
USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 147

Horus: Fine-Grained Encryption-Based Security for Large-Scale Storage

Yan Li1, Nakul Sanjay Dhotre1, Yasuhiro Ohara1,
Thomas M. Kroeger2, Ethan L. Miller1, Darrell D. E. Long1

1Storage Systems Research Center, University of California, Santa Cruz, CA 95064, USA
2Sandia National Laboratories, Livermore, CA 94550, USA

Abstract
With the growing use of large-scale distributed systems,
the likelihood that at least one node is compromised is
increasing. Large-scale systems that process sensitive
data such as geographic data with defense implications,
drug modeling, nuclear explosion modeling, and private
genomic data would benefit greatly from strong security
for their storage. Nevertheless, many high performance
computing (HPC), cloud, or secure content delivery net-
work (SCDN) systems that handle such data still store
them unencrypted or use simple encryption schemes, re-
lying heavily on physical isolation to ensure confiden-
tiality, providing little protection against compromised
computers or malicious insiders. Moreover, current en-
cryption solutions cannot efficiently provide fine-grained
encryption for large datasets.

Our approach, Horus, encrypts large datasets using
keyed hash trees (KHTs) to generate different keys for
each region of the dataset, providing fine-grained secu-
rity: the key for one region cannot be used to access an-
other region. Horus also reduces key management and
distribution overhead while providing end-to-end data
encryption and reducing the need to trust system oper-
ators or cloud service providers. Horus requires little
modification to existing systems and user applications.
Performance evaluation shows that our prototype’s key
distribution is highly scalable and robust: a single key
server can provide 140,000 keys per second, theoretically
enough to sustain more than 100 GB/s I/O throughput,
and multiple key servers can efficiently operate in paral-
lel to support load balancing and reliability.

1 Introduction

High performance computing (HPC) systems are used in
many critical computation tasks, such as simulation of
new energy sources as used by the Department of En-
ergy [12], finite element analysis for structural simula-
tion, and new drug development. However, much of this

information must remain confidential due to either na-
tional security or business concerns.

Many of today’s HPC systems rely on the perime-
ter defense model: strong physical defense is deployed
around a system’s perimeter, but the security within the
defense perimeter is relatively loose. Per our discussion
with U.S. Department of Energy researchers, this “hard
exterior, soft interior” model is failing1. The lack of se-
curity in HPC systems is becoming an issue because in-
dividual systems are very expensive, and thus must be
shared between multiple projects of different classifica-
tion levels. Increasingly, there are also concerns over in-
formation leakage from malicious insiders.

Unfortunately, current data encryption technologies
don’t work well with petascale datasets: they are either
coarse-grained or have high key management overhead,
and they fail to provide security in the face of a single
component compromise or untrusted operator.

To address these problems, we developed Horus2, a
novel approach to data encryption for large-scale sys-
tems that expands on the preliminary ideas proposed by
Rajendran et al. [28]. In this paper, we present a full de-
sign for Horus, describe an implementation and its eval-
uation, and give a thorough performance discussion. Ho-
rus provides fine-grained encryption-based security for
very large datasets with low key distribution overhead by
leveraging keyed hash trees (KHTs) to generate different
keys for each region of the file. A client can only access a
file region for which it has a key, and cannot use its keys
to access other regions. The tree structure allows keys to
be generated for large and small regions as needed. Each
client only has the minimal set of range keys it needed to
finish its work, limiting data leakage when multiple jobs
are running on the same HPC nodes. Furthermore, Horus
confines the server-side key calculation function to a key
distribution cluster (KDC) that is independent from both
the persistent file store and the nodes doing file I/O. In

1Private communication.
2Horus is the god of protection in ancient Egyptian religion.

148 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

this arrangement, the root key for a file’s KHT is stored
encrypted in the file system, and only the KDC sees the
root key; the computation nodes only receive the keys
they require. Thus, a single compromised node can only
reveal data it can access; data from the rest of the file re-
mains safe. Deployment of Horus is straightforward be-
cause only small changes are needed to existing systems:
Horus can be integrated into an existing file system or
used as an encryption layer in existing middleware sys-
tems.

This paper presents first describes the design of Ho-
rus. We then discuss the implementation of our proto-
type system. Our evaluation of the prototype shows high
performance and scalability: one key distribution server
was able to provide 140,000 keys per second, sufficient
to sustain more than 100 GB/s I/O throughput. In the
BTIO Class C benchmark, Horus write performed much
better than the traditional fine-grained encryption mode
and was only 6.9% slower than the theoretical AES en-
cryption speed upper bound.

2 Background

A typical HPC architecture [14, 8] includes a large num-
ber of compute nodes, a relatively small number of spe-
cial purpose servers, e.g., metadata servers (MDS) and
I/O nodes, and a separate dedicated storage system, as
shown in Figure 1. Large parallel file systems such
as Lustre [7], PFS [36], Ceph [35], Hadoop [32], and
GPFS [30] decouple data control and data access paths,
allowing management and security decisions to be cen-
tralized in a small metadata cluster. However, few (if
any) HPC file systems implement any security beyond
the use of POSIX-style permissions to restrict access to
files. Moreover, existing systems that rely upon the MDS
or the I/O node to provide security via capabilities must
place complete trust in those nodes.

The low level of security in HPC systems raises the
following issues:

1. HPC systems are often shared among applications
because they are very expensive to build and run.
Most HPC compute nodes are running processes
as the root user, making stealing information from
other tasks or previous tasks from the same node
very easy.

2. Without encryption, all storage media must be care-
fully tagged, guarded, and tracked; losing media can
mean data leakage. The management cost can be
very high for large datasets. For HPC applications
running in the cloud, tracking all storage media is
impossible.

HPC Cluster

Compute
nodeCompute

nodeCompute
node

Compute
nodeCompute

nodeCompute
node

Storage
Storage

node

Storage
Storage

node

I/O
nodeI/O

nodeI/O
node

MDS
MDS

MDS

network
Horus
KDSHorus

KDSHorus
KDS

Figure 1: A simplified HPC model. There are many com-
pute nodes with separate dedicated storage connected via
a network. The system typically includes a number of
special nodes, such as I/O nodes and/or MDS. The Horus
key distribution servers are shown as independent nodes
outside the cluster.

3. Encryption can be used to secure data on disk, but
key management for petascale datasets is a huge
burden. If the data owner needs fine-grained secu-
rity and encrypts a dataset of 1 TB using a unique
key for each 4 KB data block, there will be more
than 268 million keys to store, track, and distribute.
If each key is 256 bits, those keys will take 8 GB to
store, and will create a performance disaster during
key distribution. We call this distributed-all-block-
key method the naı̈ve key distribution mode.

4. The “trust barrier”: software, system operators, or
cloud service providers need to be fully trusted. A
compromised computer or a malicious insider can
cause a great deal of damage, as exemplified by
the leaked documents on WikiLeaks [6] and Google
Gmail snooping scandal [23].

5. The rigid perimeter defense model limits the ad-
vancement of HPC and cloud computing technolo-
gies. Huge future computing tasks may need a
cross-site, planetwise supercomputer that spans sev-
eral data centers or institutions; the defense perime-
ter will be so huge that defending it will become
very expensive or even impossible.

6. Prior studies have shown that adding local storage to
compute nodes can improve an HPC system’s per-
formance by alleviating the checkpoint-restart over-
head [14, 8]. However, concerns over exposing
locally-stored sensitive data to other processes on
the same compute node have hindered the adoption
of this optimization technique, in part because of the
insecurity of per-node local storage.

