
Providing High Reliability in a Minimum Redundancy Archival Storage System

Deepavali Bhagwat1 Kristal Pollack1 Darrell D. E. Long1 Thomas Schwarz, S.J. 1,2

Ethan L. Miller1 Jehan-François Pâris3

1Storage Systems Research Center, University of California, Santa Cruz, CA
2Computer Engineering Department, Santa Clara University, Santa Clara, CA

3Department of Computer Science, University of Houston, Houston, TX

Abstract

Inter-file compression techniques store files as sets of ref-
erences to data objects or chunks that can be shared among
many files. While these techniques can achieve much better
compression ratios than conventional intra-file compression
methods such as Lempel-Ziv compression, they also reduce
the reliability of the storage system because the loss of a few
critical chunks can lead to the loss of many files. We show
how to eliminate this problem by choosing for each chunk a
replication level that is a function of the amount of data that
would be lost if that chunk were lost. Experiments using ac-
tual archival data show that our technique can achieve sig-
nificantly higher robustness than a conventional approach
combining data mirroring and intra-file compression while
requiring about half the storage space.

1. Introduction

Archival digital data continues to accumulate at an as-
tounding pace. It will increase ten-fold between 2006 and
2010 to over 27 exabytes in the commercial and government
sectors [16]. As digital data accrues at ever-increasing rates,
organizations also face increasing regulatory pressure to re-
tain data for long periods of times and may be required to
retrieve data occasionally. In this context, maintaining the
availability of archived data becomes part of the due dili-
gence that organizations are expected to exercise.

To reduce the costs incurred for storing such large vol-
umes of archival data, this data is compressed using various
compression techniques. Several companies [7, 8, 11] al-
ready use various forms of compression for their archival
storage solutions. Our project, Deep Store [34], uses both
intra-file and inter-file compression to reduce redundan-
cies. One such inter-file compression technique used by
Deep Store is chunk-based inter-file compression [17]. In
this technique files are split into variable-length chunks and
stored. If any redundant chunks are found, they are stored

as references rather than as duplicates. In many cases, this
method achieves excellent compression ratios [33].

While archival systems require good compression, they
must also ensure that data is preserved over long time pe-
riods. Compression techniques, while they save storage
space, also have the potential to reduce reliability. For ex-
ample, when inter-file compression is used, dependencies
are introduced between files that share the same chunk.
If such a shared chunk is lost, a disproportionately large
amount of data becomes inaccessible because of the loss
of all the files that share this chunk. As a result, some
chunks are much more important than others and need to
be protected at a higher level to maintain good overall re-
liability. In this paper, we consider the effects of inter-file
chunk-based compression on the reliability of the archival
system. Our approach to improving reliability is to add
redundancy strategically by selectively replicating chunks.
We have developed heuristics that weigh the importance of
a chunk and use this weight to prescribe the level of repli-
cation for the chunk. A part of the storage space saved by
compression is thus reinvested in better protecting the im-
portant chunks. As a result, we achieve even better data
reliability than mirrored (degree of mirroring = 2) Lempel-
Ziv (LZ) compressed [35] files, while still using about half
of the storage space of mirrored LZ-compressed files and
with replication/mirroring as the means to introduce redun-
dancies.

We can also improve reliability by using other redun-
dancy introducing techniques such as erasure correcting
codes used in RAID levels 5 and 6, and by introducing dif-
ferent data placement, failure detection and recovery disci-
plines. We do not consider these here mainly because they
offer intricate trade-offs between speed of recovery, ease of
recovery, and computational and storage overhead.

To focus our efforts, our analysis assumes constant de-
vice failure rates, constant repair rates, and independence of
failures. We only investigated replication as a redundancy
strategy and used a simple concept of robustness, in which
we measured the amount of data loss caused by the loss of a

small percentage of devices in addition to a standard failure
model with all usually made simplifying assumptions. We
will investigate other redundancy strategies in the future.

