
Secure Data Deduplication

Mark W. Storer Kevin Greenan Darrell D. E. Long Ethan L. Miller
Storage Systems Research Center
University of California, Santa Cruz

{mstorer,kmgreen,darrell,elm}@cs.ucsc.edu

ABSTRACT
As the world moves to digital storage for archival purposes,there
is an increasing demand for systems that can provide secure data
storage in a cost-effective manner. By identifying common chunks
of data both within and between files and storing them only once,
deduplication can yield cost savings by increasing the utility of
a given amount of storage. Unfortunately, deduplication exploits
identical content, while encryption attempts to make all content ap-
pear random; the same content encrypted with two different keys
results in very different ciphertext. Thus, combining the space ef-
ficiency of deduplication with the secrecy aspects of encryption is
problematic.

We have developed a solution that provides both data security
and space efficiency in single-server storage and distributed stor-
age systems. Encryption keys are generated in a consistent manner
from the chunk data; thus, identical chunks willalways encrypt to
the same ciphertext. Furthermore, the keys cannot be deduced from
the encrypted chunk data. Since the information each user needs to
access and decrypt the chunks that make up a file is encrypted using
a key known only to the user, even a full compromise of the system
cannot reveal which chunks are used by which users.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; H.3 [Information
Systems]: Information Storage and Retrieval

General Terms
Design, Security

Keywords
secure storage, encryption, cryptography, deduplication, capacity
optimization, single-instance storage

1. INTRODUCTION
Businesses and consumers are becoming increasingly conscious

of the value of secure, archival data storage. In the business arena,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’08, October 31, 2008, Fairfax, Virginia, USA.
Copyright 2008 ACM 978-1-60558-299-3/08/10 ...$5.00.

data preservation is often mandated by law [16, 26], and datamin-
ing has proven to be a boon in shaping business strategy. For in-
dividuals, archival storage is being called upon to preserve senti-
mental and historical artifacts such as photos, movies and personal
documents. Further, while few would argue that business data calls
for security, privacy is equally important for individuals; data such
as medical records and legal documents must be kept for long peri-
ods of time but must not be publicly accessible.

Paradoxically, the increasing value of archival data is driving
the need for cost-efficient storage; inexpensive storage allows the
preservation of all data thatmight eventually prove useful. To that
end, deduplication, also known as single-instance storage, has been
utilized as a method for maximizing the utility of a given amount
of storage [4, 38, 5]. Deduplication identifies common sequences
of bytes both within and between files (“chunks”), and only stores
a single instance of each chunk regardless of the number of times
it occurs. By doing so, deduplication can dramatically reduce the
space needed to store a large data set.

Data security is another area of increasing importance in modern
storage systems and, unfortunately, deduplication and encryption
are, to a great extent, diametrically opposed to one another. Dedu-
plication takes advantage of data similarity in order to achieve a re-
duction in storage space. In contrast, the goal of cryptography is to
make ciphertext indistinguishable from theoretically random data.
Thus, the goal of a secure deduplication system is to providedata
security, against both inside and outside adversaries, without com-
promising the space efficiency achievable through single-instance
storage techniques.

To this end, we present two approaches to secure deduplication:
authenticated and anonymous. While the two models are similar,
they each offer slightly different security properties. Both can be
applied to single server storage as well as distributed storage. In
the former, single server storage, clients interact with a single file
server that stores both data and metadata. In the later, metadata is
stored on an independent metadata server, and data is storedon a
series of object-based storage devices (OSDs).

Both models of our secure deduplication strategy rely on a num-
ber of basic security techniques. First, we utilize convergent en-
cryption [10] to enable encryption while still allowing deduplica-
tion on common chunks. Convergent encryption uses a function
of the hash of theplaintext of a chunk as the encryption key: any
client encrypting a given chunk will use the same key to do so,so
identical plaintext values will encrypt to identical ciphertext values,
regardless of who encrypts them. While this technique does leak
knowledge that a particular ciphertext, and thus plaintext, already
exists, an adversary with no knowledge of the plaintext cannot de-
duce the key from the encrypted chunk. Second, all data chunking
and encryption occurs on the client; plaintext data is nevertrans-

mitted, strengthening the system against both internal andexternal
adversaries. Finally, the map that associates chunks to a given file
is encrypted using a unique key, limiting the effect of a key compro-
mise to a single file. Further, the keys are stored within the system
in such a way that users only need to maintain a single privatekey
regardless of the number of files to which they have access.

The remainder of this paper is organized as follows. In Sec-
tion 2, we place our system within the context of the field’s related
work. Section 3 describes the threat model, which forms the ba-
sis of our design. In addition, Section 3 defines the assumptions,
storage model, notation, and players in our secure, deduplication
system. Section 4 provides a detailed description of how oursys-
tem achieves improved storage utilization through deduplication,
while providing data security. Section 5 provides an analytical ex-
amination of our system, including an evaluation of its security in a
variety of scenarios. Finally, we conclude in Sections 6 and7 with
our future plans for this system and a short summary of our work.

2. RELATED WORK
Current systems that utilize single instance storage rely upon one

of three primary deduplication strategies: whole file, fixed-sized
chunks, and variable-sized chunks. The first, whole file, typically
utilizes a file’s hash value as its identifier. Thus, if two or more files
hash to the same value, they are assumed to have identical contents
and only stored once (not including redundant copies). Thisform
of content addressable storage (CAS) is used in the EMC Centera
system [14]. Farsite [10] and the Windows Single Instance Store [6]
also perform deduplication on a per-file bases, though both use tra-
ditional identifiers and handle deduplication using a separate data
structure. The second type of deduplication, per-block deduplica-
tion, is exemplified by the Venti archival storage system [27]. In
Venti, files are broken into fixed sized blocks before deduplication,
so files that share some identical contents (but not all), maystill
yield storage savings. The third, and most flexible form, breaks
files into variable-length “chunks” using a hash value on a slid-
ing window; by using techniques such as Rabin fingerprints [28],
chunking can be done very efficiently. Variable-length chunks are
used in LBFS [25], Shark [4], and Deep Store [38].

Many distributed file systems, such as OceanStore [29], SNAD[24],
Plutus [20], and e-Vault [19], address file secrecy through the use
of keyed encryption. The use of cryptographic techniques inthese
systems range from the assumption that all incoming data is al-
ready encrypted, to central architecture elements that define the
system. However, none of these systems attempt to achieve the
storage efficiency that is possible through deduplication.High-
performance distributed file systems such as the Panasas Parallel
File System [37], Ceph [35], and Lustre [7] typically have much
less security than “standard” distributed file systems, trading higher
performance for lower security. While there is an effort to add
greater security to Ceph [21], this effort only involves authentica-
tion, not encryption.

