
Efficient and Safe Data Backup with Arrow
Technical Report UCSC-SSRC-08-02

June 2008

Casey Marshall
csm@soe.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

This paper was filed as an M. S. project report in June, 2008. Casey’s M. S. advisor was
Prof. Ethan Miller; Prof. Darrell Long was the second reader for the report.

Efficient and safe data backup with Arrow

Casey Marshall
University of California, Santa Cruz

csm@soe.ucsc.edu

June 12, 2008

Abstract

We describe Arrow, an efficient, safe data backup system for computer networks. Arrow employs techniques of
delta compression (or deduplication) to achieve efficient storage and bandwidth utilization, and collision-resistant
hashing and error-correction coding to protect against and correct storage errors.

keywords: content-addressable storage; error-correcting storage systems; data backup; deduplication.

1 Introduction
Content-addressable storage, error detection and correction, and deduplication are all interesting topics in the field of
archival data storage. Particularly in the case where files are being archived over time, where snapshots of the file tree
are taken, and where there is significant data in common between snapshots.

Arrow implements a data backup system that combines collision-resistant hash functions, rolling checksums, and
error-correction codes to provide a deduplicating, versioned, error-recoverable archival storage system. Arrow stores
files as lists of checksums, and performs a fast checksum search algorithm for determining what parts of a file have
changed, achieving both a speedup in time to store a version, and a savings in the amount of physical storage used.
There checksums are also used to identify and verify the integrity of data stored in the system, and error-correction
codes are present to allow correction of small storage errors.

2 Related Work
Rsync is a popular free software program for synchronizing similar files on computers connected on a network, using
a novel checksum search algorithm to reduce the amount of data that needs to be transmitted [11, 12]. Arrow borrows
heavily from rsync, using a similar algorithm to search for duplicate chunks in files to be backed up, and uses the
same rolling checksum function. The delta-compression ideas behind rsync have inspired other data backup solutions,
implemented simply as thin layers on the rsync program itself [8], or as new implementations of the idea [2].

Error-correction codes have been widely used in digital storage and transmission, prominently in media like com-
pact disks and DVDs, since the media is exposed to more physical abuse. The sharp increases in hard drive density and
speed, and the relative stability of hard disk failure rates, have meant that errors in disk storage systems have become
much more frequent. Hard disks also offer error-correction codes for the data stored to disk, but these error codes are
not portable, are vendor-specific, and are often un-verifiable by high-level software. A very common error-correction
code is the Reed-Solomon code, which is used today in many digital storage platforms. With the increasing rates in
hard disk failure, focus has shifted towards fault-tolerant and repair-driven systems, e.g. chunkfs [3].

File snapshotting and content-addressable storage appear in many systems for file versioning, storage and network
optimization, intelligent caching, and so on, and the design of Arrow follows these systems. Elephant [9] replaces
single file inodes with a log of inodes to keep each change to files, and so it keeps all versions of files through
modifications. Venti [7] references parts of files primarily by a strong hash code of short blocks of data, avoiding
duplication of data written to disk. Ivy [5] uses logs of changes and hash code references to blocks to implement an

1

efficient peer-to-peer network file system. The Shark file system [1] optimizes network file transfer with hashes of
data chunks, and intelligent file chunking. The Git distributed revision control system uses a mutable index and a
write-only object store to implement revision control [13].

3 Overview
Arrow stores files in three separate layers, each managing some part of the source file tree. The file tree layer mirrors
the source file tree, with a same-named directory per source directory, and a symbolic link per source file. The target
of the symbolic link is a version file, which describes a list of chunks that comprise the file, and contains a reference
to the previous version of the file. The chunks are stored in an object storage system where the key is derived from
the chunk’s hash code. The overall goal of Arrow is to use chunk hashes to reduce the amount of data stored and
transferred over the network, and to strongly protect stored data from corruption by providing enough information to
detect and correct errors.