2. Deep Store: An Overview

Deep Store [34] is a large-scale archival storage sys-
tem that stores volumes of immutable data efficiently, with
high reliability and accessibility. It incorporates methods
for inter-file and intra-file compression to utilize storage
space very efficiently. Deep Store uses three techniques to
reduce storage demands: content-addressable storage [11],
delta compression [2, 9] and sub-file chunk-based compres-
sion [17]. Other storage systems such as Venti [23], EMC
Centera [11], StorageTek’s Intellistore [28], Nexsan’s SA-
TABeast [18], Avamar’s Axion [4], and Permabit [21] also
use content addressable storage. In content-addressable
storage, a single feature or hash, also called content address
is computed over an entire file and this hash is used to find
identical files already in the archive. Two files with the same
content address are likely to be identical, but the system still
must check for possible collisions. If the files are identical,
the system only stores a reference to the existing file rather
than storing the file again. In delta compression, the sys-
tem first searches for a file similar to the file currently being
stored, and then stores only the differences between the cur-
rent file and the stored file. A pointer to the stored file and
metadata for reconstructing the current file are stored with
the differences.

window size w (fixed)

chunk end/start

chunk size (variable)

window fingerprint chunk ID
(content address)

sliding window

Figure 1. Sliding Window Technique

Our study focuses only on chunk-based compression.
Chunk-based compression or chunking subdivides a file de-
terministically into variable-sized blocks or chunks. This
technique was first used in the Low-bandwidth Network
File System [17]. Chunking is a two step process. First,
a file is divided into chunks in a deterministic fashion. Sec-
ond, the content within every chunk is used to compute its
features. Figure 1 shows a data stream or a file represented
by the long horizontal rectangles and chunk boundaries in-
dicated by short vertical lines. To divide the file into chunks,
starting from the beginning of the file, we examine the its
contents as seen through a fixed sized (overlapping) sliding
window. At every position of the window, a fingerprint or
digital signature of its contents is computed. In practice we

use Rabin fingerprints [24] to calculate the digital signature
of the contents of the sliding window for their computa-
tional efficiency in this scenario. Rabin fingerprinting by
random polynomials computes a hash of a fixed size from a
binary string of arbitrary length. Rabin fingerprinting func-
tions are of a class of randomized functions that exhibit
uniform distribution of results over arbitrary data. In the
scope of our work, we select a random function from a set
of functions, such as, the set of all irreducible polynomials
of a fixed degree. Once selected, the fingerprinting func-
tion is retained to produce deterministic results. When the
fingerprint meets a certain criteria, such as when the value,
modulo some specified integer divisor, is zero; that posi-
tion of the window defines the boundary of the chunk. This
process is repeated until the complete data stream has been
broken into chunks. In the second step we compute a di-
gest or hash function over the contents of the chunk using
Rabin fingerprints. This digest is the content address of the
chunk. This content address can also be computed using
functions such as MD5 [25], SHA-1 [19] or higher SHA
standards [20]. You et al. [33] have evaluated chunking
and delta-compression with respect to their storage space
efficiency and computational complexity. They conclude
that delta-compression and chunking outperform traditional
stream compression methods with respect to storage space
efficiency. Chunking requires two hashing operations per
byte in the input file: one fingerprint calculation of the fixed
size window and one chunk digest calculation. Once the file
is broken into chunks, only the unique chunks are actually
stored. Deep Store identifies a chunk in the same way as
it identifies files: using a content address (a hash or digest
of the content) to determine if a chunk already exists in the
system. After this type of compression, a file consists of a
set of references to chunks and the metadata necessary to
rebuild the file.

3. Effect of Compression on Reliability

Chunk-based interfile compression can be quite effective
for certain types of data. You, et al. [33] have characterized
this data as files that evolve slowly mainly through small
changes, additions, and deletions. One of the data sets for
our experiments consists of 9.8 GB of several web sites:
those of the University of California at Santa Cruz, Santa
Clara University, Stanford University, University of Cali-
fornia at Berkeley, BBC, NASDAQ, CERT, CNN, SANS,
SUN, CISCO, and IBM as they developed over time. We
obtained them from the Internet Archive’s Wayback ma-
chine [29]. This data is a representative sample of archival
data, and will greatly profit from chunk-based compres-
sion due to the incremental nature of the changes that
it has gone through. Chunk-based inter-file compression
stores this data using a storage space of 1.74 GB for chunks

 95

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 100

 0 1 2 3 4 5 6 7

%
 A

va
ila

bi
lity

% Device Failures

chunks available
data available

Figure 2. Effect of inter-file dependencies on
robustness

and 280 MB for metadata. On the other hand, when each
file was compressed using LZ-compression, the total stor-
age space required was 5.6 GB. Clearly, chunk-based com-
pression can use significantly less storage space than LZ-
compression.