At the opposite end of systems that provide secure, deduplicated
storage efficiency, some systems utilize security models that incur a
storage overhead. For example, PASIS [13] and POTSHARDS [33],
achieve secure storage through secret sharing [31]. While well
suited to long-term security, this technique incurs a very high stor-
age overhead. Similarly, steganographic systems, such as the Stegano-
graphic File System [3] and Mnemosyne [15], provide plausible
deniability over storage contents through the use of randomdata
blocks. In both secret sharing and steganography, the storage over-
head can be many times the size of the plaintext data.

In addition to data secrecy, several systems have addressedthe
demand for anonymity. Especially in the area of content distri-

bution, there is a desire for systems that can hide the identity of
data hosts, publishers and readers. For example, Publius uses en-
crypted data and secret sharing over keys to provide a censorship
resistant web publishing platform that provides a high degree of
writer anonymity [34]. Data encryption also provides the storage
host with a level of plausible deniability; as there is no clear owner,
a node’s operator can claim that they have no knowledge aboutthe
plain-text data stored on their node [9].

Of all of these file systems, only Farsite combined deduplication
with security. In its original design, its goal was to harness the
unused disk space in a network of desktop-class computers, and
present it as though it were a central file server [1]. In the origi-
nal implementation, security was provided through file encryption
where each user utilized a combination of symmetric and asym-
metric keys. An extension of the work was an attempt to achieve
better space efficiency through duplicate file coalescing [10]. To
this end, the authors developedconvergent encryption, in which
the hash of the data is used as the encryption key. This allows
users to independently encrypt identical plaintexts to thesame ci-
phertext. However, unlike our work, Farsite only coalescesat the
level of entire files. Our system coalesces data at a sub-file level,
thus achieving space savings with files that are merely similar, as
opposed to identical. Additionally, in the Farsite design,the client
generates the encrypted value and its identifier. We show that if
the key/value store for deduplicated data is not verified, its contents
may be susceptible to targeted collision attacks. Finally,we present
a model that allows secure, deduplicated storage in an anonymous
user scenario.

3. THREAT MODEL
In order to properly design and evaluate a secure storage system,

the threat model must be clearly laid out. In this section we iden-
tify the adversaries present in our model, our assumptions,and the
attacks that must be considered in a secure deduplication system.

As part of establishing our security model, it is important to es-
tablish a consistent notation. There are two primary cryptographic
functions that we utilize: encryption and hashing. An encryption
function takes two parameters and is denotede(K,P) = C, where
K is the encryption key,P is the plaintext andC is the ciphertext.
An encryption function has a corresponding decryption function
that uses a key and ciphertext to recover the original plaintext, ex-
pressed asd(K,C) = P.

Hashing is expressed in a manner similar to encryption. Sim-
ple hashing that does not utilize an encryption key is expressed as
the single parameter function,hash(P) = H. Generating a hash
of plain-text P using a hash function and the encryption keyKi,
known as an HMAC (keyed-Hash Message Authentication Code),
provides integrity as well as message authentication. We express
this function with the following notation:HMACi(P).

3.1 Assumptions
One of the most fundamental assumptions that we make is that

encrypted data is effectively random. The implication, in regards
to deduplication, is that random data yields very low storage gains.
We support this claim by examining the storage utilization of a sys-
tem where each user encrypts data with their own distinct keys and
the system deduplicates the encrypted data. For brevity, weassume
the encrypted data is divided into fixed-sized chunks, though a sim-
ilar argument can be made for variable-length chunks. At anypoint
in time, the system is storingk logical chunks of of lengthl. Each

chunk can take on any one of 2l = m values. We recursively derive
the physical storage utilization in chunks,sk, as

s1 = 1 (1)

sk = sk−1 +
(

1−
sk−1

m

)

(2)

= sk−1

(

1−
1
m

)

+1 (3)

= ∑k−1
i=0

(

1−
1
m

)i

(4)

= m1−k(mk
− (m−1)k) (5)

If a single chunk exists in the system, then the number of logical
and physical chunks is equal, thus our base case iss1 = 1. As-
suming a uniform distribution over encrypted chunks, the second
chunk will match with probability 1/m. In general, thek-th chunk
matches with probabilitysk−1/m. If k ≫ m thensk is very close
to m, which results in a great deal of deduplication. Unfortunately,
whenk ≫ m, performance may suffer and the size of file indices
can become unwieldy. In practice, we find thatm ≫ k and the util-
ity of deduplication is extremely small becausesk ≈ k. From this,
we must conclude that deduplication of traditionally-encrypted data
is largely ineffective. Since we are assuming that encrypted data
is random, we can model deduplication of random data using the
equation above. The chunk signature will operate on this random
data and so should, if it is a good hashing function, be uniformly
distributed as well. For chunks of non-trivial size—more than a few
bytes—the likelihood of a match is extremely small and so, with
extremely rare exceptions, every chunk will be unique and must be
stored in its entirety.

Our second assumption is that encryption provides an adequate
level of security for relatively short archival scenarios:if the data’s
lifetime is on the order of a few years, an attacker with access to
ciphertext generated by a modern cryptosystem will be unable to
determine the encryption key or derive the corresponding plaintext
value. We recognize that in very long-term scenarios, on theorder
of decades, this assumption may not hold [32]. Extending this work
into the secure, long-term area may be pursued as future work.

Next, we assume that an adversary that can sufficiently imitate a
user has access to that user’s data. In other words, if a malicious
user has acquired enough information about the user—user names
and passwords, for example—to participate in the system’s proto-
cols, then that user will obtain the standard results of thatprotocol.
This scenario holds true in almost every secure system.

Because our solution utilizes hash functions in the generation
of key material, we assume that they are cryptographically secure.
More specifically, we assume that they are both weakly and strongly
collision resistant. The former states that finding two input values
that hash to the same output value is an intractable problem.The
later, states that given a hash value, finding a value that hashes to
the same output value is intractable.