The last issue is looming larger, as HPC architectures
look to node-local storage both for checkpointing and

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 149

overall integration of storage into the computing frame-
work [10]. While this approach has the potential to
greatly improve performance, it also poses a significant
security risk, as data from prior computations may still
be stored on a node’s local storage, exposed to attacks by
the currently-running computation.

Recently, there have been several attempts to provide
greater security for HPC file systems. Maat [21] provides
scalable authorization and authentication, albeit not data
confidentiality, for the Ceph file system. Ceph breaks
files up into objects, each of which is stored and accessed
individually; the Maat protocol allows the restriction of
access to individual objects on particular disks. How-
ever, permissions in Maat are granted at the file level,
and Maat was explicitly designed to limit the number
of unique capabilities, making it poorly suited for fine-
grained access control. Moreover, Maat only handles
authorization—files handled by Maat are stored unen-
crypted. Thus, under Maat, a single malicious client
can cache authorizations for an entire file, and a ma-
licious insider can obtain data from stolen storage me-
dia since it is stored in the clear. There have also been
attempts to integrate stronger security into MapReduce
frameworks [17], but they are primarily limited to net-
work authentication protocols and encrypting data trans-
fers, and do not support storing encrypted data on disk.
Airavat [18] further confines computations on data in the
MapReduce framework, but still operates on data stored
in the clear on storage nodes.

Actual encryption of portions of HPC files was pro-
posed by Banachowski, et al. [5]. However, the approach
they proposed requires one entry in an s-node (security
node) for each region to be separately secured; this ap-
proach requires too much storage and key distribution
overhead for a file in which each 4 KB block must be
encrypted by a separate key with a separate set of per-
missions. Moreover, their approach restricts access by
user; we want to dynamically restrict access by client as
well.

Cloud service providers are also providing primitive
encryption for HPC applications, such as Amazon’s
server-side [2] and client-side encryption [3]. However,
with server-side encryption, the data owner must fully
trust the service provider, and all data blocks can be de-
crypted by one master key, which provides a single point
of compromise. With client-side encryption, data owners
must do their own key management, which can be a huge
burden as described above.

While strong security is rare in HPC file systems,
there are many approaches to providing strong secu-
rity for smaller-scale file systems. Systems such as
Cepheus [16], SNAD [25], and Plutus [19] all facili-
tate encryption at the client in a networked file system,
preventing the compromise of a disk from leaking con-

fidential data. All use lockboxes to secure a symmet-
ric data encryption key common to all users by encrypt-
ing the symmetric key with each user’s key, and storing
one lockbox per user. The symmetric encryption key
can be generated per-file or per-block; per-file keys are
more efficient, but allow a malicious client to read an
entire file with just one key. Aguilera, et al. [1] intro-
duced a capability-based approach that allows access to
be granted to ranges rather than simple blocks, but it does
not scale well to fine-grained protection of terabyte-scale
files because of the overhead of key storage and capabil-
ity distribution.

Rajendran et al. [28] described an initial design for
Horus, which uses a keyed hash tree to generate keys
for different block ranges of a large file. When a cryp-
tographically strong hash function is used with the KHT,
the properties of a KHT guarantee that deriving lower
level keys within the range covered by a higher level key
is easy, but it’s mathematically “difficult” to derive any
key for a region outside that range. Hash trees have long
been used for authentication [24] and integrity check-
ing [22, 33]. There are methods using hash trees to re-
duce the storage requirements for key management, as
described by Fiat and Noar [15] and Chan and Chan [11],
who also describe a contributory key agreement protocol
based on Diffie-Hellman key exchange [13] and a com-
putational number theoretic approach based on the Chi-
nese Remainder theorem. Even though these methods
are targeted at reducing the number of keys in a multi-
cast group environment, they still assume too many keys
to be stored at each node and too many key negotiation
messages between nodes for a petascale storage system
consisting of millions of file blocks stored on thousands
of disks. Instead, we need a scalable method that allows
a client to generate all the required keys from a single key
through local computations without the need for contrib-
utory data from other nodes.

3 System Design

Horus employs a simple client-server model, where the
client requests the needed keys from a key distribution
server (KDS) and uses the keys returned by the KDS to
encrypt/decrypt each block of the data. Given the root
key and the access location for the file, anyone can calcu-
late the leaf key that is actually used to encrypt/decrypt
the file. Theoretically, the KDS can be located at any
part of the current HPC architecture (i.e., I/O node, stor-
age node, MDS, and even one of the compute nodes in
Figure 1). Alternatively, it can be placed independently,
or can be clustered as a key distribution cluster (KDC).
The client function can be implemented as a part of the
file system, a part of a system library such as HDF5 [34],
an independent dynamically linked library, or a software

150 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

K0,0

K1,0 K1,1

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

KR

Figure 2: Basic keyed hash tree design [28]. Keys at
lower levels of the tree control smaller regions of the file.
The leaf nodes (shaded) are the keys for individual file
blocks. While all regions at a given level are nominally
the same size, the region with K1,1 is truncated because
it is at the end of the file.

module incorporated in each application software, either
on the compute node or on the I/O node.

For SCDN, encrypted data and KHT root keys, which
are secured in lockboxes, can be stored in a cloud storage
service, while the KDC is operated separately by the data
owner. Clients who need to access the data can query the
KDC to get the proper range keys. This approach reduces
the burden of trust on the storage service provider.

For applications that run on nodes in the cloud, the
owner still must trust the service provider, who, theo-
retically, can commandeer all of the client nodes to col-
lect all the range keys. However, the need to trust ev-
ery administrator of the provider is lifted; in practice, it’s
generally more secure to trust Amazon or Google as a
company than to trust individual Amazon or Google em-
ployees. Moreover, these properties enable efficient and
simple security designs, with a higher barrier to intru-
sions.

3.1 Key calculation
Horus uses KHTs to derive unique encryption keys for
individual blocks from a per-file root key KR; the root
key is the only key that need be permanently stored. The
“block” size at each level of the KHT is a fixed size, with
block size decreasing at lower levels of the tree. The keys
at the leaf nodes of the KHT, called the leaf keys, are each
used to encrypt individual data blocks; keys higher in the
tree, from which the lower-level keys can be derived, are
used to control access to larger regions of the file. A
schematic view of a sample KHT is shown in Figure 2.

While KR must be stored, the key for region y at level
x ≥ 0 is calculated by

Kx,y = KH(Kparent,x||y)

where Kparent is the key for Kx,y’s parent region,
KH(K,M) is a keyed hash function of any text M with

Require: 0 ≤ start < end < d
1: for x ← start+1 to end do
2: y ← �b/bsx�
3: k ← keyed hash(k,x||y)
4: end for
5: return k

Figure 3: Algorithm to calculate a range encryption
key. The caller provides the starting region key k, the
byte offset b, the start and end levels, and block sizes
bs0, . . . ,bsd−1, where d is the number of levels in the tree,
including the root key and leaf nodes (at level d − 1). If
the end level is d − 1, the resulting key may be used for
data encryption.

key K, and || is the bit-string concatenation operator. Us-
ing the message x||y to generate each key ensures that
each Kx,y generated is unique, and using Kparent as the
key ensures that anyone with the key for the parent re-
gion can generate keys for regions or blocks below that
point in the tree. For example in Figure 2, Kparent for
K2,1 is K1,0, so K2,1 = KH(K1,0,2||1). To derive a leaf
key from any key above it in the tree, this calculation can
be applied recursively, as shown in Figure 3. It is im-
portant to note that, given Kx,y, it must be impossible to
derive either Kparent or Kx,y′ , for any y′ �= y. Any imple-
mentation of keyed hash that satisfies this condition can
be used; the keyed hash function can be easily changed
if weaknesses are found in a particular algorithm or if a
particular algorithm has computational advantages.