To study the effect of chunk-based compression on reli-
ability we conducted a pilot experiment using this data. We
compressed the files using chunk-based compression, and
then mirrored the chunks and stored them evenly across a
set of 179 devices. The devices were then randomly se-
lected to fail independently, resulting in the loss of up to
7% of the total devices. Figure 2 shows the availability as
a function of device failures in two forms. The first form is
the percentage of raw chunks available. The second form is
the percentage of original data that could be reconstructed
from these available chunks. The data robustness is seen
to be significantly lower than the chunk robustness. For
example, when 6% of the devices fail, about 99.5% of all
chunks are still available, but only 96% of all the data is
still available. This increased data loss happens due to inter-
file dependencies formed as common chunks are shared
amongst multiple files. These inter-file dependencies are
shown schematically in Figure 3 where the dependencies
are measured by the number of file references to a chunk.
If a common chunk is no longer available, all the files that
depend on the chunk are lost resulting in a disproportion-
ately large amount of data loss that we see in Figure 2. This
increased data loss illustrates how good compression can
be detrimental to reliability in the event of device failures,
due to inter-file dependencies formed by common chunks
shared between multiple files.

Chunk-based compression achieved excellent compres-
sion ratios by removing redundancies across files. How-
ever, this introduced inter-file dependencies that hampered

Figure 3. Inter-file dependencies

reliability. Since compression saves significant amount of
storage space, some of this savings can be used to regain
reliability. A simple way of doing this is to use a higher de-
gree of replication. However, we have used a more discern-
ing approach to do this — one that decides the replication
level for a chunk depending on its popularity or importance
so that we did not end up defeating our original purpose of
efficient storage space utilization.

4. Storage Strategy

The simple experiment in the previous section showed
that the loss of a small number of chunks can result in a
disproportionately large data loss. To protect against this,
our heuristics replicate certain important or popular chunks
more aggressively than the others. To accomplish this, we
developed some good measures for the importance of a
chunk. This measure of importance, or weight, is used to
determine the number of replicas for each chunk and their
distribution across devices.

4.1. Replicas Based on Chunk Weight

The effects of the loss of a chunk can be measured by
the amount of data lost and by the number of files that are
inaccessible as a result of this loss. Correspondingly, we
measure the importance of a chunk either by the number
of files that depend on it (the reference count), or by the
amount of data (the byte count) that depends on it. This ap-
proach defines the weight of a chunk as either the reference
count or as the byte count that depend on it, and determines
the number of replicas for each chunk using a logarithmic
function of the chunk’s weight.

The following calculation justifies our intuition to use a
log-based function to calculate the number of replicas for
a chunk based on its weight. Assume that we have n files
that all depend on one common chunk, called the central
chunk. Each file also depends on another peripheral chunk,
as shown in Figure 4, that is particular to that file alone. As-
sume that we keep k replicas of the single central chunk and
l replicas of the remaining peripheral chunks. We assume
that all chunks have the same size. The total storage used is

n Files

Peripheral Chunks

Central Chunk

Figure 4. Central and peripheral chunks

then proportional to

S = k + l · n

Assume that a single storage device fails with probability
p. The central chunk is lost with probability pk and the
peripheral chunks with probability pl each. We lose all files
if we lose the central chunk; otherwise the expected number
of lost files L is npl, so that

L = npk + (1 − pk)npl
≈ npk + npl

Taking the derivative of the approximation for the loss, we
obtain the following relation for an optimal k:

n log(p)pk
− log(p)pl = 0

Solving for k gives

k =
S

n + 1
+

n

n + 1
·

log(n)

log(1/p)

The first addend converges to zero and the second is propor-
tional to the log(n). If the central chunk is much larger than
the smaller chunks and n is fixed, then replicating the pe-
ripheral chunks at a higher rate than the central chunk leads
to lower expected loss.