Figure 1 illustrates the overall layout of Arrow; the following sections explain how each layer is implemented.

di r /

f i le1 . tx t

f i le2 . tx t

s u b d i r /

f i le2 . tx t

6f31d051-75a7-4503-a694-0df736b6226f

previous 38483044...

chunk 28f4a406c1b2

chunk 3e7feeeb8536

045077df-76f7-494d-b7fd-a9007d3f00ff

previous 00000000...

chunk 7871daae4808

chunk 28f4a406c1b2

79ffed7d-be8c-4019-a894-0c27c2509e65

previous 00000000...

chunk fbbdb08aec09

chunk ea838a1c45e9

T r e e Vers ion F i les

38483044-9f00-4453-a779-e35364f858ca

previous 00000000...

chunk 28f4a406c1b2

C h u n k s

block 0

chunk 7871daae4808 ...

block 1

chunk fbbdb08aec09 ...

chunk ea838a1c45e9 ...

block 2

chunk 28f4a406c1b2 ...

chunk 3e7feeeb8536 ...

Figure 1: Overview of how Arrow stores files

4 Chunk Storage
Arrow stores files as chunks, which are small runs of data from files (between 700 and 16000 bytes), and chunks are
identified by a pair of hash codes over the data. The hash pair consists of a four byte simple checksum, similar to
Adler-32, which has a rolling property: given a checksum over values [m, n], it is simple to compute the sum over
values [m + 1, n + 1], if we have bytes m and n + 1. The other hash is the 16-byte MD5 hash of the data. The
concatenation of these two values is the chunk identifier.

To store chunks, Arrow uses a simple file format shown in figure 2. The store begins with a simple header; followed
by a fixed number of block keys, along with the offset and length of each chunk, and the size of the key space is chosen
once at store creation time; then the chunk values; the file ends with parity bytes computed over the rest of the file,
using a Reed-Solomon error correction code.

2

6/5/08 12:49 PMstore-layout.svg

Page 1 of 2file:///Users/csm/Source/arrow/store-layout.svg

HEADER KEYS VALUES PARITY

Figure 2: Storage layout in arrow.

Each of these chunk files — called blocks — is relatively small; large enough to store up to about 200 chunks,
assuming that chunks average between 700 and 16000 bytes. The key space in a block is fixed-size; if needed, the
data space will grow if it isn’t of sufficient size. We would quickly fill up a single block, so we need to store chunks
across multiple blocks and have a method for managing them. The technique used by Arrow is linear hashing, first
proposed by Witold Litwin in [4]. Core to linear hashing is the function that maps chunk keys to block identifiers,
given in figure 3.

LINEAR-HASH(K)
1 x← K mod 2i

2 if x < n
3 then
4 x← K mod 2i+1

5 return x

Figure 3: The linear hash function

i and n are initially zero. If we fill up a block beyond a “load factor” — in Arrow, if 70% of the slots in the block
are filled — we add a new block n+2i, rehash each key in block n, which will move some keys from block n to block
n + 2i, and increment n. Once n = 2i, we increment i and set n ← 0. The keys are effectively random, given the
nature of MD5, so rehashing the keys of a block should move approximately half the entries into the new block.

This implementation allows the chunk storage to grow one block at a time, while maintaining an O(1) lookup time,
and achieves O(1) insertions, with an increased cost at regular intervals when a block needs splitting. the rationale for
this being that looking up a chunk involves a single execution of LINEAR-HASH, followed by a linear search through a
list of at most 200 chunk keys. This intuitive analysis does not consider the costs of doing the lookup considering the
underlying file system, however, which can add significant cost to the operation.

We have a fairly rough strategy for splitting blocks, too: block n is the one that gets split, even if some other block
overflowed its load factor. In practice this shouldn’t be a problem, since block n is necessarily the one that was split
least recently, and since our keys have a uniformly random distribution, block n will be the one expected to have the
highest load.

Since arrow stores the chunk’s hash along with the chunk, storage errors can be detected easily by iterating through
each chunk key, recomputing the hash on the chunk, and comparing the values. If there is a mismatch, we know that
there is a storage error either in the key or in the chunk, so we can attempt to repair storage errors in either location,
using the parity information. Arrow computes (253, 255) Reed-Solomon codes over 253-byte subblocks, producing
2 parity bytes, and on an error it will attempt to correct the error in the key or in the value, by repeatedly attempting
to fix the subblocks that overlap the apparently-corrupt key or value, confirming the fix by checking the hashes again.
Arrow assumes few errors; it can detect large errors, but won’t be able to correct errors spanning more than a few
bytes.