In Horus, a client node can be given the keys for only
the ranges that it needs to access, preventing it from de-
crypting any parts of the file outside its allowed region.
For example, a client that needs access to blocks 1–3 of
the file in Figure 2 would be given K3,1 and K2,1; the lat-
ter key would allow the client to derive K3,2 and K3,3.
If a different client must access the first 8 blocks of the
file, it only needs to obtain K1,0, from which it can derive
K3,0, . . . ,K3,7. Both K2,1 and K1,0 can be used to generate
the same value for K3,2.

The KHT can be adjusted to handle any level of gran-
ularity that is a multiple of the size of a single encryp-
tion block, even permitting branching factors that are not
powers of 2. However, there is a tradeoff between hav-
ing a smaller “branching factor”—the number of chil-
dren of a node—and having a shorter tree with fewer lev-
els. While fewer children per node provides finer gran-
ularity for aggregating the keys in upper nodes, it also
results in longer key calculation times because the tree
height of the KHT has to become deeper to support the
same range for a given internal tree node, resulting in
more hash calculations. For example, in Figure 2, where
the minimum granularity of encryption is a 4 KB block,

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 151

level 0 of the tree only covers 64 KB; a node that wanted
access to a 1 MB region would have to obtain 16 keys.
For a terabyte-sized file, level 0 would contain 16 million
keys. Instead, we expect that petabyte-scale file systems
will have regions of 16 MB–1 GB at level 0 of the KHT,
with branching factors of 4–8 for successively lower lev-
els of the tree. The block size at the next lower level
(child level) can be derived by dividing the block size of
the level by the branch factor. With a level 0 block size
of 1 GB and a reduction of 8 for each successive level, a
KHT would require 5 additional levels between level 0
and the 4 KB leaf nodes. Since a keyed hash calcula-
tion on modern processors can be done in less than a mi-
crosecond, the small overhead for keyed hash calculation
is reasonable, as we show in Section 5.

However, Horus need not use the same block size or
tree depth for all files; instead, it can maintain a separate
block size list and tree depth for each file. Assuming
block sizes are always powers of two, the base block size
(2B) and branching factor (2 fi) at each level of a KHT
of depth d can be represented as 〈B, f0, . . . , fd−1〉, where
0 ≤ B ≤ 255 and 0 ≤ fi −1 ≤ 15, requiring just 1+(d−
1)/2 bytes to describe the KHT.

Since files in petascale HPC file systems often expand
dynamically, with multiple clients writing to locations
past the original end of the file, Horus can generate a
key for any region given the root key for the file. Horus
can thus pre-calculate keys for regions that haven’t yet
been written, and ensure that any two nodes can arrive at
the same value for a block key without exchanging infor-
mation beyond the root key, enabling the calculation of
encryption keys for each block independently and simul-
taneously using the same root key.

The idea of using a KHT to encrypt a large file [28]
can be generalized to datasets in other forms. Horus leaf
keys can be used to encrypt the smallest data unit, which
can be an object, blocks of a large object or file system,
a trunk, or one database record. For example, in our pro-
totype implementation, Horus works on block level and
encrypts each file block by using a unique leaf key; for
systems that store data in the Hadoop Distributed File
System (HDFS) [17], Horus can use the leaf keys to en-
crypt data trunks of 64 MB; for customers’ credit card
information stored in a database, Horus can encrypt each
record by using a unique leaf key. Thus, Horus can work
with a wide range of datasets regardless of their data lay-
out and structure.

3.2 Key exchange protocol

We have designed our key exchange protocol so that Ho-
rus can be used in distributed parallel file systems that
decouple the data control and the data access path, such
as Ceph [35], Lustre [31], and PVFS2 [9]. In this way

A → MDS : f ,EKUKDS (KR),EKUA (KR),BS,P0,P1, . . . (1)

Ci → KDS : f (2)

KDS → MDS : f ,Ci (3)

MDS → KDS : f ,EKUKDS (KR),BS,Pk (4)

KDS : KR ⇐ EKRKDS [EKUKDS (KR)] (5)

KDS : CCi , f ,xi ,yi ⇐ EKUCi
[HKC(KR,BS,xi,yi)] (6)

KDS →Ci : f ,CCi , f ,xi ,yi (7)

Ci : Kf ,xi ,yi ⇐ EKRCi
(CCi , f ,xi ,yi) (8)

Ci → MDS : f (9)

MDS →Ci : f ,BS (10)

Ci : Kd−1,∗ ⇐ HKC(Kf ,xi ,yi ,BS,d −1,∗) (11)

Ci → ST : data request (12)

ST →Ci : encrypted data (13)

Ci : E−1
Kf ,d−1,∗

(encrypted data) (14)

Notation Description

A a user application.
Ci i-th compute node.
f the file identity (e.g., file path).
Ek(D) encrypted D by using key k.
E−1

k decryption using key k.
HKC the Horus key calculation operation.
MDS a metadata server.
ST the storage of the file.
KDS a key distribution server.
(KUA,KRA) the public/private key pair of A.
(KUKDS,KRKDS) the public/private key pair of KDS.
d the length (depth) of KHT.
BS = 〈bs0, ...,bsd−1〉 the block sizes for each KHT level.
P = (Ci,xi,yi) an access control (permission) entry

allowing Ci access to f over the range
〈xi,yi〉.

KR the root key.
Kf ,xi ,yi the range key for f at position xi,yi
CCi , f ,xi ,yi range key armored for Ci
Kf ,d−1,∗ the leaf keys.

Figure 4: An example sequence of the key exchange pro-
tocol. As an optimization, values that have already been
transmitted need not be resent. For example, the KDS
need not retrieve the armored KR on every request.

we can ensure that Horus can perform and scale well in
parallel file systems as well as in file systems with sim-
pler models. We denote the entity that manages files as
MDS and the entity that stores the data as ST.

We explain the protocol sequence in Figure 4. The root
key for a file KR is normally stored using a lockbox [25,
19] protected by a user’s public key KUA. Rather than
giving KDS the user’s private key, however, applications
are more likely to create a new KR when a file f is cre-
ated, and use the KDS’s public key to protect the root
key; thus, they would store KR protected by both KUKDS
and KUA. The application must then prepare the Horus

152 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

configuration 〈EKUKDS(KR),EKUA(KR),BS,P0,P1, . . .〉 for
file f . BS describes the KHT configuration for this file,
and 〈P0,P1, . . .〉 is a set of permissions listing the allow-
able accesses to the file from a given process or node.
The application stores this Horus configuration in a lock-
box in the MDS ((1) in Figure 4). This way, though the
MDS stores the root key KR, only the KDS (and the user)
can access the data in the clear. The KDS can access the
lockbox and can obtain the clear KR by decrypting with
its own private key (KRKDS).