Even if a chunk has only a single dependency, it must be
protected. Therefore, our heuristic keeps at least 2 copies of
every chunk. We choose a function of type

k = f(w) = min(max(2, a + b log(w)), kmax)

to calculate the number of replicas k depending on a
chunk’s weight w. Here, a and b are constants that will
yield different storage space utilization and robustness lev-
els; a and b need to be determined experimentally depend-
ing on the data set. A base level of replication, a, is added as
an additional tuning parameter that is independent of w to
offset the effect of b log(w). As b increases, the number of
replicas, based on the weight w of a chunk, increases. For
some chunks with a large weight, w, the number of replicas
suggested by our logarithmic function can be very large. As
k increases the gain in reliability obtained due to each ad-
ditional replica diminishes. For this reason, the maximum
number of copies of a chunk is capped at kmax.

4.2. Chunk Distribution

In addition to the replication level for various chunks, the
placement of the replicas also affects the reliability of our
storage scheme. If a device is lost and almost all chunks
on the device belong to the same set of files that reside on
the lost device, then the effect of this failure has limited
repercussions for the rest of the system. Conversely, if a file
depends on chunks distributed over a large set of devices,
then it is more vulnerable since it is easier to lose this file
through the failure of any of those devices. Consequentially,
we want to reduce inter-device dependencies. Of course,
we should store copies of the same chunk on different de-
vices. Other than that, we try to store chunks belonging to
the same file on the same device.

Since our system stores archival data, we assume that
files enter the system in batches. As a file enters, the chunks
are extracted and stored, filling up the disks as data arrives,
on one disk at a time. When the current disk is full, a new
disk is used. If a chunk is new, it is stored on the current
disk, but not yet replicated in anticipation of another file in
the same batch using the same chunk. This lazy replication
scheme reduces inter-device dependencies. If a chunk is al-
ready in the system, the system determines whether, after
updating its weight, another replica must be stored. If this
is the case, the replica is stored on the current disk. Oth-
erwise, the system does nothing—there are sufficient repli-
cas for the chunk already. After the batch of files has fin-
ished processing, the weights of all the chunks are checked
to see if any of them need to be replicated. In such cases,
replicas for the latest chunks are stored on the most recently
used disk. While our scheme does not completely eliminate
inter-device dependencies, it greatly reduces them.

5. Experimental Setup

Our data set consists of two sets of files obtained from
the Internet Archive [29] and the other from the Santa Cruz
Sentinel [30]. As described in Section 3, the data set from
the Internet Archive contains web sites as they develop over
time. The Santa Cruz Sentinel, our local newspaper, main-
tains an archive, as do many newspapers. This set con-
sists of HTML, PDF, image (TIFF and JPG) and Microsoft
Word files with quite a bit of repetitive information such as
templates for web pages. Table 1 gives statistics for both
data sets, showing that both data sets are well-suited for
chunk-based compression. The use of chunk-based com-
pression results in substantial savings in storage space when
compared to the storage space required when using LZ-
compression to compress each file individually.

We used our prototype program chc [34] to chunk files.
The files that form the target data set were input to chc,
producing an output composed of chunks derived from the

Table 1. Statistics of the Experimental Data
Internet Santa Cruz
Archive Sentinel