3

5 File Storage
Files in arrow are stored primarily as lists of chunk references, that is, the hash pair of the chunk, and will store very
small runs of data directly. The layout of a file is as follows:

• The name of the underlying file.

• The MD5 hash of the entire file.

• The identifier of the previous version of this file, if any.

• The file size, file mode bitset, and modification, status change, and creation times.

• The chunk size used to chunkify the file. This is inherited from previous file versions.

• A list of chunks. Each chunk is either a reference to a chunk stored in the chunk storage layer, or (if the chunk
is smaller than a chunk identifier) the chunk bytes stored directly.

Files are identified by a random 16-byte UUID, and files that have no previous versions are stored with the null
UUID (sixteen zero bytes) as the previous-version UUID. Each of these files is stored as simple data files in a flat
namespace, with the file’s UUID as its file name.

File hierarchies are stored to match the underlying file hierarchy, where directories are stored as-is, with the same
name, and files are stored as symbolic links to the head revision of the file.

This scheme was chosen for its simplicity; there are possible refinements we could make to storing file and version
hierarchies, such as storing versioned directories as well as files. For example, when a directory is backed up, not
only are files that changed in that directory committed as new versions, but also the directory as a whole — which
may include new, modified, or deleted files — is committed as a new version of the directory after all changed files
are committed. A scheme like this would better reflect the needs of a system that stored historical versions, since
files in the same directory are often related, and rolling back to previous versions for groups of files may make more
sense than rolling back single files. This file tree scheme also ignores deleted files at the moment, and cannot handle
replacing a file with a directory of the same name (or vice-versa), but none of these are fundamental issues — they are
just left unimplemented here.

6 File Synchronization
When Arrow has a new version of a file to be backed up, it first fetches the version file of the previous version of the file,
which will be the basis file. Each checksum pair (weak , strong) that is the underlying chunk size long — through the
backup process, chunks shorter than the base chunk size may be stored, but these are ignored in the synchronization,
which only uses the underlying chunk size — is inserted into a hash table with 214 entries, by taking the weak sum
modulo the table size. A running rolling checksum is taken over the new file version, one byte at a time, and each
time the hash table is probed for that weak value. If a possible weak checksum is found, an MD5 is computed over the
current chunk, and if that matches, we have found a duplicate chunk reference, and can emit that reference in the new
file.

The pseudocode, with some details omitted, for this process is given in figure 4. The procedures ROLLSUM-
COMPUTE and ROLLSUM-ROTATE are the rolling checksum algorithm from librsync [6]. HASH-PROBE searches
the hashtable for the weak hash only, and HASH-CONTAINS tells if the hashtable contains the weak and strong hash
combination.

The consequence of this procedure is that any chunks in both basis and the new file to be backed-up will be stored
only once. If any chunks that exist in the new file that were found in previous versions of any file, then again, that
chunk will only be stored once — though, it is very unlikely that we will find duplicate chunks by chance, unless they
have specific signatures, such as a chunk that consists of all zero bytes.

This synchronization procedure is based on the rsync algorithm, though it presents some limitations to the delta
compression that this version can achieve. Since the rsync algorithm uses a single block size, and since these block
boundaries are fixed in a single file, there are limits to the number of duplicate blocks between the basis file and the
new file we can find.

4

FILE-SYNC(basis ,newfile,input)
1 H ← hashtable of 214 entries
2 for each chunk in basis
3 do if chunk .length = basis.chunk size
4 then HASH-INSERT(chunk .id)
5 buffer ← basis.chunk size bytes from input
6 weak ← ROLLSUM-COMPUTE(buffer)
7 while ¬END-OF-FILE(input)
8 do if HASH-PROBE(H, weak)
9 then strong ← MD5(buffer)

10 if HASH-CONTAINS(H, (weak , strong))
11 then insert chunks between the last match and the
12 current match into newfile
13 insert (weak , strong) into newfile
14 buffer ← basis.chunk size bytes from input
15 weak ← ROLLSUM-COMPUTE(buffer)
16 continue
17 c← READ(input)
18 ROLLSUM-ROTATE(weak , buffer [0], c)
19 add c to buffer
20 remove the first element from buffer