When a compute node Ci needs to access the file f , it
requests from KDS the key for a range to which it has ac-
cess (2). First, the KDS obtains the Horus configuration
〈EKUKDS(KR),BS,P0,P1, . . .〉 for the file f from the MDS
(3), (4). Next, the KDS tests if Ci is allowed to access the
range by consulting the list of permissions 〈P0,P1, . . .〉
for Ci. If the client Ci is allowed, the key Kf ,xi,yi is calcu-
lated by the KDS, using KR and the KHT configuration
BS (5), (6). The KDS returns the key Kf ,xi,yi encrypted
by the public key of Ci (CCi, f ,xi,yi = EKUCi

(Kf ,xi,yi)) to Ci
(7), so that only an authorized Ci that has the private key
KRCi can decrypt the range key Kf ,xi,yi (8), and then Ci
can calculate the rest of the KHT tree down to the leaf
keys (9)–(11). Alternatively, a per-node symmetric key
known to the KDS and Ci can be used in place of the
public/private key pair, similar to what is done in Ker-
beros [26].

The major advantage of this protocol is that the KDS is
essentially stateless, and hence highly parallelizable and
securable. The MDS has persistent copies of keys, but
lacks the private keys to decrypt them. Also notice that
the protocol is simple; most of the transactions are used
to obtain the Horus configuration from the MDS and can
be further simplifiied.

The communication between A, C, KDS, MDS, and
ST must only be carried out after successful authentica-
tion. We do not provide authentication methods in this
paper, relying instead on existing techniques. However,
we anticipate that it might be possible to apply a stronger
independent authentication mechanism, since the KDS
can run independently from the other systems.

3.3 Protecting file root keys

The KHT root key of a file must be stored in the stor-
age system, because we want the KDS to be stateless.
File root keys in Horus must be protected carefully—
disclosure of a file root key compromises the entire file—
so, Horus uses lockboxes [25, 19] to secure file root
keys. Lockboxes can use either symmetric key encryp-
tion or public key encryption to provide both confiden-
tiality and integrity for the file root key; the usual trade-
off of speed (symmetric) against flexibility (public key)
applies. Since the lockboxes are themselves encrypted

using a key unknown to either the MDS, the storage or
the rest of the file system, the lockboxes may be stored
in the file system, either as metadata or as files. If Ho-
rus is implemented as a client library as discussed in the
following section, file key lockboxes could be stored in
one of three ways: separate files, file system-based meta-
data such as extended attributes (a POSIX standard), or
metadata in a format such as HDF5.

3.4 KDC design
Since the key management function in Horus is decou-
pled from other file system related metadata manage-
ment functions, the function can be implemented as a
set of processes running on one or more stateless KDS
nodes, constructing an independent key distribution clus-
ter (KDC). If the KDC becomes a bottleneck, it can be
scaled out by adding more nodes.

In order to manage the encryption keys securely, the
KDC must have access to the lockboxes and keys to de-
crypt the lockboxes, and must also have a mechanism for
determining which clients need access to which parts of
which files. The requirements for access to the lockboxes
and the lockbox keys are straightforward: the KDC can
obtain lockboxes from the MDS (as in the previous sec-
tion), from files in the file system, or it can have them
supplied by clients with key requests. Lockbox keys are
then supplied by the creator or owner of the files.

Determining the access control permission for clients
is similar and can be done either by a pre-determined pol-
icy model that is decided by a deterministic computation
on the KDC, or by a configuration based model where
explicit range requests from clients are tested against the
settings retrieved from the MDS (protected in a lockbox).

The only information that must be shared in the KDC
is lockboxes, lockbox keys and access control policy.
Only access control policy requires synchronization, and
it only requires synchronization if individual KDC nodes
are unable to arrive at the same decision by indepen-
dently running (potentially the same) code.

3.5 Client implementation
Ideally, the Horus client functions should be imple-
mented in the client file system layer for performance
and supporting existing applications transparently. In the
real world, changing file system code may be difficult
or expensive, therefore makeshift file system overlays,
such as FUSE, may be used instead. When changing file
system is infeasible, the functions can be integrated into
applications directly.

In addition, users of file formats such as HDF5 may
wish to apply Horus to some (or all) of the data sets,
rather than applying it on a file block basis. Fortunately,

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 153

Horus can easily be implemented as an encryption layer,
since it only requires a mechanism for distributing keys
to clients and support for encryption on the client. If
Horus is layered on top of a file format library such as
HDF5, Horus can use logical data set offsets rather than
offsets in the actual file, potentially making ranges more
contiguous and reducing the number of range keys that
must be distributed to clients.

3.6 Key revocation
Keys may need to be revoked for reasons like security
breaches or revoking user accounts, and the data that
was encrypted by using those old keys needs to be re-
encrypted by using a new key. With Horus, those old
keys can be range keys from a KHT. We don’t need to
revoke the whole KHT, instead we can allocate a new
KHT for those ranges and keep a mark in the metadata,
designating ranges of the data that should be accessed by
using the new KHT. Many versions of KHTs can coex-
ist. For systems where key revocation is infrequent, this
design incurs little overhead and is simple to implement.
But if the key revocation happens very often, the system
may end up with too many KHTs. For such systems,
extra rounds of garbage collection and re-encryption can
be carried out periodically to bring the system back to
full performance. A full discussion of key revocation is
beyond the scope of this paper and will be addressed in
future work.

4 Security Analysis

There are many possible attacks against sensitive data in
large-scale storage systems; in this section, we show how
Horus can help to thwart them. For those attacks that the
current design of Horus can’t stop, we outline possible
ways to expand the design in the future.

Data in Horus is never stored in plaintext on a disk.
Thus, even when a disk is subverted, it is impossible to
obtain cleartext data from it. Without the necessary file
root key to decrypt it, the data is unreadable, and there
is no way to gain such a key from the disk other than
unlocking the lockbox holding the key, which would re-
quire the appropriate private key.

In many systems, the metadata server must be trusted
with the confidentiality of data stored in the file system.
Horus removes this need and prevents the MDS from be-
ing able to expose data stored in a file system it man-
ages by using lockboxes. Unless the MDS gains the key
needed to open a lockbox, it cannot obtain a file’s root
key and is thus unable to generate any of the block keys.

While an MDS cannot expose data, however, it can
execute a denial of service attack by refusing to pro-
vide a requested lockbox. Of course, the MDS could

also refuse to provide location information for a file; in
general, there is little that can be done to prevent a com-
promised MDS from denying access to files in any file
system.

While the MDS cannot decrypt data stored on disk,
clients must be able to do so in order to use the data.
Thus, at least some clients need to be able to read and
write data. The goal, then, is to ensure that clients can
only access data they need, without allowing them to ac-
cess other data in a file.

As noted above, each client is only given the keys that
allow it to generate the block keys for data to which it has
access. A client cannot derive the parent key for any keys
it has and cannot “extend” a key to neighboring ranges at
the same level, so it cannot “escape” out of the ranges
for which it has keys. As long as a client is not given a
private key to decrypt a lockbox and obtain a file’s root
key, it can only access the blocks for which it has been
given range keys. This approach is particularly effec-
tive in large-scale HPC clusters with tens of thousands
of nodes, each of which may only need access to 0.1%
of the entire file. If a node in such a system is compro-
mised, the intruder only gets a small fraction of the data;
while revealing any data is harmful, 0.1% is typically far
less dangerous than an entire file.