Archival storage is typically used as a write-once, read-maybe
store; thus, it stresses throughput rather than low-latency perfor-
mance. Most existing large-scale deduplication systems are used
as archival stores [27, 38]; the systems that are not often exhibit in-
frequent writes because they are well-suited for read-heavy work-
loads such as software distribution [4]. This usage patternis quite
different from the top storage tier of a hierarchical storage solution
that stresses low-latency access and frequent writes, and also differs
from backup solutions whose sole goal is high throughput writes,
with reads an option of last resort. We assume that this emphasis on

C l i e n t
C h u n kS t o r eM e t a d a t aS t o r e F i l e I / OF i l e M e t a d a t a

N o n � v e r i fi e d , p e r s i s t e n tk e y : v a l u e s t o r e V e r i fi e d , p e r s i s t e n tc h u n k I D : c h u n k s t o r e
Figure 1: The three primary players in the storage model and
their interactions. In a distributed storage system, the respon-
sibilities of the metadata server and chunk server are handled
by separate clusters of systems. In a single-server model, the
metadata and chunk server are on the same system.

throughput allows the system to accommodate a reasonable latency
penalty.

The data lifetimes we are considering are assumed to be on the
order of years, not decades. While this is longer than the filelife-
time often encountered in front-line storage [2, 22, 30], itis not as
long as the indefinite lifetimes that other secure, archivalsystems
are designed to support [33].

3.2 Players
As Figure 1 shows, at the protocol level, there are three primary

players in our storage model: the client, metadata store, and chunk
store. This arrangement maps to both single-server and distributed
storage architectures. In a single-server architecture, the metadata
store and chunk store are located on the same system, while a dis-
tributed storage system might choose to disconnect the metadata
store and chunk server, handling the duties of each in separate clus-
ters [35, 37].

Users interact with the system through theclient, which is the
starting point for both ingestion and extraction. As Figure1 illus-
trates, it is the central contact point between the other components
in the storage model. Unlike the other components in the storage
model, the client does not have any persistent storage requirements,
though the system assumes that users have reliable, secure access
to their keys.

The metadata store is responsible for maintaining the informa-
tion that users require in order to rebuild files from chunks —such
as maps and encryption keys. We model this persistent storage us-
ing a simple, unverified key:value architecture. In such a system,
when the user submits a key:value pair to the metadata server, the
server does not need to verify that the key correctly corresponds
to the value. For example, if the key is the hash of the value, the
server does not need to verify that the hash of the value is thesame
as the key that the user submitted.

The role of the third player, thechunk store, is to persistently
store data chunks, and to fulfill requests for chunks based ontheir
ID. The chunk store is also modeled as a key:value store, however,
unlike the metadata store, the chunk store must be able to verify
the correctness of a the key with regards to the value. This isdue
to the possibility of targeted-collision attacks, as described below,
that are possible within the chunk store.

In a deduplicated chunk store, a targeted-collision attackcould
be used to associate a false value with a given key. The pivotal dif-
ference between random collisions and targeted collisionsis that a

Ti me
M a l i c i o u sU s e r U n v e r i fi e d , D e d u p l i c a t e dC h u n k S t o r e U s e rt 0 I D m o n : C r a n d o m

" I D t u e e x i s t s , i g n o r e C t u e "

" . . . d u e M o n d a y . . . "" . . . d u e T u e s d a y . . . " I D m o nI D t u e
I D t u e : C r a n d o mI D w e d : C r a n d o mI D t h u : C r a n d o mI D f r i : C r a n d o m I D t u e : C t u e

C h u n k I D... ...

Figure 2: Targeted-collision attack in which a malicious user
exploits predictable data (in this example, a form letter with a
due date) to generate valid chunk IDs, and associate those IDs
with invalid chunks. If the user is the first to submit the ID,
subsequent chunks will be deduplicated to a garbage value.

user can exploit the predictable content of some data — in Fig2
the malicious user utilizes similarities in form letters — to generate
valid chunk identifiers. If an adversary can be the first to submit
those identifiers with a garbage chunk, and if the chunk storecan-
not verify the correctness of the identifiers, subsequent submissions
that have the same identifier will be deduplicated to the garbage
chunk.

In addition to the three players of the storage model, our system
identifies two adversaries, identified by their relationship to the sys-
tem: external and internal. The external attacker exists outside of
the system. This adversary does not have even simple insiderac-
cess, such as a user account, and can only intercept messagesor
attempt to compromise a user’s account.

In contrast, the internal attacker, or malicious insider, does have
at least limited inside access. These attackers are furtherdefined by
their level of access, ranging from a simple user account access, to
privileged root level access (as might be held by a maliciousadmin-
istrator). The existence of internal attackers implies that neither the
metadata store, nor the chunk store are assumed to be trustworthy.
Section 5 explores this implication by examining the security threat
posed by internal adversaries.

The goal in both of the security models we present is to provide
the users with a level of data protection from both external and
internal attackers, regardless of the adversaries access level (or in
the very least reduce the amount of data lost in a compromise).
Each model provides an additional set of security features.

4. SYSTEM DESIGN
In this section we describe our two primary secure deduplication

models: authenticated and anonymous. While similar, as Table 1
summarizes, each model offers a slightly feature set. We start by
describing the security features, and then proceed to introduce the
basic design of our secure deduplication techniques. Finally, we
present the specifics of the two models. In particular we describe
the contents of the metadata and chunk store for each, as wellas
their respective ingestion and extraction procedures.

The security property most associated with encryption issecrecy,
which states that only authorized users are able to read plaintext
data. Often, authorization is handled through key distribution; if a

Authenticated Anonymous
Data secrecy Yes Yes

Anonymity No Yes
Per user revocation Yes No

Storage mode Mutable Immutable

Table 1: Security feature-set offered by our two secure dedu-
plication models: anonymous, and authenticated. Note that
anonymity is incompatible with per-user revocation.

user is able to legitimately acquire the proper keys, she canaccess
and decrypt the data. Both of the models that we present offerdata
secrecy against both external and internal adversaries.

Anonymity allows the identity of a user to be hidden. This feature
has two facets. The first is anonymity with respect to users submit-
ting requests,i. e., read and write requests cannot be attributed to a
particular user. The second facet is anonymity with respectto stor-
age contents, which states that the system is unable to determine
which data is owned or accessible by a particular account.

Revocation is the ability to remove a user’s access to a given file.
In order for this to be done at a fine granularity, as in a per-user
revocation, the system must include authentication; per-user revo-
cation obviously cannot exist in a system without knowledgeof a
user’s identity. Revocation schemes can be described by theaction
that takes place at the time of the revocation. In active revocation,
access is immediately removed. This is often expensive, andmay
involve a fair amount of cryptographic computation. In lazyrevo-
cation, access is only removed when the data is changed. Thus, the
user is unable to see any changes that occur after the revocation, but
may have continuing access to what they were previously entitled
to view.