Figure 4: File synchronization procedure

7 Performance Evaluation
This first test used a simple C program that will synchronize single files, and that program was used in a Python
program to manage the version files. This test used the Linux kernel source [10], starting with version 2.6.23, and
applying each of the 17 patches released for this kernel. Table 1 shows the results of backing up each patched kernel
tree with Arrow. Figures 5 and 6 plot the patch size versus Arrow’s increase in backup size, and the time the backup
took versus the number of files that changed in that patch release.

Patch Patch Size Source Size Backup Size Backup Delta Cumulative

Size

Time (sec.) Files

Changed

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0 252065213 283107750 0 252065213 451.08 0

3218 252065491 283119871 12121 504130704 91.83 2

34402 252066473 283208456 88585 756197177 89.34 18

65218 252072178 283362188 153732 1008269355 102.47 53

94870 252073453 283591942 229754 1260342808 143.06 70

127389 252077945 283912484 320542 1512420753 181.44 81

182957 252082973 284389157 476673 1764503726 193.47 115

187496 252084315 284831665 442508 2016588041 220.82 113

188895 252084342 285277506 445841 2268672383 229.2 107

221604 252087238 285811410 533904 2520759621 238.36 132

284301 252091147 286524145 712735 2772850768 240.94 181

283078 252091071 287204874 680729 3024941839 254.57 175

281040 252090640 287865620 660746 3277032479 256.07 158

283099 252090838 288510953 645333 3529123317 255.74 254

283830 252090842 289146161 635208 3781214159 257.06 146

541078 252147239 290212238 1066077 4033361398 265.04 228

541304 252147258 291108027 895789 4285508656 267.25 217

555389 252150368 292006750 898723 4537659024 277.29 218

0

375,000

750,000

1,125,000

1,500,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Per-Patch Deltas

Patch Size Backup Delta

0

125

250

375

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Files Changed and Backup Time

Time (sec.) Files Changed

Figure 5: Text patch size and Arrow backup delta

The patch size column is the size of the patch file, in bytes, decompressed. Source is the size of the kernel tree
with the patch applied. Backup is the size of the Arrow backup, storing all cumulative version trees, by counting the
bytes used by the symlink tree, the version files, and the chunks used in the block store (since many slots of the block

5

Patch Patch Size Source Backup Time Files
0 0 252,065,213 283,107,750 451.08 22,530
1 3,218 252,065,491 283,119,871 91.83 2
2 34,402 252,066,473 283,208,456 89.34 18
3 65,218 252,072,178 283,362,188 102.47 53
4 94,870 252,073,453 283,591,942 143.06 70
5 127,389 252,077,945 283,912,484 181.44 81
6 182,957 252,082,973 284,389,157 193.47 115
7 187,496 252,084,315 284,831,665 220.82 113
8 188,895 252,084,342 285,277,506 229.20 107
9 221,604 252,087,238 285,811,410 238.36 132

10 284,301 252,091,147 286,524,145 240.94 181
11 283,078 252,091,071 287,204,874 254.57 175
12 281,040 252,090,640 287,865,620 256.07 158
13 283,099 252,090,838 288,510,953 255.74 254
14 283,830 252,090,842 289,146,161 257.06 146
15 541,078 252,147,239 290,212,238 265.04 228
16 541,304 252,147,258 291,108,027 267.25 217
17 555,389 252,150,368 292,006,750 277.29 218

Table 1: Backup test of Linux kernel versions

Patch Patch Size Source Size Backup Size Backup Delta Cumulative

Size

Time (sec.) Files

Changed

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0 252065213 283107750 0 252065213 451.08 0