For read access to a disk, Horus reduces the need
for an authentication mechanism because a client who
reads the data cannot decrypt the data without having
the corresponding key. For write access, however, Ho-
rus alone cannot prevent unauthorized clients from writ-
ing garbage into the storage disks. Actually preventing
writes to files is outside the scope of Horus, though it
could done by an authentication mechanism such as that
in Maat [21]. Quotas [27] could also be adopted to pre-
vent a client from writing to more storage space at a stor-
age device than its allocated quota.

Although stored data is protected from disclosure, a
subverted disk could fabricate data to provide to clients.
There are several techniques for preventing this, includ-
ing the use of cryptographic hashes encrypted with the
block key along with the data [25] and public-key signa-
ture of the data blocks [19]. The latter approach is more
secure, and may leverage techniques from the Plutus file
system [19] to ensure that data is only written by autho-
rized writers. However, writers in Plutus must generate
a new block key when a block is written, and must then
sign the root of the tree that contains that block. Since
our approach uses only a single root key, the Plutus ap-
proach cannot verify that individual block keys are valid.
However, it can be used by a writer to sign the hash for
an individual block, though this may be too slow for use
in an HPC system. Simply storing a cryptographic hash
of the plaintext in a block along with the encrypted data
itself is sufficient to ensure that only authorized clients

154 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

have modified the data, though it cannot distinguish be-
tween readers and writers. It is also vulnerable to at-
tacks in which a disk provides old versions of a data
block; while systems such as SUNDR [22] guard against
this, the high overhead of such systems, particularly for
petabytes of data, make such a high level of security im-
practical for HPC.

Horus’s ability to prevent disclosure to a subverted
disk is particularly useful as non-volatile memory such as
SSD is added to compute nodes [10, 14, 8]. Data stored
locally can only be read with the appropriate range key; a
hostile user cannot subvert node X to gain a key and sub-
sequently use that key to read checkpoint data from the
other nodes in the system. Thus, the safety of data stored
on a local node depends only on preventing the leakage
of keys on that node, not on the safety of other nodes. By
securing data against local attacks on nearby nodes, Ho-
rus makes it safe to use local storage for checkpoint data
and higher performance storage, even on systems where
local processes have unfettered access to the entire node.

As in other encrypted file systems, data in Horus is
vulnerable to threats such as brute-force attacks on ci-
phertext and weaknesses in encryption algorithms. Ho-
rus is also vulnerable to attacks that rely upon stolen
keys; again, these attacks are common to all encrypted
storage systems. However, Horus is more resistant to
stolen keys than most file systems. Since the KDC is
stateless, it can be restarted between computations or
even run on different nodes, reducing the likelihood of
key leakage and making it more secure than having the
MDS manage key distribution [4]. Key distribution must
also be done securely; however, there are many schemes
such as Maat [21] and Kerberos [26] that can securely
distribute keys to many clients. Moreover, if a small
number of messages are compromised, yielding a few
range keys, only a small amount of data is leaked.

5 Implementation and evaluation

We have implemented a prototype of Horus. The KDS
is implemented as a multithreaded server process. The
client is a portable library that intercepts POSIX I/O sys-
tem calls. The Horus configuration is stored in file’s
extended attributes. The key exchange protocol is im-
plemented using UDP. We used OpenSSL’s SHA1 hash
function as the keyed hash function. In our implementa-
tion the block size is fixed at 4 KB.

The following benchmarks were conducted on ma-
chines with the following setup: Intel(R) Xeon(R) CPU
E5620 4-core at 2.40 GHz, RAM 24 GB, Seagate(R)
Constellation.2 SATA hard drive, running Fedora 16
Linux in x86-64 mode using the Ext4 file system.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 16
 32

 48
 64

 80
 96

 112
 128

th
o
u
s
a
n
d
s
 o

f
q
u
e
ri
e
s
 p

e
r

s
e
c
o
n
d
 (

k
Q

P
S

)

number of client threads

1 server
1 server (without SHA-1)

2 servers

Figure 5: Performance evaluation of the KDS. A number
of client threads requested leaf keys from one and two
KDSes. It shows that one KDS sustains about 150 kQPS.
The KHT settings were branch = 4 and depth = 11. After
about 275 kQPS network became the bottleneck.

5.1 Simple leaf key request

We first tested the raw performance of the KDS. We sim-
ulated multiple clients using multithreading from a single
client node. The client threads request leaf keys from one
or two KDSes.

Figure 5 shows the performance of requesting all
1,048,576 leaf keys necessary to access to the first 4 GB
of a file, between a different number of client threads
and KDSes. The figure shows that a single KDS can
sustain around 140 thousand queries per second (kQPS)
from 32 client threads. It should be noted that in this
benchmark we wanted to saturate the KDS so the client
did nothing other than sending key requests; real-world
clients would request I/O in addition to requesting keys.
With two KDSes, we achieved roughly 278 kQPS We
also ran the benchmark with SHA1 calculation disabled
in the KDS in order to measure the performance of pure
network operations, and it showed that 278 kQPS is also
roughly the peak that our test client can sustain. In
all, it shows that one KDS can support about 140 kQPS.
In real-world I/O, where we expect average block sizes
to be around 1 MB, one KDS can theoretically sustain
more than 100 GB/s I/O throughput. Our experiment also
showed that the QPS performance increases nearly lin-
early with more KDSes, showing the high scalability of
our Horus design.

5.2 KHT branch and depth

Figure 6 shows the performance on various KHT con-
figurations, using a single client and two KDSes (unless
otherwise noted). In this experiment, the client requests
all the leaf keys of a 4 GB file.

In requesting a key from a KDS, the client has choices
in the level of the key to request. If the lowest level key
(leaf key) is requested, the KDS will calculate the KHT
all the way down to the leaf key, and send the calculated

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 155

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8 9 10
 11

 12

th
o
u
s
a
n
d
s
 o

f
q
u
e
ri
e
s
 p

e
r

s
e
c
o
n
d
 (

k
Q

P
S

)

KHT depth

branch: 2
branch: 4
branch: 6
branch: 8

branch: 8 (1 server)

(a) Requesting the leaf keys (level=depth)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8 9 10
 11

 12

th
o
u
s
a
n
d
s
 o

f
q
u
e
ri
e
s
 p

e
r

s
e
c
o
n
d
 (

k
Q

P
S

)

KHT depth

branch: 2
branch: 4
branch: 6
branch: 8

(b) Requesting the highest level keys (level=0)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8 9 10
 11

 12

th
o
u
s
a
n
d
s
 o

f
q
u
e
ri
e
s
 p

e
r

s
e
c
o
n
d
 (

k
Q

P
S

)

KHT depth

branch: 2
branch: 4
branch: 6
branch: 8

(c) Requesting the keys (level=4)

Figure 6: Performance evaluation on the number of keys calculated per seconds depending on the number of branch
and depth in the KHT. The number of client threads is 64, and the number of server is 2.

Table 1: KHT configuration and number of keys to be requested and calculated. Number of clients threads = 64.