4.1 Secure Deduplication Overview
In both the anonymous and authenticated models, clients begin

the ingestion process by transforming a file into a set of chunks.
This is often accomplished using a content-based chunking pro-
cedure which produces chunks based on the contents of the file.
The advantage of this approach is that it can match shared content
across files even if that content does not exist at the multiple of a
given, fixed offset [25]. The algorithm selects chunks basedon a
threshold valueA and a sliding window of widthw that is moved
over the file. At each positionk in the file, a fingerprint,Fk,k+w−1,
of the window’s contents is calculated [28]. IfFk,k+w−1 > A, then
k is selected as a chunk boundary. The result is a set of variable
sized chunks, where the boundary between chunks is based on the
content of the data.

Both file chunking and encryption occur on the client. There
are a number of benefits to performing these tasks on the client, as
opposed to the server. First, it reduces the amount of processing
that must occur on the server. Second, by encrypting chunks on
the client, data is never sent in the clear, reducing the effectiveness
of many passive, external attacks. Third, a privileged, malicious
insider would not have access to the data’s plaintext because the
server does not need to hold the encryption keys.

Clients encrypt chunks usingconvergent encryption, which was
introduced in the Farsite system [10]. Using this approach,clients
use an encryption key deterministically derived from the plaintext
content to be encrypted; both Farsite and our system use a crypto-
graphic hash of the plaintext as the key. Since identical plaintexts
result in the use of identical keys, regardless of who does the en-
cryption, a given plaintext always results in the same ciphertext.

K = hash(chunk) (6)

Compared to other approaches, this strategy offers a numberof
advantages. As we have shown in Section 3, if each user encrypted
using his own key, the amount of storage space saved through dedu-
plication would be greatly reduced because the same chunk en-
crypted using two different keys would be would result in different
ciphertext (with very high probability). Second, attempting to share
a random key across several user accounts introduces a key sharing
problem. Third, a user that does not know the data plaintext value
cannot generate the key, and therefore cannot obtain the plaintext
from the ciphertext. This point is especially important since, in
contrast to an approach where the server encrypts the data, even a
root level administrator does not have access to a chunk’s plaintext
value without the key.

The primary security disadvantage of this approach, as identified
in its original description [10], is that it leaks some information. In
particular, convergent encryption reveals if two ciphertext strings
decrypt to the same plaintext value. However, this behavioris nec-
essary in systems that use deduplication, since it allows a system
to remove duplicate plaintext data chunks while only observing the
ciphertext; information leakage is part of the compromise needed
to achieve space-efficiency through deduplication.

Each ciphertext chunk must be assigned an identifier. In our
system, each chunk in the system is identified using the encrypted
chunk’s hash value, a technique sometimes referred to as content-
based naming.

chunk_id= hash(e(hash(chunk),chunk)) (7)

An alternative to using the hash of the encrypted chunk is to use
the hash of the hash of the plain-text chunk,i. e., the hash of the
encryption key is the chunk identifier. This approach offersa num-
ber of attractive qualities. First, performance is improved. In both
approaches the user performs two hashes: a key generation hash,
and an identifier generation hash. Assuming that key lengthsare
smaller than chunk lengths, performing two chunk hashes will be
more expensive than a chunk hash and a key hash. Second, if the
identifier can be derived from the key, then the file to chunk map
only needs to preserve the key, as opposed to the key and the iden-
tifier. However, there is a large drawback of using the hash ofthe
key as the identifier: the chunk store cannot verify that the chunk’s
content-based identifier is correct. As Section 3.2 explained, unver-
ified chunk signatures permit the use of targeted collision attacks.

The encrypted chunks themselves are stored within the chunk
store. In a distributed storage model, where there may be mul-
tiple chunk stores, the chunk list can also include the information
needed to locate the correct storage device. Alternatively, determin-
istic placement algorithms can be used to locate the correctstorage
devices based on the chunk’s identifier [18, 36, 8].

4.2 Authenticated Model
The authenticated model is the most similar to the original design

of convergent encryption as it is utilized in Farsite [10]. As with
their design, our authenticated model makes a number of assump-
tions regarding encryption keys and the key management techniques
available to users. First, we assume that each user has a symmet-
ric key that is private to that user. Second, we assume that each
user also has an asymmetric key pair. Third, it is also assumed that
a certificate authority exists to facilitate the trusted distribution of
public keys. Finally, it is assumed that users are able to generate
cryptographically sound encryption keys.

Ti me
M e t a d a t aS t o r e C l i e n t C h u n kS t o r et 0 " o p e n fi l e Y " , t i c k e te (K m a p , c h u n k m a p) e (K u s e r x _ p u b , K m a p) c h u n k i d e n t i fi e r , t i c k e t

" H e l l o , I a m U s e r X "c a p a b i l i t y t i c k e t
e n c r y p t e d c h u n k

Figure 3: Extraction in the authenticated model begins with
the client contacting the metadata store for the secure chunk
map, and the chunk map’s encryption key. From there, sub-
sequent communication involves requesting chunks from the
chunk store.

Ingestion begins with the client identifying the chunks andthen
encrypting them using convergent encryption. Following this, the
information needed to rebuild the files, including chunk locations,
names and encryption keys, is stored within a chunk map. As Ta-
ble 2 illustrates, this map is stored in the metadata store ina map
entry and accessed through a file’s inode number. Additionally, it
is encrypted using a dedicated map key. To allow authorized users
to decrypt the map, the map key is encrypted using the authorized
users’ public keys. These encrypted keys are identified via auser
identifier, and appended to the end of the encrypted chunk map;
this technique is similar to the widely used “lockbox” approach to
encrypting files [24, 20]. As more users are granted access tothe
file, additional encrypted keys can be appended to the map entry.
The final step of ingestion is to submit the encrypted chunks to the
chunk store. As Subsection 3.2 discussed, the chunk store isca-
pable of generating the chunk IDs, so the client is not required to
submit an identifier along with each chunk.