Number of Files 196664 158900
Minimum File Size 1 B 2 B
Maximum File Size 21 MB 263.78 MB
Average File Size 52.50 kB 301.46 kB
Total File Space 9.84 GB 40.22 GB
LZ-compressed File Space 5.62 GB 31.14 GB
Unique Chunks 6240360 28806477
Minimum Chunk Size 9 B 9 B
Maximum Chunk Size 12.61 kB 12.61 kB
Average Chunk Size 299.90 B 243.11 B
Total Chunk Space 1.83 GB 7.5 GB

original files. These chunks were further compressed in-
dividually using the zlib [10] compression library. chc
captures a list of chunk identifiers for each file, as well
as the identifier and size for each chunk. Extended size
blocks—megablocks [34]—were used to store both chunks
and LZ-compressed files to minimize the storage overhead
from unused portions of blocks. Since the metadata for file
identifiers and size of every file needs to be stored for LZ-
compressed files as well, the storage overhead due to this
metadata has been omitted for both chunk-based compres-
sion and LZ-compressed files. However, the overhead of
a 128-bit content address for every chunk, whether origi-
nal or replica, and for all chunk identifiers per file has been
accounted for when calculating the total storage space re-
quired when using chunk-based compression.

To evaluate the success of our heuristic-based replica-
tion strategy, we measured the ratio of availability to the
utilized storage space. Evaluation of the latter is easy, while
the former is difficult because availability depends on too
many factors such as data placement, speed of recovery and
device failure rates. Further, availability calculations make
simplifying assumptions that are not always justified, such
as independent failures of devices and constant device fail-
ure rates. In addition, an archival storage system tries to
protect data over a period of time that is longer than the
lifespan of the individual devices and, in such a system,
common causes of failures such as batch and vintage fail-
ures become important. Instead of trying to make a num-
ber of reasonable assumptions and ending up with a large
number of possible storage systems, we decided to measure
availability in the form of robustness, defined as the fraction
of data available given a certain percentage of unavailable
storage devices, rather than in the usual metric of mean time
to data loss or percentage of data loss per year.

In this assessment, we assume a simple model based on

replication—the only way we introduce redundancy is by
storing more replicas. Though we decided to use replication
instead of more involved mechanisms to generate redun-
dancy, there are still many potential parameters to choose
in a storage system, such as replica placement, failure de-
tection and repair. Since our target applications are so large
that they store data on hundreds, if not thousands of disk
drives, we use artificially small devices to store the data so
that our sample workloads are stored over many devices. By
not modeling repairs of failed devices, we are being conser-
vative. This is important because, in any real system, re-
pairs would occur after a failure, so there would be a much
smaller chance of data loss.

To test the robustness of the system, we began by se-
lecting a percentage of devices independently and at ran-
dom and failing them, starting with 1 device and contin-
uing until 7% of the total devices have failed. By show-
ing availability at relatively low levels of device failure, we
simulated the effects of temporary device loss. The devices
would be replaced later, but the data on them is lost due
to failure. The same is true for mirrored LZ-compressed
files. We used the chunk distribution strategy of Section 4
to store chunks extracted from both the data sets onto a set
of devices. The same distribution strategy was used with
LZ-compressed files. The mirrored LZ-compressed files of
the Internet Archive were stored evenly on 188 devices of
64 MB each while those of the Santa Cruz Sentinel were
stored evenly on 132 devices of 512 MB each. However,
every device was filled to capacity. Hence, measuring the
percentage of failed devices was equivalent to measuring
the percentage of data lost. The capacity of every device
was increased for Santa Cruz Sentinel data to avoid frag-
mentation of a file across several devices. We had to take
care not to fragment files when using LZ-compression be-
cause this would introduce the same type of multiple-device
dependencies for files that arise when using the chunking
method, the effects of which we were measuring. Chunks
for both data sets were stored on smaller devices than those
used when storing the same data that was LZ-compressed to
make sure that we distributed chunks onto the same number
of devices as those used by the mirrored LZ-compressed
files thereby facilitating a fair comparison between the two.
We ended up using an additional 5 disks on average when
storing chunks. We could not ensure using exactly 188/132
devices since it was not possible to know apriori the num-
ber of redundant chunks that would be added with different
redundancy schemes. Once we randomly chose the failed
devices, we then calculated how many files and how much
data we could reconstruct using the remaining devices. The
performance of chunk-based compression was compared
with that of LZ-compressed files on the basis of the robust-
ness and storage space consumed.

