between the files has been paired
down to only those that denote a relationship of strong
influence. The user has also set the view size to “Big-
ger”: the largest size available in LiFSBrowse.

The user has selected a link pointing to a file for
Chuck Berry, and this brings us to an interesting
change in the attribute display area. There are now
two sets of attributes, each with separate colors. Two
of attributes means that the hi-lighted link represents
two links in the underlying linking file system. In
this case the user query has resulted in both links dis-
played because they have the query attribute in com-
mon. However, aside from “userid”, the other at-
tributes differ between the two links. The first has
more information about the artist. The second seems
to convey that this link’s purpose is to convey the re-
lationship between the two files.

Figure 9 shows much of the sample file system in
“Tiny” size. This mode gives a more complete picture
of what elements comprise the file system because

more links and files can be plotted in the window..
Hence, we see many files starting with the file system
root shown with a “/” to the “leaf” files that appear
within the display and on the right edge of the graph.

The figure also show what tree mode of the browser
looks like. In this view there are many files and links
that are redundantly plotted. For example, examine
the series of links that start with “robertjohnson.gif”
on the left and end with “ledzep.gif” following each
horizontally. That series denotes the chronological
succession of influence. Additionally, we notice that
the files along that chain of links have the child link
for “ledzep.gif”. Each of those files has the same
set of decedent links and files, all of which are re-
dundant. The redundancy is further exemplified by
the hi-lighted link. In this case it is for the link to
“houses.gif”. Each set of redundant links and files
has the same link hi-lighted. This makes it easy for
a user of LiFSBrowse to identify redundant informa-
tion when using tree views.

6. Related Work

McGuffin, et al. take an interesting approach to
file system visualization [10]. Their system, Expand-
Ahead places files and folders within folders to ex-
press containment relationships. Files may be listed
by name or content may be displayed within. The
system also features zoom in, auto drill-down, and
will automatically expand various folders to size in
order to best display as much data on screen as possi-
ble. LiFSBrowse, likewise attempts to show a user
an overview of relationships within the file system
and allows the user to zoom in on particulars. How-
ever, Expand-Ahead appears to not handle the non-
tree edges that may be found through LiFS relational
links without redundancy.

In scientific network visualization, CiteSpace fo-
cuses on identifying and tracking thematic trends. It
features not only finding highly cited clusters, but also
considers the trails that are pivotal points in transitions
within a knowledge domain, perhaps a paradigm shift.
Its visualization features graph display of citation and
term links between documents, with additional rings
on notes to mark highly cited documents, color to de-
note “pivotal” points, and age of the link. LiFSBrowse

9



Figure 8. The result of the query. The highlighted link represents two links with distinct attributes.

could very well display citation information in graph-
ical form for a file system organized by citation [4].

There have been a number of attempts to present
advanced visualizations of the World Wide Web [2].
Natto [15] initially places nodes and links on a hor-
izontal plane, but allows the user to manually raise
nodes to “disentangle” them from the plane to im-
prove the structure’s visibility. Initial node placement
is based on web page attributes, such as name and
size. Another approach to web visualization is the
construction of three-dimensional hyperbolic space
represented inside a sphere. This view shows a fo-
cus on some nodes by plotting those near the center
the largest and reducing the size of others as the plot
moves towards sphere’s edge, which is conceptually
an infinite distance from the center [12].

The Presto system is an alternative to the hierarchi-
cal document spaces found in conventional file sys-
tems. Presto allows users users to manage documents
in terms of assignable attributes. Vista, the Presto

browser, plots related document collections inside
ovals that can be opened an closed. The collections
are based on sets of attributes which they themselves
can be plotted on the Vista desktop. LiFSBrowse
supports attribute based queries for documents like
Presto/Vista. However, Vista does not display rela-
tionships between documents possible through rela-
tional linking [7]