Req. level Branch Depth # requested # requested/thread # calculated/thread # calculated total

leaf * * 1,048,576 16,384 16,384 1,048,576
0 2 2 524,288 8,192 16,384 1,048,576
0 2 3 262,144 4,096 16,384 1,048,576
0 2 6 32,768 512 16,384 1,048,576
0 2 11 1,024 16 16,384 1,048,576
0 4 2 262,144 4,096 16,384 1,048,576
0 4 11 1 1 1,048,576 1,048,576
0 6 11 4 1 279,936 1,119,744
0 8 2 131,072 2,048 16,384 1,048,576
0 8 11 4 1 262,144 1,048,576
4 8 6 131,072 2,048 16,384 1,048,576

key back to the client. The client just receives the leaf
key. If the highest level (level = 0) key is requested, it
means that the client is requesting a large portion of a file
using just one key. The client will receive only a small
number of keys, and must calculate for himself the KHT
down to the leaf keys in order to actually encrypt/decrypt
the file. Figure 6 shows the requests in (a) the lowest
level, (b) the highest level, and (c) a middle level (4).
64 threads were used in both the KDS and the client.
The number of keys to be requested and calculated were
equally split among the client threads.

In the lowest level requests (Figure 6(a)), the perfor-
mance does not change with the KHT depth or the num-
ber of branches, staying constant around 275 kQPS. This
is strong performance, compared to common DNS server
implementations, which start to drop requests when the
requests exceed 50 kQPS [38]. When compared to the
single KDS version with branch = 8 at the bottom in the
figure, whose performance degrades slightly depending
on the KHT depth, it appears that the SHA1 calculation
in the KDS is the performance bottleneck in the case of
a single KDS (supporting the discussion in the previous
section), and that adding another KDS resolved the bot-
tleneck, justifying the cluster design in Section 3.4.

In the highest level requests (Figure 6(b)), the server

supplies the fewest keys, while the clients do the most
calculation. Since there are many more clients than
servers, this configuration supports the highest I/O per-
formance by allowing the largest amount of I/O per
server-supplied key.

This evaluation helps guide the selection of a Horus
KHT configuration for different applications. The flexi-
ble configuration of Horus can balance the computation
resources among the KDSes, the client, and the network,
resulting in different performance. The combination of
KHT branch, KHT depth, and the requesting level de-
termines the number of keys calculated on the server,
the number of keys exchanged in the network, and the
number of keys calculated in the client. Table 1 summa-
rizes the relationship between a KHT configuration and
the number of keys. When the number of keys to be ex-
changed (# requested) is large, we put the key calcula-
tion burden on the KDS, and more network bandwidth is
consumed. In contrast, if the number of keys to be ex-
changed in the network is small, a large number of keys
must be calculated in the client locally, loading the client
CPU.

Requesting keys at the leaf level puts all of the bur-
den of key calculation on the KDS, resulting in relatively
lower performance (Figure 6 (a)). If the highest level

156 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

keys are used, the number of requested keys decreases
as the branch and the depth of KHT grow, as shown in
Table 1. The same number of keys does not necessar-
ily mean the same performance, e.g., request level = 0,
branch = 2, depth = 3, and branch = 4, depth = 2, both
in Table 1 and Figure 6 (b). When the number of key ex-
changes is too small to be equally split among the client
threads, the performance drops because all of the pro-
cessing tasks to exchange and to calculate the keys will
be done in a single client thread, such as shown in the
case of request level = 0, branch = 4, depth = 11.

The branch and the depth determines the shape of the
KHT, and in turn determines the granularity of security
control. For example, requesting the highest 4 keys in
the KHT configuration of branch = 6 and depth = 11
will result in the exposure of a slightly larger number
of keys (1,119,744) than required (1,048,576), obtaining
efficiency in network bandwidth by sacrificing a bit of
security granularity.

Although there are many possible performance bot-
tlenecks in each of the systems between the KDS and
the client, the flexible configuration of Horus can bal-
ance the computation resources to avoid most of them.
For example at request level = 0, branch = 8, and depth
= 2, as shown in Table 1, the number of keys that will
be exchanged in the network is 131,072, the number of
keys exchanged per each client thread is 2,048, the num-
ber of keys that must be calculated in each of the client
thread is 16,384, and 1,048,576 keys were calculated for
the 4 GB file. With this KHT configuration, Horus can
attain 1,416 kQPS in performance. We see similar per-
formance in configurations that require a similar number
of keys to process, such as requesting level = 4, branch =
8, and depth = 6 (See in Figure 6(c), and also the entry in
Table 1).

The spike in Figure 6(c) can be controlled by chang-
ing the requesting level; it will shift left or right when
the request level changes. Notice that requesting level-
4 keys in a KHT with depth less than 5 is equivalent to
requesting the leaf keys.

5.3 Read/write performance

We evaluate the performance of the sequential read and
write operations. We used the local ext4 file system for
the emulation of a high performance distributed file sys-
tem in this section, in order to not depend on the perfor-
mance of a certain file system implementation.

Figure 7(a) illustrates the read performance of Ho-
rus. The read operation with AES-XTS decryption per-
formed around 165 MB/s, as shown in the line labeled
“ext4+AES read”. In the best case of Horus labeled
“Horus read”, when only one aggregated range key was
requested to cover the whole file, the performance was

around 115 MB/s (for the 4 GB file). The overhead was
mainly caused by the AES operation.

The lowest line in the figure labeled “Horus read
w/o Aggr” shows the performance of the naı̈ve mode,
where the client requests one key and waits for the re-
sponse for each block before reading, results at merely
12 MB/s. Comparatively, “Horus read” has a 533% per-
formance improvement. The poor performance of the
naı̈ve mode can be improved by prefetching. When
prefetching 64 keys in advance (labeled “Horus read w/o
Aggr (prefetch)”), the performance was around 64 MB/s,
still only half of the performance of Horus read. This
shows the efficiency of Horus over current encryption so-
lutions.

Figure 7(b) illustrates the performance for write opera-
tions. We suspect the fluctuation of the performance was
caused by the distributed effect of caches. For writing,
Horus write’s performance was on par with non-Horus
raw AES write operations in some cases, this is because
the Horus overhead was negligible comparing to the slow
write operation.

5.4 BTIO benchmark

Figure 8 shows the BTIO performance benchmark [37]
(from NASA Parallel Benchmarks 3.3.1 using MPICH2-
1.4.1p1) that solves a block tridiagonal multi-partitioning
problem. We used the Simple I/O mode and the PVFS2
version 2.8.2 file system on 16 nodes for both I/O and
compute nodes. We used AES XTS mode for cryptog-
raphy. AES requires 16-byte aligned blocks, but BTIO
writes in some modes don’t meet this requirement. Fix-
ing this problem would require changing the BTIO code,
but that would make our results incomparable to other
published BTIO results. Therefore we didn’t change
any BTIO code and simply ignored AES errors for those
modes.

Figure 8(a) and 8(b) shows the performance bench-
mark of BTIO Class B (Total written data: 1.7 GB) and
C (6.8 GB), respectively. “PVFS2” is the BTIO runs on
PVFS2 with no encryption, “AES” is with AES-XTS en-
abled, “Horus w/o Aggr” is the naı̈ve version of encryp-
tion that requests all leaf keys from KDS, and “Horus”
is the efficient version that requests only one aggregated
range key and calculates the leaf key to be used by AES-
XTS. Both “Horus w/o Aggr” and “Horus” include AES-
XTS encryption/decryption.