6. Results

We calculate the weight, w, of a chunk using two heuris-
tics: the number of files and the size of data depending on
a chunk. The weight of a chunk in terms of the number of
files, F , depending on a chunk, is calculated as w = F . The
weight of a chunk in terms of the size of the dependent data
is calculated as w = D/d, where D is the sum of the sizes
of all the files that depend on this chunk and d is the average
size of a chunk. The number of replicas, k, calculated using
w in the log based function of Section 4.1, is rounded off to
the nearest integer. For each experiment we have measured
the storage space used as a percentage of the storage space
used by the original uncompressed data.

a = 1 38.91%
a = 2 41.79%
a = 3 60.31%

mirrored LZ-compressed 114%

 98.4

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 1 2 3 4 5 6 7

%
 F

ile
s

Av
ai

la
bl

e

% Device Failures

a=1
a=2
a=3
mirrored LZ-compressed

Figure 5. Effect of a on robustness using
heuristic w = F with b = 1, kmax = 4

The first set of experiments demonstrates the use of the
two heuristics. We wanted to study how the robustness is
affected by varying the base level of replication, a. By in-
creasing the base replication level, the number of replicas
for all the chunks increases, resulting in better robustness.
The results of these experiments, conducted using Internet
Archive data and with kmax = 4, are shown in Figures 5
and 6.

In Figure 5 we show robustness using the number of files
depending on a chunk as a heuristic, i. e. w = F . Hence,
we measured availability in the number of files available,
not amount of data available. Here, with b = 1, we vary a
and see that the robustness increases with increasing values
of a. The system is not very robust when a = 1 because
when using a = 1, 90% of the chunks were replicated just
once. We showed in Section 3 that when all the chunks are
uniformly replicated just once, the robustness suffers. We

see the same effects when a = 2, where around 80% of the
total chunks were replicated just once. At a = 3, our system
is more robust than mirrored LZ-compressed files and uses
only 52.75% of the storage space required by mirrored LZ-
compressed files.

a = 0 67.23%
a = 0.25 68.34%
a = 0.5 69.97%

a = 1 72.19%
mirrored LZ-compressed 114%

 99.4

 99.5

 99.6

 99.7

 99.8

 99.9

 100

 0 1 2 3 4 5 6 7
%

 D
at

a
Av

ai
la

bl
e

% Device Failures

a=0
a=0.25
a=0.5
a=1
mirrored LZ-compressed

Figure 6. Effect of a on robustness using
heuristic w = D/d with b = 0.4, kmax = 4

In Figure 6, we show a similar effect of a on the ro-
bustness, but, using dependent data as a heuristic, i. e.,
w = D/d, with b = 0.4. Again, we see that by increas-
ing a the system’s robustness improves. At a = 0.5, our
system is more robust than mirrored LZ-compressed files
and uses only 61.20% of the storage space used by mir-
rored LZ-compressed files. Further increase in a increases
the robustness even more, albeit at the expense of additional
storage space.

The results of the above experiments show that the ro-
bustness of our system exhibits the same trends when we
use either heuristic, w = F or w = D/d. The rest of the
results presented here use dependent data as the heuristic,
i. e., w = D/d; however, the same trends are found with the
number of references being used as a heuristic.

If we do not restrict the number of replicas of a chunk,
k, to a predefined maximum, kmax, some chunks end up
having a very large number of replicas, especially for higher
values of b. However, as the number of replicas increases,
the gain in robustness that every replica rewards us with
diminishes in value. To study the effect of varying kmax, we
measured the robustness of the Internet Archive data with
b = 0.55 and a = 0, as shown in Figure 7 for kmax = 4
and kmax = 5 compared with that obtained with no limit on
k. It is clear that limiting the number of replicas with kmax

kmax = 4 70.66%
kmax = 5 84.05%

no limit on k 90.23%
mirrored LZ-compressed 114%

 99.6

 99.7

 99.8

 99.9

 100

 0 1 2 3 4 5 6 7

%
 D

at
a

Av
ai

la
bl

e

% Device Failures

max 4 copies
max 5 copies
no max limit
mirrored LZ-compressed

Figure 7. Effect of limiting k on robustness
using heuristic w = D/d, b = 0.55, a = 0

does not result in a noticeable loss in robustness, but does
result in significant savings in storage space.