Extraction, as Figure 3 illustrates, follows a communications
path similar to that of ingestion. The process starts with the client
authenticating to the metadata store and submitting anopen() re-
quest. As shown in Table 2, the metadata store can use the file’s
inode number to locate the encrypted chunk map and list of en-
crypted map keys. Rather than return the chunk map and the entire
list of keys, the metadata store will only return the chunk map and
the key that corresponds to the user, resulting in less information
to transmit, and not leaking to the user the list of all users that
have access to the file. Finally, the client decrypts the map key
and subsequently the chunk map, and directs chunk requests to the
appropriate chunk store.

In addition to allowing multiple users access to a single chunk
map, the list of encrypted map keys also plays a central role in
revocation. If access to a file needs to be revoked for a specific
user, a new chunk key can be generated, the chunk map is encrypted
using the new key, and the list of encrypted keys is updated for the
users that still have access.

4.3 Anonymous Model
The goal of the anonymous model is to hide the identities of both

authors and readers. This model operates under the assumption that
encrypted data is secure against an adversary that does not posses
the correct encryption key; thus, authentication is unnecessary.

One of the drawbacks of an anonymous data-store is that both
well-behaved and malicious users are anonymous. This opensthe
door to attacks in which authorized users perform maliciousacts,

Metadata Store Key Value
File inode file name inode number
Map entry inode e(Kmap,chunk map)[(uid,e(Kuser_pub,Kmap))]

Chunk Store Chunk ID Encrypted Chunk
hash(encrypted chunk) e(hash(chunk),chunk)

Table 2: Authenticated model persistent storage details. The map entry stores a chunk map (an ordered list of the data needed to
request and decrypt chunks) and is encrypted using a dedicated map key. This key is then encrypted using the public key of users
that are authorized to access the file and appended to the encrypted chunk map.

Metadata Store Key Value
File entry file name inode number

Map reference HMACuser(inode) e(Kuser,Kmap)
Map entryi HMACmap(inode,mapi−1) e(Kmap, [chunk map])

Chunk Store Chunk ID Encrypted Chunk
hash(encrypted chunk) e(hash(chunk),chunk)

Table 3: Details of the anonymous model for a persistent chunk
store. The model makes exclusive use of symmetric keys. Map
references are used to store the map encryption key in a man-
ner that allows users to see changes made by other authorized
members.

such as deleting or changing data, under the assumption thatthey
cannot be definitively identified. One of the ways to guard against
such an attack is to make both the metadata and chunk stores im-
mutable. This approach thus implies that file changes are reflected
in a versioned history of chunk maps, similar to the mechanism
used in WAFL to transition to a new version of the file system [17].
Thus, as in systems such as SUNDR [23], malicious changes are
isolated in a branch of the original file.

As Table 3 illustrates, the system makes exclusive use of sym-
metric keys; thus, the model must make several assumptions re-
garding encryption keys. First, it is assumed that each userhas a
symmetric encryption key that is private to the user. The useof a
symmetric key for each user does not compromise anonymity be-
cause the key is used in HMAC procedures and, therefore, only
the owner can confirm that the hash was created with their key.
Second, it is assumed that users have the ability to generatecrypto-
graphically sound keys. Third, it is assumed that users are able to
communicate off-line (relative to the chunk store) for the purposes
of sharing keys.

In the anonymous model, as in the authenticated model, inges-
tion begins with the client identifying and encrypting chunks. The
information needed to reconstruct the file from chunks is written to
a map entry and encrypted using a map key that is generated when
the file is created. This map entry is then written to the metadata
store.

As Figure 4 shows, the system utilizes a map reference, specific
to each user, that holds the map key to allow multiple users tosee
file changes made by other authorized users. Thus, file accessis
granted outside of the system by sharing the map key. When the
user is given a map key, they create and store a map reference in the
metadata store. In this manner, the only key the client is required
to remember is their private symmetric key.

If changes are made to a file, the new map entry is written to the
metadata store as a linked list. As Figure 4 illustrates, each user’s
map reference is used to locate the root of this linked list through an
HMAC keyed with the map key. Each time a client commits a write

Ti me
M e t a d a t aS t o r e C l i e n t C h u n kS t o r et 0 " o p e n fi l e X "i n o d eH M A C u s e r (i n o d e)e (K u s e r , K m a p)H M A C m a p (i n o d e , I V)e (K m a p , m a p 0)H M A C m a p (i n o d e , m a p 0)e (K m a p , m a p 1)H M A C m a p (i n o d e , m a p n)" N o s u c h v a l u e " h a s h (e n c r y p t e d c h u n k)e n c r y p t e d c h u n k

P h a s e 1 : O p e n t h e fi l eP h a s e 2 : O b t a i n t h e c h u n km a p ' s k e yP h a s e 3 : O b t a i n t h en e w e s t c h u n k m a p
P h a s e 3 : O b t a i nt h e c h u n k s

Figure 5: Extraction in the anonymous model begins with an
open() request which returns an inode number. Using the file’s
inode number and the user’s symmetric key, a user can obtain
the chunk list through his chunk list reference. Requests for
chunks are then directed to the chunk store.

to the system, a new node is appended to the list. Traversal ofthe
list is accomplished through an HMAC, keyed with the map key,of
the inode, and the previous map entry. As with the authenticated
model, the client submits chunks to the chunk store in the final
stage of ingestion.

Sharing files could also be accomplished by using the authorized
user’s symmetric key to encrypt the map key, and appending this
encrypted key to the chunk map. While similar to the authenticated
model’s strategy, this approach suffers from a number of disadvan-
tages. First, any information that identifies the user’s keyin the list
is breaking anonymity. Second, even if an HMAC of the inode was
used to hide the user’s identity, the list would still leak the number
of users that have access to the file. Third, the use of map refer-
ences provides a level of coarse grained revocation. A chunkmap
can be created and encrypted with a new chunk map key. This new
key would then need to be distributed to authorized users, who in
turn can create new map references.

File extraction in the anonymous model, illustrated in Figure 5,
proceeds in four phases. First, the client contacts the metadata store
to issue anopen() request and obtain the file’s inode. Second,

M a p R e f . [C h u n k M a p] 0K u s e r 1 K m a p
M a p R e f .K u s e r 2 K m a p

K m a pH M A C m a p (i n o d e)H M A C m a p (i n o d e)H M A C u s e r 1 (i n o d e)
H M A C u s e r 2 (i n o d e)

K u s e r 1
K u s e r 2 [C h u n k M a p] 1K m a pH M A C m a p (i n o d e , m a p 0)

Figure 4: The information needed to reconstruct files is stored as a linked list of immutable chunk maps that are encryptedusing a
dedicated key,Kmap. Each user creates a map reference, protected by their unique symmetric key, to store the map key. This allows
users to see changes created by other authorized users, while only requiring them to remember one key (their unique user key).

the client obtains the map’s key by utilizing the map reference, as
shown in Figure 4. In the third phase, the client traverses the linked
list of map entries by issuing map requests until they arriveat the
version they want, or the map request fails, indicating thatthe end
of the list has ben reached. In the fourth and final phase, the client
utilizes the map entry and map key to determine which chunks to
request from the chunk store.