The naı̈ve “Horus w/o Aggr” version shows signifi-
cant performance degradation. It indicates that 1) han-
dling of many block keys is a significant burden, and 2)
key distribution transactions required to request a num-
ber of block keys from KDS via network deteriorate the
performance. Other simple methods that aim at strong
security by managing different keys for blocks and em-

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 157

 0

 50

 100

 150

 200

 250

 0 512
 1024

 1536

 2048

 2560

 3072

 3584

 4096

 4608

P
e

rf
o

rm
a

n
c
e

 (
M

iB
/s

)

File size (MiB)

ext4+AES read
Horus read

Horus read w/o Aggr
Horus read w/o Aggr (prefetch)

(a) Read performance

 0

 50

 100

 150

 200

 250

 0 512
 1024

 1536

 2048

 2560

 3072

 3584

 4096

 4608

P
e

rf
o

rm
a

n
c
e

 (
M

B
/s

)

File size (MB)

ext4+AES write
Horus write

Horus write w/o Aggr
Horus write w/o Aggr (prefetch)

(b) Write performance

Figure 7: Performance of sequential read and write operations. A single client is requesting to a single KDS. Those
“w/o Aggr” modes are included for comparison, showing the effect of disabling requesting aggregated range key but
having to request every leaf block key (the naı̈ve mode).

 0

 20

 40

 60

 80

 100

4 9 16 25 36 49

I/
O

 b
a

n
d

w
id

th
 (

M
B

/s
)

Number of processes

PVFS2
PVFS2+AES

Horus w/o Aggr
Horus

(a) Class B

 0

 20

 40

 60

 80

 100

16 25 36 49

I/
O

 b
a

n
d

w
id

th
 (

M
B

/s
)

Number of processes

PVFS2
PVFS2+AES

Horus w/o Aggr
Horus

(b) Class C

Figure 8: Performance results for NPB BTIO benchmark.

ploy a key management server have a tendency to show
similar problems. In this naı̈ve mode, the overhead can
be as high as 16 MB/s (38%) in 16 processes in Class C.

In contrast, Horus mode did not show large perfor-
mance degradation. The overhead was 2.14 MB/s (5.3%)
in 16 processes and 5.36 MB/s (8.5%) in 49 processes in
Class C.

5.5 IOR benchmark

We tested the I/O performance of Horus using the
IOR [20], benchmark, a well-known I/O benchmark for
HPC environments. We use IOR to generate sequen-
tial parallel I/O using MPI-IO. Table 2 shows parameters
used for IOR benchmarking. On our cluster, we observed
that PVFS2 had better write performance than read be-
cause of large RAM caches. AES encryption overhead
varied from 20% to 50%.

For reads, Figure 9(a) shows that Horus has about 20%
overhead in comparison to PVFS2+AES, when level 7
range (2 MB) keys are requested from KDS. Notice that

Table 2: Parameters used for IOR benchmark

Transfer Size 4 MB
Data Read/Write per Process 64 MB
Number of Machines 16
Number of Processes 16, 32, 64, 128
Range Key Level(Range) 6 (16 MB), 7 (2 MB), leaf

(4 KB)
Encryption Block Size 4 KB

this overhead is negligible when level 6 range (16 MB)
keys are requested. Except for 128 processes, when the
test clients were saturated, similar results can be seen
in Figure 9(b) for write performance. For both reads
and writes, we observed that picking the right request
level is important and that the naı̈ve approach of request-
ing only leaf keys from KDS drastically reduces perfor-
mance. Overall, IOR benchmark results showed that Ho-
rus is highly scalable and had very little overhead even
for fine-grained range keys.

158 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 16 32 48 64 80 96 112 128

I/
O

 B
a

n
d

w
id

th
 M

B
/s

Number of Processes

PVFS2
PVFS2+AES

Horus (level-6)
Horus (level-7)

Horus w/o Aggr

(a) IOR read performance

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 16 32 48 64 80 96 112 128

I/
O

 B
a

n
d

w
id

th
 M

B
/s

Number of Processes

PVFS2
PVFS2+AES

Horus (level-6)
Horus (level-7)

Horus w/o Aggr

(b) IOR write performance

Figure 9: Performance results for IOR benchmark. AES encryption’s overhead varied from 20% to 50%. Horus, when
properly configured, accounts for overhead from nearly zero to about 20% (when the test clients were saturated).

6 Conclusions and Future Work

Large-scale distributed storage systems need better secu-
rity for HPC, cloud computing, and SCDN systems that
need to store and process sensitive data. Our design, Ho-
rus, provides such fine-grained security, allowing each
client to only access the range of data assigned to it and
leaving it unable to read any other data even if the client
or the storage system are compromised. By keeping the
Horus KDC as an independent component outside the
HPC system or the cloud, the need to trust the system
operators or the cloud service provider is reduced, and
the damage caused by malicious insiders is more easily
contained. This design also simplifies the deployment of
Horus because the changes to the existing system and ap-
plications is minimal. These features are especially use-
ful for shared HPC systems, HPC applications running
in the cloud, and SCDN systems deployed in the cloud.

The biggest limitation of Horus is perhaps the reliance
on authentication to find the accessible ranges for each
client. Also, HPC nodes are often homogeneous, perhaps
allowing an intruder to gain access to a large number of
nodes at the same time by using the same vulnerability,
thus, gathering a lot of range keys. Horus uses encryp-
tion and unavoidably would cause performance degrada-
tion for HPC systems, but with the introduction of new
hardware AES support [29], this problem is becoming
less significant every day.

For the future, we believe that Horus can be leveraged
to protect checkpoint data without excessively degrad-
ing the performance of scientific computation. The local
storage that will be provided in compute nodes to accel-
erate checkpointing performance must also be protected
to prevent other applications and node from accessing the
checkpoint data. Since it is necessary to provide millions
of different keys for different nodes and files, Horus’s
scalable key management and delegation capability are

beneficial.
Horus can also be leveraged to protect data stored in

HDFS [32] to enforce data security in Apache Hadoop
based cloud computing environments. Data can be en-
crypted by using Horus before being loaded into HDFS.
While starting a job, the Hadoop Job Tracker needs to
submit a list of worker nodes and respective ranges of
data each node will process to the KDC. Worker nodes
can request keys from KDC to access the required data.
In this manner access from every node is restricted to the
portion of data that it needs to process. The Job Tracker
has to be trusted to some degree, but the accessing pol-
icy can be enforced by KDC to limit the range/volume of
data, improving security.

Our prototype implementation and performance eval-
uation have demonstrated that Horus is a versatile and
light-weight encryption solution for very large-scale stor-
age. The performance penalty of key distribution and
KHT calculation is very low, compared with other com-
peting encryption solutions. The performance overhead
of Horus is small because KHTs provide an efficient
way of managing and distributing a large number of en-
cryption keys. Key distribution and computation is also
highly parallelizable, making it ideal for use in large and
high performance systems. By facilitating encryption in
large-scale HPC storage, Horus can greatly improve stor-
age security while imposing little penalty on file system
access.

Acknowledgments

This research was supported in part by the National
Science Foundation under awards IIP-0934401 and
CCF-0937938, and the Department of Energy under
Award number DE-FC02-10ER26017/DESC0005417.
We would like to thank the industrial sponsors of the
Storage Systems Research Center (SSRC), including

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 159

EMC, Hewlett Packard Laboratories, Hitachi, Huawei,
IBM Research, LSI, NetApp, Northrop Grumman, Per-
mabit, and Samsung, for their generous support. We
also thank the faculty and students of SSRC for their help
and guidance, especially Arifa Nisar, Aleatha Parker-
Wood, Christina Strong, Ian Adams, and Stephanie Jones
for their valuable comments.