In our next experiment, we studied the effects of vary-
ing b, which will improve robustness by increasing the
number of replicas for the more important (higher weight)
chunks. This comparison is shown in Figure 8 using Inter-
net Archive data. As b increases, for a given w we begin to
get higher values for k, resulting in an increase in the stor-
age space required and the robustness of the system as can
be seen in Figure 8. At b = 0.55, our system is more robust
than mirrored LZ-compressed files, but uses only 61.98%
of the storage space required by LZ-compressed files.

Figure 9 depicts the robustness of the second data set,
from the Santa Cruz Sentinel, when using different values
for b. Here, too, our approach is more robust than when
using mirrored LZ-compressed files. With b = 1, we use
only 48.41% of storage space of the base LZ-compression
approach.

As we increase the redundancies the storage space re-
quired by metadata also increases. For the Internet Archive
data the storage space used by the metadata constituted 5%
of the total storage space. For the Santa Cruz Sentinel the
metadata required 5.6% of the total storage space.

We have used both, the number of files and the amount of
the dependent data as heuristics for determining the weight
of a chunk. The choice of heuristic depends on the corpus.
If the sizes of files in a corpus are indicative of their impor-
tance, then the dependent data heuristic should be chosen.
However, if the importance of a file in a corpus is inde-
pendent of its size, or all the files in the corpus are equally
important, then the number of files should be chosen as

b = 0.4 67.23%
b = 0.5 68.46%

b = 0.55 70.66%
b = 0.6 71.78%

b = 1 75.60%
mirrored LZ-compressed 114%

 99.4

 99.5

 99.6

 99.7

 99.8

 99.9

 100

 0 1 2 3 4 5 6 7

%
 D

at
a

Av
ai

la
bl

e

% Device Failures

b=0.4
b=0.5
b=0.55
b=0.6
b=1
mirrored LZ-compressed

Figure 8. Effect of b on robustness using
heuristic w = D/d with a = 0, kmax = 4

a heuristic. The same metric used in the heuristic must
then be used for measuring the robustness of the system;
i. e., when using the number of files in the heuristic we use
the number of available files as the measure of robustness,
whereas when using dependent data as heuristic we use the
amount of available data. In other words, if all the files are
equally important, then one should measure the system ro-
bustness in the number or percentage of files available. We
have investigated the effects of the parameters a, b and kmax

on the robustness and the storage costs of an archival system
using chunk-based compression. By choosing an appropri-
ate combination of these parameters we can achieve both a
higher robustness and lower storage space utilization com-
pared to traditional LZ-compression techniques.

7. Related Work

Several systems that exploit data redundancy at differ-
ent levels of granularity have been developed in order to
improve storage space efficiency. One class of systems de-
tects redundant chunks of data at granularities that range
from entire file, as in EMC’s Centera [11], down to individ-
ual fixed-size disk blocks, as in Venti [23] and variable-size
data chunks as in LBFS [17].

RAID [6] is a device driven method for introducing re-
dundancy and thus ensuring the reliability for storage sys-
tems. OceanStore [14] aims to provide continuous access to
persistent data on a global scale and uses automatic replica-
tion strategies to boost reliability of the system in the face

b = 0.4 72.69%
b = 0.5 74.10%

b = 0.55 74.72%
b = 1 74.96%

mirrored LZ-compressed 154.84%

 99.6

 99.65

 99.7

 99.75

 99.8

 99.85

 99.9

 99.95

 100

 0 1 2 3 4 5 6 7

%
 D

at
a

Av
ai

la
bl

e

% Device failures

b=0.4
b=0.5
b=0.55
b=1
mirrored LZ-compressed

Figure 9. Effect of b on robustness using
heuristic w = D/d with a = 0, kmax = 5, Santa
Cruz Sentinel data

of disasters. FARSITE [1] is a distributed file system that
achieves reliability through replication of file system meta-
data, such as directories, and file data. FARSITE chooses
replication instead of erasure coding schemes to avoid the
additional overhead of latter when reconstructing a piece
of information. Other file systems such as PASIS [12]
and Glacier [13] also make use of aggressive replication to
guard against data loss. The LOCKSS project [15] uses a
peer-to-peer audit and repair protocol to preserve the in-
tegrity and long-term access to collections of documents.
Baker et al. [5] suggest that long term reliability addition-
ally requires auditing the integrity of data above the level of
the storage devices. The surplus storage space we save by
using interfile compression can be used to implement proac-
tive policies for ensuring reliability [31], verifying the data
integrity [27], and developing recovery strategies [32] for
large scale storage systems.