There have been various attempts to visualize the
Internet, a considerably large graph space to investi-
gate. This was once a hot topic of discussion, where
a major focus was on making the visualizations more
useful to the average end userc̃itevisint95, visint96.
As described in [6], a major goal of the CAIDA or-
ganization is to create Internet visualizations. One
such visualization of Internet topology at a macro-
scopic level used an Internet Control Message Proto-
col to probe the Internet. The result was they could
obtain snapshots and display in polar coordinates with
local ISPs at the center, working its way out to further

10



Figure 9. A view of the file system in tree mode. A link targeting the file for the Houses of the Holy
album image is highlighted red in multiple locations showing the redundancy.

and further hops. CAIDA also features a number of
Internet visualization tools, including Walrus which
can plot million node directed graphs in three dimen-
sional, non-euclidean hyperbolic space [3] (based on
Munzner’s work mentioned above).

Cheswick, et al. attempted to visualize the Internet
though collecting routing paths from a test host. They
used a spring-force algorithm to lay out the graphs
from the collection databases which resulted in around
88,000 nodes and 100,000 edges for the whole Inter-
net. Their resulting displays focused on producing
minimal spanning trees that take the appearance of a
“peacock on the windshield: or “koosh balls”, thus
smaller subgraph plots were more useful [5]. Fur-
thermore, Munzner, et al. attempted to visualize the
MBone Global Topology [13]. Their visualizations
plotted the MBone tunnels as arcs over three dimen-
sional spherical projections of the whole and segments

of the earth, and of the United States. Arc height rep-
resented longer tunnels (latency) between points on
the surface as to make them more prominent for at-
tempts to analyze global congestion caused by longer
paths.

Finally, The Navigational View Builder was a
tool developed to integrate node and link topology
with underlying information space in hypermedia sys-
tems [11]. This tool featured clustering of related
nodes and fish-eye views to insert a focus on a node.
These serve as good ideas for future work for LiFS-
Browse.

7. Future Work

LiFSBrowse presented the opportunity to explore
many possible alternatives for plotting file and link
data but there is much more to accomplish. First and

11



foremost, LiFSBrowse should be switched to use to
the next version of LiFS. This should correct some
problems and simplify some steps in the implementa-
tion. Some aspects that will be fixed include the abil-
ity to retrieve attribute metadata on files, delete oper-
ations, and the pathname fudge using the ”@” charac-
ter.

One feature to be added to LiFSBrowse that could
potentially benefit a user is a link or file focus. This
would magnify the link or file in question, and then
draw other child links and files in diminishing size as
you get further removed from the focus. This could
provide additional emphasis on a local context for a
user.

Another additional feature of value to a LiFS-
Browse user is a browse history of visited links. In-
cluding a history would give the user a sense of what
she has already seen in browsing the file system. This
could be implemented by painting all links a certain
color or use different shading to give an idea of how
long ago the link was visited.

Users may encounter in their graph displays situa-
tions where a group of files all refer to one another
with relational links. The consequence of this is a
quite messy display with many plotted links that be-
come difficult to read. A potential solution to this is
a “Cluster” display, where the group of files is plot-
ted as a single unit. The unit can then be opened up
with information on each file and the links within the
cluster.

A final worthy goal for further development on
LiFSBrowse is to improve the graph plotting. A sim-
ple improvement would be to allow users to define
their own file positions. Each file could be grabbed
and repositioned. All links with that particular file as a
source or target would then be redrawn. Another pos-
sible improvement would be to try a different search
algorithm for exploring the file system graph space.
I chose DFS because it yielded simple handling of
plot recursion for drawing multiple levels. The conse-
quence of using only that algorithm is that all graphs
are plotted not even close to optimally. However, a
modified version of BFS could have been considered
– maybe only for graph mode – as an alternative. Fi-
nally, graph layout is a well explored area, resulting in
a number of free and commercial products to handle
to the problem [8]. Thus, I should strongly consider

plugging one into LiFSBrowse to determine where to
plot files and links.

8. Conclusion

LiFSBrowse expands the value of the Linking File
System through giving its users improved display and
interaction. Command line interaction with LiFS will
limit users’ abilities to interface with LiFS, necessitat-
ing more advanced alternatives. Being able to see the
relationships that exist between files firsthand should
greatly improve understanding of their purpose and
serve as reminders for context long forgotten. We
hope to improve upon LiFSBrowse with the advent
of the stable version of LiFS. It is progressing, and
should perform much better, hopefully resulting in im-
proved stability for LiFSBrowse.