3218 252065491 283119871 12121 504130704 91.83 2

34402 252066473 283208456 88585 756197177 89.34 18

65218 252072178 283362188 153732 1008269355 102.47 53

94870 252073453 283591942 229754 1260342808 143.06 70

127389 252077945 283912484 320542 1512420753 181.44 81

182957 252082973 284389157 476673 1764503726 193.47 115

187496 252084315 284831665 442508 2016588041 220.82 113

188895 252084342 285277506 445841 2268672383 229.2 107

221604 252087238 285811410 533904 2520759621 238.36 132

284301 252091147 286524145 712735 2772850768 240.94 181

283078 252091071 287204874 680729 3024941839 254.57 175

281040 252090640 287865620 660746 3277032479 256.07 158

283099 252090838 288510953 645333 3529123317 255.74 254

283830 252090842 289146161 635208 3781214159 257.06 146

541078 252147239 290212238 1066077 4033361398 265.04 228

541304 252147258 291108027 895789 4285508656 267.25 217

555389 252150368 292006750 898723 4537659024 277.29 218

0

375,000

750,000

1,125,000

1,500,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Per-Patch Deltas

Patch Size Backup Delta

0

125

250

375

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Files Changed and Backup Time

Time (sec.) Files Changed

Figure 6: Backup time and number of files changed

store may be unused, the actual disk space used by the backup is significantly larger). Time is the time in seconds it
took to synchronize that kernel tree. Files is the number of changed files in that kernel version.

Table 2 lists the sizes of the various parts of Arrow’s storage system, the symlink tree, the version files, and chunk
storage, from the same test against the Linux kernel source. Also included is the size difference after backing up that
patch version.

This next test implemented network backups by tunneling a simple protocol over an SSH connection. The client
side performs the synchronization, retrieving a version file for a file to be synchronized, after comparing the file’s
MD5 hash (the file is not synchronized if it has clearly not changed); the server side tracks the chunk store, the version
files, and the file tree. The same test of Linux kernel versions from the previous test, tunneling over the local loopback
device, measuring the time taken and the bytes read and written. Table 3 shows the results of this test.

These results are quite in line with what is expected: there is a constant overhead for transferring the MD5 hashes
for all the files in the backup, and the time needed to compute these hashes. As the differences increase, it tends to take
longer and more bytes transferred, including the MD5 hashes, the contents of each version file for those files where
the MD5 checksum did not match, and the new file chunks. The overhead for the initial backup is about 12% greater

6

Patch Tree Versions Chunks Difference
0 6,020,348 18,715,460 258,371,942 0
1 6,020,372 18,721,280 258,378,219 12,121
2 6,020,372 18,763,104 258,424,980 88,585
3 6,020,369 18,832,200 258,509,619 153,732
4 6,020,366 18,939,252 258,632,324 229,754
5 6,020,371 19,108,140 258,783,973 320,542
6 6,020,365 19,365,364 259,003,428 476,673
7 6,020,370 19,622,648 259,188,647 442,508
8 6,020,368 19,883,304 259,373,834 445,841
9 6,020,364 20,184,188 259,606,858 533,904

10 6,020,355 20,577,220 259,926,570 712,735
11 6,020,366 20,971,084 260,213,424 680,729
12 6,020,361 21,348,916 260,496,343 660,746
13 6,020,356 21,725,972 260,764,625 645,333
14 6,020,361 22,099,124 261,026,676 635,208
15 6,020,361 22,613,212 261,578,665 1,066,077
16 6,020,366 23,116,276 261,971,385 895,789
17 6,020,348 23,620,716 262,365,686 898,723

Table 2: Storage breakdown of Linux kernel versions

Patch Time Read Written
0 440.77 2,752,454 276,687,703
1 25.82 816,904 1,259,019
2 17.93 851,860 1,636,856
3 15.48 870,087 1,487,275
4 22.45 903,195 1,776,221
5 79.02 975,071 2,613,638
6 136.64 1,062,382 2,805,430
7 75.39 1,066,618 1,772,322
8 25.66 1,075,352 1,850,436
9 68.07 1,113,524 2,445,167

10 163.88 1,202,211 3,214,490
11 96.83 1,202,757 2,030,031
12 18.58 1,202,751 2,020,530
13 16.68 1,205,075 2,034,749
14 17.91 1,208,353 2,064,046
15 116.60 1,333,601 4,053,726
16 41.00 1,335,040 2,337,040
17 28.50 1,350,156 2,559,890

Table 3: Network backup of Linux kernel versions

than the data, and about 10% more needs to be sent over the network. Compared with backing up the an entire kernel
version, Arrow only needed to transfer at most 2% of the total size of the source data (for the biggest incremental
delta, version 2.6.23.15), and storing this new version only increased the backup size by 0.4% of the new version size;
or, about 11% of the size of the bzip2 compressed tar archive sent over the wire, and about 2% increase in storage.