5. SECURITY ANALYSIS
The evaluation of the two secure deduplication models that we

have presented is intended to demonstrate that the system issecure
in the face of a variety of foreseeable scenarios. First, we examine
the attacks that an external adversary could inflict upon thesystem.
Second, we examine the security leaks possible when faced with a
malicious insider who might have access to all of the raw data, such
as system administrator with root-level access. Third, we examine
the security implications involved when the keys in the system be-
come compromised.

5.1 External Adversaries
For a system to be considered secure, it must be able to pre-

vent information from leaking to an external attacker. A passive
example of such an adversary would be an attacker that intercepts
messages sent between players in the system. An active example is
an adversary that changes or transmits messages.

In both the authenticated and external model, the passive attacker
problem is largely ameliorated by having the client performthe
chunking and encryption. Thus, plaintext data is never transmitted
in the clear. However, the anonymous model assumes that the keys
can be exchanged in a secure manner but does not explicitly state
how this is accomplished. A potential area of future work could be
to define a secure protocol for this procedure.

Since data transmitted between players is always encrypted, the
danger from an active adversary is one of messages being changed.
For example, in the basic models we have presented, a chunk could
be intercepted en route to the chunk store and modified. While
our design does not explicitly address such scenarios, these attacks
can be largely mitigated through the use of transport layer security
(TLS) approaches such as Secure Sockets Layer.

As the anonymous model includes the goal of hiding the user’s
identity, an external adversary can gain some information by iden-
tifying where requests originate from. As with the man-in-the-
middle type attacks previously discussed, our system does not di-

rectly deal with the issue, however solutions such as onion rout-
ing have addressed this concern, and are compatible with ourde-
sign [12].

5.2 Internal Adversaries
As discussed in Section 3, a secure system must also provide

protection from internal attackers. To this end, we analyzethe abil-
ity of an inside adversary to launch attacks based on their location
within the system and across their potential access levels.

As in most systems, a malicious insider with full access can
change or delete any information he chooses, resulting in a denial
of service attack. From a security standpoint, our goal is, therefore,
to limit an insider’s ability to make targeted changes. There are two
facets to limiting such changes. First, we would like to limit an in-
sider’s ability to target specific files. Second, we would like to limit
an adversary’s ability to make undetectable changes; overwriting a
value with garbage is generally more detectable that overwriting it
with a semantically valid, but incorrect value.

5.2.1 Authenticated Model
In the authenticated model, the metadata server does leak some

information to an internal adversary. First, an insider hasaccess
to the file name to inode mapping. Second, the inode number to
encrypted map entry is also available to an internal adversary. Fi-
nally, a malicious insider can determine the files to which a user
has access, and the users that have access to a specific file.

Using the information available, a inside attacker at the metadata
server is able to launch a variety of attacks. First, an inside adver-
sary can delete metadata and revoke access for specific users. If the
client is not knowledgeable about which files it should be able to
access, this attack is undetectable. Second, when a client requests
a file, the map entry of a different file accessible by the client could
be returned. Whether or not this attack is detected would rely upon
the client’s understanding of the file’s contents.

Targeted changes to file contents, however, require the adversary
to obtain the map key. In the current design, users grant access by
submitting map keys encrypted using the authorized user’s public
key. In this way, a malicious insider is never exposed to the plain-
text key needed to access a map entry’s details. If the systemwere
to encrypt map keys, a malicious insider could change the contents
of map entries. One way to further strengthen the system, then,
would be to hide the map entry from an inside attacker. This could
be accomplished using a technique such as the anonymous model’s

map references, which, as shown in Figure 4, requires the mapkey
in order to locate the map entry.

Finally, if a malicious insider at the metadata store also dis-
tributes capability tickets, as is done in some systems, then it can be
assumed that the adversary also has access to chunks; a malicious
metadata store can simply issue itself a valid capability. However,
without access to the map key, the adversary would not know which
chunks correspond to a give file, and would lack the key neededto
decrypt a chunk.

5.2.2 Anonymous Model
In both the authenticated and anonymous model, an inside ad-

versary at the chunk store would be unable to modify data without
being detected. Since the name of the chunk is based on the con-
tent, a user would not be able to request the modified chunk, orat
the very least could tell that the chunk they requested is different
from the chunk that was returned to them. An insider at the chunk
store could, of course, delete chunks or refuse to fulfill chunk re-
quests.

In the anonymous model, the metadata store does leak some in-
formation to an internal adversary. First, an insider can deduce
which inode numbers map to which files. This is not a serious is-
sue because the user’s symmetric key is needed to map inodes to
map references. More importantly, however, an insider could de-
duce which entries are map references, as they will all be thesame
length. This is due to the fact that their payload is always one key,
as opposed to a variable list of chunk metadata. One way to avoid
leaking the fact that an entry is a map-key is to append some amount
of random data to the entry.

5.3 Key Compromises
Any system that utilizes cryptographic primitives is highly de-

pendent on the controlled access of encryption keys for the security
of the system. As Kerckhoff’s principle states, the security of the
system comes from an adversary not knowing the encryption key;
it is assumed that the adversary knows the protocols and cryptosys-
tems. Thus, one way to analyze a security system is to examinethe
effects of compromised keys.

5.3.1 Authenticated Model
In the authenticated model, the user’s identity is tied to their

asymmetric key pair. Further, if an adversary learns a usersprivate
key, it is assumed they have the users complete key pair; the public
key can easily be acquired from a certificate server. In this sce-
nario, a malicious user may be able to fully impersonate the key’s
rightful owner, and obtain all the abilities of that user. Asa safe-
guard against this possibility, it is recommended that authentication
require more information than the user’s key, but this approach is
outside the scope of our model.

A compromise of the other metadata key in the authenticated
model, the map key, results in a less drastic information leak. If an
adversary learns the map key, the problem of authenticatingto the
metadata store still exists. Finally, the revocation process can be
used to generate a new map key, making the old key invalid. Thus,
the system is relatively safe in the event of a compromised map key.