Acknowledgments

I would like to express my deepest thanks to my ad-
visor Ethan Miller for his many suggestions towards
the work. Additional thanks go out to Nikhil Bobb,
Scott Brandt, Adam Hiatt, Carlos Maltzann, and Al-
isa Neeman for influential discussions we’ve had. Re-
search for LiFS was funded in part by National Sci-
ence Foundation grant 0306650.

References

[1] A. Ames, N. Bobb, S. A. Brandt, A. Hiatt,
C. Maltzahn, E. L. Miller, A. Neeman, and D. Tuteja.
Richer file system metadata using links and at-
tributes. In Proceedings of the 22nd IEEE / 13th
NASA Goddard Conference on Mass Storage Systems
and Technologies, Monterey, CA, Apr. 2005.

[2] S. Benford, I. Taylor, D. Brailsford, B. Koleva,
M. Craven, M. Fraser, G. Reynard, and C. Green-
halgh. Three dimensional visualization of the world
wide web. ACM Comput. Surv., 31(4es):25, 1999.

[3] CAIDA. Walrus - graph visualization tool.
http://www.caida.org/tools/visualization/walrus/,
2005.

[4] C. Chen. The centrality of pivotal points in the evo-
lution of scientific networks. In IUI ’05: Proceed-
ings of the 10th international conference on Intelli-
gent user interfaces, pages 98–105, New York, NY,
USA, 2005. ACM Press.

12



[5] B. Cheswick, H. Burch1, and S. Branigan. Mapping
and visualizing the internet. In Proceedings of the
2000 USENIX Annual Technical Conference, pages
1–12, San Diego, California, June 2000.

[6] K. C. Claffy. Caida: Visualizing the internet. IEEE
Internet Computing, 5(1):88, 2001.

[7] P. Dourish, W. K. Edwards, A. LaMarca, and M. Sal-
isbury. Presto: an experimental architecture for fluid
interactive document spaces. ACM Trans. Comput.-
Hum. Interact., 6(2):133–161, 1999.

[8] J. Ellison and S. North. Graphviz - graph visualiza-
tion software. http://www.graphviz.org/, 2004.

[9] The linux kernel archive. http://www.kernel.org/,
2005.

[10] R. McGuffin ; Davison, G.; Balakrishnan. Expand-
ahead: A space-filling strategy for browsing trees,
October 2004.

[11] S. Mukherjea and J. D. Foley. Navigational view
builder: a tool for building navigational views of in-
formation spaces. In CHI ’94: Conference compan-
ion on Human factors in computing systems, pages
289–290, New York, NY, USA, 1994. ACM Press.

[12] T. Munzner and P. Burchard. Visualizing the struc-
ture of the world wide web in 3d hyperbolic space.
In VRML ’95: Proceedings of the first symposium on
Virtual reality modeling language, pages 33–38, New
York, NY, USA, 1995. ACM Press.

[13] T. Munzner, E. Hoffman, K. Claffy, and B. Fenner.
Visualizing the global topology of the mbone. In
INFOVIS ’96: Proceedings of the 1996 IEEE Sym-
posium on Information Visualization (INFOVIS ’96),
page 85, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[14] Tkiniter - pythoninfo wiki.
http://wiki.python.org/moin/TkInter, 2005.

[15] H. Shiozawa and Y. Matsushita. Www visualiza-
tion giving meanings to interactive manipulations. In
Advances in Human Factors/Ergonomics 21B (HCI
International p 97), pages 791–794, San Francisco,
CA, August 1997.

[16] Simplified wrapper and interface generator.
http://www.swig.org/, 2005.

[17] M. Szeredi. File System in User Space README.
http://www.stillhq.com/extracted/fuse/README,
2003.

[18] J. C. Worsley and J. D. Drake. Practical PostgreSQL.
O’Reilly, 1st edition, 2002.

13