All these tests were run on a low-end Ubuntu Linux server, with a two-core 2.8GHz Intel Pentium D and 1GB of
RAM, backing up to a single 7200 RPM hard disk.

7

Kernel Files Time (1 disk) Time (RAID-5) Size Delta
2.6.10 16,583 263.82 150.50 219,538,292 0
2.6.11 5,481 50.42 24.16 249,878,382 30,340,090
2.6.12 7,313 89.42 111.70 294,696,204 44,817,822
2.6.13 8,285 162.65 154.36 348,544,181 53,847,977
2.6.14 8,517 428.72 130.97 399,782,781 51,238,600
2.6.15 9,258 436.17 101.68 460,175,258 60,392,477
2.6.16 10,051 236.86 124.06 526,137,368 65,962,110
2.6.17 10,247 194.90 257.49 594,133,084 67,995,716
2.6.18 11,768 278.77 106.34 666,703,249 72,570,165
2.6.19 12,471 967.12 135.16 748,048,042 81,344,793
2.6.20 11,801 807.57 97.71 819,728,218 71,680,176
2.6.21 11,782 853.37 96.82 896,486,021 76,757,803
2.6.22 12,576 944.28 105.83 982,696,828 86,210,807
2.6.23 12,231 973.92 167.14 1,065,769,264 83,072,436
2.6.24 13,413 995.01 182.68 1,162,798,886 97,029,622
2.6.25 13,940 1185.11 111.60 1,266,597,571 103,798,685

Table 4: Native, local backup of major kernel releases

This final test increased the size of blocks from around 200 entries to 5,000, as an effort to reduce I/O load. The test
used the local C client to back up every major point release kernel from version 2.6.10 to 2.6.25, representing almost
three and a half years of development. This test was run on the same machine as before, and also on a server-class
system with two four-core 3.2 GHz Intel Xeon processors, 8 GB of RAM, and backing up to a five-disk RAID 5 array.
The difference in performance is startling, illustrated in table 4 and figure 7. The reason for this seems to be that
arrow is heavily I/O bound; running a similar test under a dtrace session on Mac OS X revealed that most of the
program time is spent in fread, open and close, memcpy (the blocks are implemented by mapping the block file
into memory), and munmap. These results do seem to suggest that Arrow requires a certain amount of disk bandwidth
to operate quickly, and that it can saturate a low-bandwidth disk after a modest amount of data is written to it. This
raises an important issue with a linear hash table: writes that should be essentially sequential are randomized across
the disk; we can’t help the case where we are referencing an existing chunk, but adjacent chunks in a single file are
scattered throughout the storage system, and in certain cases, doing this scattering can be very expensive.

Kernel Files Time (x86) Time (amd64) Backup Size Backup Delta

2.6.10

2.6.11

2.6.12

2.6.13

2.6.14

2.6.15

2.6.16

2.6.17

2.6.18

2.6.19

2.6.20

2.6.21

2.6.22

2.6.23

2.6.24

2.6.25

16583 263.82 150.5 219,538,292 0

5481 50.42 24.16 249,878,382 30,340,090

7313 89.42 111.7 294,696,204 44,817,822

8285 162.65 154.36 348,544,181 53,847,977

8517 428.72 130.97 399,782,781 51,238,600

9258 436.17 101.68 460,175,258 60,392,477

10051 236.86 124.06 526,137,368 65,962,110

10247 194.9 257.49 594,133,084 67,995,716

11768 278.77 106.34 666,703,249 72,570,165

12471 967.12 135.16 748,048,042 81,344,793

11801 807.57 97.71 819,728,218 71,680,176

11782 853.37 96.82 896,486,021 76,757,803

12576 944.28 105.83 982,696,828 86,210,807

12231 973.92 167.14 1,065,769,264 83,072,436

13413 995.01 182.68 1,162,798,886 97,029,622

13940 1185.11 111.6 1,266,597,571 103,798,685

0

375

750

1125

1500

2.6.10 2.6.12 2.6.14 2.6.16 2.6.18 2.6.20 2.6.22 2.6.24

Time (x86) Time (amd64)