Similarly, if the last key of the authenticated model, the chunk
key, is compromised, the information leak is rather small. This is
due to the fact that an adversary with the chunk key would still
need to know the chunk identifier, and be able to authenticateto the
chunk server in order to obtain plaintext data.

5.3.2 Anonymous Model
In the anonymous model, the user’s private, symmetric key is

very important to the security of the system. If a malicious user
obtains the user’s key, it can be safely assumed that they canaccess
any file that the user has stored a map reference for. Another po-
tential attack they can issue in this scenario is to extend the length
of the linked list of map entries indefinitely. However, since the
anonymous model uses immutable chunks, a new key could be gen-
erated, and the file branched.

If an adversary obtains the map key, the adversary will only need
the inode number of a the file to obtain plaintext data. Assuming
that the number of inodes is relatively small, this can be accom-
plished using a brute force attack. Additionally, as the system is
immutable, even generating a new map key will result in the origi-
nal file being compromised.

As in the authenticated model, an adversary with the chunk’s
encryption key, would still need to know the chunk identifierin
order to obtain plaintext data.

6. FUTURE WORK
While the models we have presented demonstrate some of the

ways that security and deduplication can coexist, works remains to
create a fully realized, secure, space efficient storage system. Open
areas for exploration exist in both security, as well as deduplication.

Storage efficiency can be increased in a number of ways through
intelligent chunking procedures. For example, the size of the file
may be used to determine the average chunk size, potentiallyyield-
ing greater deduplication in data such as media files, which tend
to be large and exhibit an “all or nothing” level of similarity with
other files. However, since some large files, such as mail archives or
tar files, may be aggregations of smaller files, another possibility
would be to adjust chunking parameters based on file types. Since
chunking is done at the clients rather than at the servers, this ap-
proach only requires that clients agree on the way they divide files
into chunks. Moreover, taking this approach does not increase the
likelihood of collision, which remains very small for chunkidenti-
fiers of 160 bits or longer.

Unfortunately, techniques such as delta compression on files or
chunks [11, 38], while they have proven effective for standard dedu-
plicated storage systems, may not work well with encryptionbe-
cause clients cannot access encrypted chunks for any files but their
own, limiting the source material for deduplication. Moreover,
approaches that try to locate similar chunks in a chunk storewill
likely be ineffective because they require plaintext data for index-
ing; similar, but not identical, plaintext chunks will result in cipher-
text chunks that have no similarity.

Another way to increase storage efficiency would be to provide
deletion and garbage collection. While these are straightforward
to implement in many systems, storage reclamation can be difficult
in a system that uses deduplication because a single chunk may
be referenced by many different files. Thus, removing a chunkre-
quires an understanding of how many files reference the chunk. A
common approach to deletion in a deduplicated file system uses
reference counts to track the number of files that use a particular
chunk. Of course, such a system would need to ensure that a ma-
licious user could not launch a denial of service type attacksimply
by deleting chunks or modifying reference counts.

Currently, our model provides an all or nothing level of access; if
a user has the map key, they have access to the file. Future designs
could utilize multiple levels of permissions. Thus, a user could
be allowed to read a file, but the system would prevent them from
deleting information.

Finally, even in the anonymous model, a secure capability from
the metadata store could be used to implement file locking. Cur-
rently, there is no guard against multiple users writing to the same
chunk map. While the anonymous model is immutable and there-
fore all versions of a file are present, locking would still allow for
changes to appear at the correct order in the list of maps. This
would, of course compromise some of the users anonymity, as their
requests would form a distinct session.

7. CONCLUSION
We have developed two models for secure deduplicated storage:

authenticated and anonymous. These two designs demonstrate that
security can be combined with deduplication in a way that pro-
vides a diverse range of security characteristics. In the models we
present, security is provided through the use of convergentencryp-
tion. This technique, first introduced in the context of the Farsite
system [1, 10], provides a deterministic way of generating an en-
cryption key, such that two different users can encrypt datato the
same ciphertext. In both the authenticated and anonymous models,
a map is created for each file that describes how to reconstruct a
file from chunks. This file is itself encrypted using a unique key.
In the authenticated model, sharing of this key is managed through
the use of asymmetric key pairs. In the anonymous model, storage
is immutable, and file sharing is conducted by sharing the mapkey
offline and creating a map reference for each authorized user.

In our evaluation, we have analyzed the security of each model
with regard to a number of security compromises. We found that
the system is mostly secure against external attackers. Further, the
security threats that our models do not explicitly guard against can
be addressed through the addition of standard secure communica-
tions techniques such as transport later security. Security compro-
mises by a malicious insider are largely mitigated from the design’s
avoidance of server side encryption. Since insiders are never ex-
posed to plain-text or encrypted keys, their ability to change meta-
data values in an undetectable way is greatly diminished. Security
is even more apparent in the chunk store where the content ad-
dressed nature of secure chunks intrinsically makes the detection
of malicious changes quite noticeable. Finally, we examined the
information leaks resulting from key compromises and foundthat
the most severe security breaches result from the loss of theclient’s
key. The damage in the event of such a key loss is confined, how-
ever, to the user’s files. Moreover, the breach of client’s keys is a
serious threat in most secure systems.

Acknowledgments
We thank the members of the Storage Systems Research Center
(SSRC) for spirited discussions that helped focus the content of
this paper. This work was supported in part by the Departmentof
Energy under award DE-FC02-06ER25768 and industrial sponsors
of the Storage Systems Research Center at UC Santa Cruz, includ-
ing Agami Systems, Data Domain, Hitachi, LSI Logic, NetApp,
Seagate, and Symantec.

8. REFERENCES
[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cermak,

J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and
R. Wattenhofer. FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In
Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI), Boston, MA, Dec.
2002. USENIX.

[2] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A
five-year study of file-system metadata. InProceedings of the
5th USENIX Conference on File and Storage Technologies
(FAST), pages 31–45, Feb. 2007.

[3] R. Anderson, R. Needham, and A. Shamir. The
steganographic file system. InProceedings of the
International Workshop on Information Hiding (IWIH 1998),
pages 73–82, Portland, OR, Apr. 1998.

[4] S. Annapureddy, M. J. Freedman, and D. Mazières. Shark:
Scaling file servers via cooperative caching. InProceedings
of the 2nd Symposium on Networked Systems Design and
Implementation (NSDI), pages 129–142, 2005.