References

[1] M. K. Aguilera, M. Ji, M. Lillibridge, J. Mac-
Cormick, E. Oertli, D. Andersen, M. Burrows,
T. Mann, and C. A. Thekkath. Block-level security
for network-attached disks. In Proceedings of the
2nd USENIX Conference on File and Storage Tech-
nologies (FAST ’03), pages 159–174, Mar. 2003.

[2] Amazon Web Service. AWS: using server-
side data encryption. http://docs.

amazonwebservices.com/AmazonS3/latest/

dev/UsingServerSideEncryption.html.

[3] Amazon Web Service. AWS client-side data en-
cryption. http://aws.amazon.com/articles/

2850096021478074, Apr. 2011.

[4] R. Anane, S. Dhillon, and B. Bordbar. Stateless
Data Concealment for Distributed Systems. Jour-
nal of Computer and System Sciences, 74(2):243–
254, Mar. 2008.

[5] S. A. Banachowski, Z. N. J. Peterson, E. L. Miller,
and S. A. Brandt. Intra-file security for a distributed
file system. In Proceedings of the 19th IEEE Sym-
posium on Mass Storage Systems and Technologies,
pages 153–163, Apr. 2002.

[6] BBC News. US urges action to prevent insider
leaks, Jan. 2011.

[7] P. J. Braam. The Lustre storage architecture. http:
//www.lustre.org/documentation.html,
Cluster File Systems, Inc., Aug. 2004.

[8] G. Bronevetsky and A. Moody. Scalable I/O sys-
tems via node-local storage: Approaching 1 TB/sec
file I/O. Technical Report LLNL-TR-415791,
Lawrence Livermore National Laboratory, 2009.

[9] P. H. Carns, W. B. Ligon, R. B. Ross, and
R. Thakur. PVFS: a parallel file system for Linux
clusters. In Proceedings of the 4th Annual Linux
Showcase and Conference, pages 317–327, At-
lanta, GA, Oct. 2000.

[10] A. M. Caulfield, L. M. Grupp, and S. Swanson.
Gordon: Using flash memory to build fast, power-
efficient clusters for data-intensive applications. In
Proceedings of the 14th International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS09), Mar.
2009.

[11] K.-C. Chan and S.-H. G. Chan. Key management
approaches to offer data confidentiality for secure
multicast. IEEE Network, 17(5):30–39, Sept. 2003.

[12] Department of Energy. NETL shares computing
speed, efficiency to tackle barriers. Fossil Energy
Today, 1(6):1–3, June 2012.

[13] W. Diffie and M. E. Hellman. New directions in
cryptography. ACM Transactions on Internet Tech-
nology, IT-22(6):644–654, Nov. 1976.

[14] X. Dong, Y. Xie, N. Muralimanohar, and N. P.
Jouppi. Hybrid checkpointing using emerging
nonvolatile memories for future exascale systems.
ACM Transactions on Architecture and Code Opti-
mization, 8(2):6:1–6:29, June 2011.

[15] A. Fiat and M. Naor. Broadcast encryption. In Pro-
ceedings of CRYPTO ’93, pages 480–491, 1993.

[16] K. Fu. Group sharing and random access in crypto-
graphic storage file systems. Master’s thesis, MIT,
June 1999.

[17] HDFS users guide. http://hadoop.apache.

org/common/docs/current/hdfs_user_

guide.html, Aug. 2011. Version 0.20.204.0.

[18] R. Indrajit, S. T. V. Setty, A. Kilzer, V. Schmatikov,
and E. Witchel. Airavat: Security and privacy for
MapReduce. In Proceedings of the 7th Symposium
on Networked Systems Design and Implementation
(NSDI ’10), Apr. 2010.

[19] M. Kallahalla, E. Riedel, R. Swaminathan,
Q. Wang, and K. Fu. Plutus: scalable secure file
sharing on untrusted storage. In Proceedings of the
2nd USENIX Conference on File and Storage Tech-
nologies (FAST ’03), pages 29–42, Mar. 2003.

[20] Lawrence Livermore National Laboratory. IOR
software. http://www.llnl.gov/icc/lc/

siop/downloads/download.html, 2003.

[21] A. W. Leung, E. L. Miller, and S. Jones. Scalable
security for petascale parallel file systems. In Pro-
ceedings of SC07, Nov. 2007.

160 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

[22] J. Li, M. Krohn, D. Mazières, and D. Shasha.
Secure untrusted data repository (SUNDR). In
Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI), Dec.
2004.

[23] Los Angeles Times. Google fires employee for
snooping on users, Sept. 2010.

[24] R. C. Merkle. Secrecy, authentication, and public
key systems. PhD thesis, Stanford University, 1979.

[25] E. L. Miller, D. D. E. Long, W. E. Freeman, and
B. C. Reed. Strong security for network-attached
storage. In Proceedings of the Conference on File
and Storage Technologies (FAST), pages 1–13, Jan.
2002.

[26] B. C. Neumann, J. G. Steiner, and J. I. Schiller.
Kerberos: An authentication service for open net-
work systems. In Proceedings of the Winter 1988
USENIX Technical Conference, pages 191–201,
Dallas, TX, 1988.

[27] K. T. Pollack, D. D. E. Long, R. Golding,
R. Becker-Szendy, and B. C. Reed. Quota enforce-
ment for high-performance distributed storage sys-
tems. In Proceedings of the 24th IEEE Conference
on Mass Storage Systems and Technologies, pages
72–84, Sept. 2007.

[28] R. Rajendran, E. L. Miller, and D. D. E. Long. Ho-
rus: Fine-Grained Encryption-Based Security for
High Performance Petascale Storage. In Proceed-
ings of the 6th Parallel Data Storage Workshop
(PDSW ’11), Nov. 2011.

[29] J. Rott. Intel Advanced Encryption Standard In-
structions (AES-NI), Feb. 2012.

[30] F. Schmuck and R. Haskin. GPFS: A shared-disk
file system for large computing clusters. In Pro-
ceedings of the Conference on File and Storage
Technologies (FAST), pages 231–244, Jan. 2002.

[31] P. Schwan. Lustre: Building a file system for 1000-
node clusters. In Proceedings of the 2003 Linux
Symposium, July 2003.

[32] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop distributed file system. In Proceed-
ings of the 26th IEEE Conference on Mass Storage
Systems and Technologies, May 2010.

[33] M. W. Storer, K. M. Greenan, E. L. Miller, and
K. Voruganti. Pergamum: Replacing tape with en-
ergy efficient, reliable, disk-based archival storage.
In Proceedings of the 6th USENIX Conference on
File and Storage Technologies (FAST), Feb. 2008.

[34] The HDF Group. HDF5 user’s guide.
http://www.hdfgroup.org/HDF5/doc/

PSandPDF/HDF5_UG_r187.pdf, May 2011.
Release 1.8.7.

[35] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E.
Long, and C. Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings
of the 7th Symposium on Operating Systems Design
and Implementation (OSDI), Nov. 2006.

[36] B. Welch, M. Unangst, Z. Abbasi, G. Gibson,
B. Mueller, J. Small, J. Zelenka, and B. Zhou. Scal-
able performance of the Panasas parallel file sys-
tem. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST), pages
17–33, Feb. 2008.

[37] P. Wong and R. F. V. der Wijngaart. NAS Par-
allel Benchmarks I/O Version 2.4. Technical Re-
port NAS-03-002, NASA Advanced Supercomput-
ing (NAS) Division, 2003.

[38] YADIFA. YADIFA DNS Benchmark. http://

www.yadifa.eu/benchmark.