Figure 7: Arrow on commodity (x86) and server (amd64) hardware

8

8 Conclusions
Arrow is a new application of existing ideas, combining them into a safe, efficient, recoverable data backup system.
The current implementation is only a prototype, but proves that the idea can offer a data backup solution that combines
storage and transmission efficiency, and strong error detection and correction.

Arrow is still only a beginning. There are many other concerns with archival storage and data backup that are not
addressed here. Most especially is distributing the storage across multiple storage systems; for a truly reliable backup
system, it can’t rely on a single piece of hardware, or a single software system. Arrow’s implementation of various
pieces introduces some performance bottlenecks, most clearly when the backup size grows very large, which could be
addressed separately. To be fully usable as an archival storage system, Arrow still needs support and optimization of
the verification and correction processes, and needs a usable method for restoring backed-up data.

Arrow is written in C, is open-source, and is available via a read-only Git repository at http://git.metastatic.
org/readonly/arrow.git. A web interface is available from http://git.metastatic.org/.

References
[1] Siddhartha Annapureddy, Michael J. Freedman, and David Mazières. Shark: scaling file servers via coopera-

tive caching. In NSDI’05: Proceedings of the 2nd conference on Symposium on Networked Systems Design &
Implementation, pages 129–142, Berkeley, CA, USA, 2005. USENIX Association.

[2] Ben Escoto. rdiff-backup. http://www.nongnu.org/rdiff-backup/.

[3] Val Henson, Arjan van de Ven, Amit Gud, and Zach Brown. Chunkfs: using divide-and-conquer to improve file
system reliability and repair. In Proceedings of the Second Workshop on Hot Topics in System Dependability
(HotDep ’06), Seattle, WA, November 2006.

[4] Witold Litwin. Linear hashing: a new tool for file and table addressing. In VLDB ’1980: Proceedings of the sixth
international conference on Very Large Data Bases, pages 212–223. VLDB Endowment, 1980.

[5] Athicha Muthitacharoen, Robert Morris, Thomer Gil, and Benjie Chen. Ivy: A read/write peer-to-peer file
system. In Proceedings of the 5th USENIX Symposium on Operating Systems Design and Implementation (OSDI
’02), Boston, Massachusetts, December 2002.

[6] Martin Pool and Donovan Baarda. librsync. http://librsync.sourceforge.net/.

[7] S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In First USENIX conference on File and
Storage Technologies, Monterey, CA, 2002.

[8] Nathan Rosenquist, David Cantrell, et al. rsnapshot. http://www.rsnapshot.org/.

[9] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch, Ross W. Carton, and Jacob
Ofir. Deciding when to forget in the elephant file system. In SOSP ’99: Proceedings of the seventeenth ACM
symposium on Operating systems principles, pages 110–123, New York, NY, USA, 1999. ACM.

[10] Linus Torvalds et al. The Linux Kernel. http://www.kernel.org/.

[11] Andrew Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis, The Australian National
University, 1999.

[12] Andrew Tridgell and Paul Mackerras. The rsync algorithm. Technical report, The Australian National University,
1996.

[13] John Wiegley. Git from the bottom up, May 2008. http://www.newartisans.com/blog_assets/
git.from.bottom.up.pdf.

9

http://git.metastatic.org/readonly/arrow.git
http://git.metastatic.org/readonly/arrow.git
http://git.metastatic.org/
http://www.nongnu.org/rdiff-backup/
http://librsync.sourceforge.net/
http://www.rsnapshot.org/
http://www.kernel.org/
http://www.newartisans.com/blog_assets/git.from.bottom.up.pdf
http://www.newartisans.com/blog_assets/git.from.bottom.up.pdf

	Introduction
	Related Work
	Overview
	Chunk Storage
	File Storage
	File Synchronization
	Performance Evaluation
	Conclusions