[5] D. Bhagwat, K. Pollack, D. D. E. Long, E. L. Miller, J.-F.
Pâris, and T. Schwarz, S. J. Providing high reliability in a
minimum redundancy archival storage system. In
Proceedings of the 14th International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ’06), Monterey, CA,
Sept. 2006.

[6] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur.
Single instance storage in Windows 2000. InProceedings of
the 4th USENIX Windows Systems Symposium, pages 13–24.
USENIX, Aug. 2000.

[7] P. J. Braam. The Lustre storage architecture.
http://www.lustre.org/documentation.html, Cluster File
Systems, Inc., Aug. 2004.

[8] A. Brinkmann, S. Effert, F. Meyer auf der Heide, and
C. Scheideler. Dynamic and redundant data placement. In
Proceedings of the 27th International Conference on
Distributed Computing Systems (ICDCS ’07), 2007.

[9] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:A
distributed anonymous information storage and retrieval
system.Lecture Notes in Computer Science, 2009:46–66,
2001.

[10] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and
M. Theimer. Reclaiming space from duplicate files in a
serverless distributed file system. InProceedings of the 22nd
International Conference on Distributed Computing Systems
(ICDCS ’02), pages 617–624, Vienna, Austria, July 2002.

[11] F. Douglis and A. Iyengar. Application-specific
delta-encoding via resemblance detection. InProceedings of
the 2003 USENIX Annual Technical Conference, pages
113–126. USENIX, June 2003.

[12] D. Goldschlag, M. Reed, and P. Syverson. Onion routing.
Communications of the ACM, 1999.

[13] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter.
Efficient Byzantine-tolerant erasure-coded storage. In
Proceedings of the 2004 Int’l Conference on Dependable
Systems and Networking (DSN 2004), June 2004.

[14] H. S. Gunawi, N. Agrawal, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and J. Schindler. Deconstructing
commodity storage clusters. InProceedings of the 32nd Int’l
Symposium on Computer Architecture, pages 60–71, June
2005.

[15] S. Hand and T. Roscoe. Mnemosyne: Peer-to-peer
steganographic storage.Lecture Notes in Computer Science,
2429:130–140, Mar. 2002.

[16] Health Information Portability and Accountability Act, Oct.
1996.

[17] D. Hitz, J. Lau, and M. Malcom. File system design for an
NFS file server appliance. InProceedings of the Winter 1994

USENIX Technical Conference, pages 235–246, San
Francisco, CA, Jan. 1994.

[18] R. J. Honicky and E. L. Miller. Replication under scalable
hashing: A family of algorithms for scalable decentralized
data distribution. InProceedings of the 18th International
Parallel & Distributed Processing Symposium (IPDPS
2004), Santa Fe, NM, Apr. 2004. IEEE.

[19] A. Iyengar, R. Cahn, J. A. Garay, and C. Jutla. Design and
implementation of a secure distributed data repository. In
Proceedings of the 14th IFIP International Information
Security Conference (SEC ’98), pages 123–135, Sept. 1998.

[20] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: scalable secure file sharing on untrusted
storage. InProceedings of the Second USENIX Conference
on File and Storage Technologies (FAST), pages 29–42, San
Francisco, CA, Mar. 2003. USENIX.

[21] A. W. Leung, E. L. Miller, and S. Jones. Scalable security for
petascale parallel file systems. InProceedings of the 2007
ACM/IEEE Conference on Supercomputing (SC ’07), Nov.
2007.

[22] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller.
Measurement and analysis of large-scale network file system
workloads. InProceedings of the 2008 USENIX Annual
Technical Conference, June 2008.

[23] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). InProceedings of the
6th Symposium on Operating Systems Design and
Implementation (OSDI), San Francisco, CA, Dec. 2004.

[24] E. L. Miller, D. D. E. Long, W. E. Freeman, and B. C. Reed.
Strong security for network-attached storage. InProceedings
of the 2002 Conference on File and Storage Technologies
(FAST), pages 1–13, Monterey, CA, Jan. 2002.

[25] A. Muthitacharoen, B. Chen, and D. Mazières. A
low-bandwidth network file system. InProceedings of the
18th ACM Symposium on Operating Systems Principles
(SOSP ’01), pages 174–187, Oct. 2001.

[26] M. G. Oxley. (H.R.3763) Sarbanes-Oxley Act of 2002, Feb.
2002.

[27] S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. InProceedings of the 2002 Conference on
File and Storage Technologies (FAST), pages 89–101,
Monterey, California, USA, 2002. USENIX.

[28] M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

[29] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: the OceanStore prototype. In
Proceedings of the Second USENIX Conference on File and
Storage Technologies (FAST), pages 1–14, Mar. 2003.

[30] D. Roselli, J. Lorch, and T. Anderson. A comparison of file
system workloads. InProceedings of the 2000 USENIX
Annual Technical Conference, pages 41–54, San Diego, CA,
June 2000. USENIX Association.

[31] A. Shamir. How to share a secret.Communications of the
ACM, 22(11):612–613, Nov. 1979.

[32] M. W. Storer, K. M. Greenan, and E. L. Miller. Long-term
threats to secure archives. InProceedings of the 2006 ACM
Workshop on Storage Security and Survivability, Alexandria,
VA, Oct. 2006.

[33] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti.
POTSHARDS: secure long-term storage without encryption.
In Proceedings of the 2007 USENIX Annual Technical
Conference, pages 143–156, June 2007.

[34] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A
robust, tamper-evident, censorship-resistant web publishing
system. InProceedings of the 9th USENIX Security
Symposium, pages 59–72, Denver, CO, Aug. 2000.

[35] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance distributed
file system. InProceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI),
Seattle, WA, Nov. 2006. USENIX.

[36] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn.
CRUSH: Controlled, scalable, decentralized placement of
replicated data. InProceedings of the 2006 ACM/IEEE
Conference on Supercomputing (SC ’06), Tampa, FL, Nov.
2006. ACM.

[37] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller,
J. Small, J. Zelenka, and B. Zhou. Scalable performance of
the Panasas parallel file system. InProceedings of the 6th
USENIX Conference on File and Storage Technologies
(FAST), pages 17–33, Feb. 2008.

[38] L. L. You, K. T. Pollack, and D. D. E. Long. Deep Store: An
archival storage system architecture. InProceedings of the
21st International Conference on Data Engineering (ICDE
’05), Tokyo, Japan, Apr. 2005. IEEE.