8. Future Work

In addition to chunk-based compression, Deep Store also
uses delta compression to archive data. We will study the
characteristics of delta compression and develop heuristics
for reliability as we have done here for chunk-based com-
pression.

In this work, we have used only one method of intro-
ducing redundancies; replication. We will experiment with
other mechanisms such as RAID-5 parity, erasure correct-
ing codes, and Reed-Solomon block codes [3, 22, 26].

We will also address the problem of data placement or
chunk storage in conjunction with the hardware and its fail-
ure statistics such as, mean time to failure of disks. While
increasing the redundancy of a high risk chunk we will
use such statistical data to formulate strategies regarding
whether the redundant chunk must be stored on another sec-
tor of the disk, another disk or another device altogether.

9. Conclusions

The chunk-based inter-file compression used in the Deep
Store archival system gives very good compression ratios
by removing inter-file redundancies. However, these re-
duced redundancies can be detrimental to the robustness of
the data. We have presented a simple strategy to increase
the robustness of data with chunk-based compression with-
out compromising the storage space savings obtained by the
compression. Our strategy allows us to control the balance
between storage space savings and reliability by a choice
of heuristics and parameter variation. This strategy gives
both a higher robustness and significant storage space sav-
ings compared with traditional LZ-based compression.

We have shown that choosing the right number of repli-
cas for each data chunk can achieve a much higher robust-
ness while using about half of the storage space required
by mirrored LZ-compression. Furthermore, by controlling
the parameters in our replication strategy, we can achieve an
even higher robustness (close to 100%) for a small percent-
age of device failures. This higher robustness together with
the savings in storage space is useful for future inclusion of
repair models for the Deep Store archival system. Our per-
formance can only improve when we use other redundancy
strategies such as RAID and erasure codes. By adjusting
the number of replicas of individual data chunks based on
our heuristics, Deep Store and other long-term archives can
reduce storage space requirements and thus costs while si-
multaneously increasing robustness, making the long-term
storage of data both more affordable and more reliable.

10. Acknowledgments

The authors would like to thank Bruce Baumgart of In-
ternet Archive, Mike Blaesser and Bob Smith of the Santa
Cruz Sentinel for giving them access to their data for this
work, Mary Baker of Hewlett-Packard Laboratories for her
comments, Lawrence You for his help with the use of the
Deep Store prototype, and Kevin Greenan for his excellent
systems support.

This research was supported in part by a grant from
Hewlett-Packard Laboratories, Microsoft Research, and by
National Science Foundation Grant CCR-0310888. We
would also like to thank the industrial sponsors of the

SSRC, including IBM Research, Intel, Microsoft Research,
Network Appliance, Rocksoft, Symantec, and Yahoo! for
their generous support.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and
R. Wattenhofer. FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In Proceed-
ings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA, Dec. 2002. USENIX.

[2] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and L. Stock-
meyer. Compactly encoding unstructured inputs with differ-
ential compression. Journal of the Association for Comput-
ing Machinery, 49(3):318–367, May 2002.

[3] G. A. Alvarez, W. A. Burkhard, and F. Cristian. Tolerating
multiple failures in RAID architectures with optimal storage
and uniform declustering. In Proceedings of the 24th Inter-
national Symposium on Computer Architecture, pages 62–
72, Denver, CO, June 1997. ACM.

[4] Avamar Technologies Inc. http://www.avamar.com.
[5] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos,

P. Maniatis, T. Giuli, and P. Bungale. A fresh look at the
reliability of long-term digital storage. In Proceedings of
EuroSys 2006, pages 221–234, Apr. 2006.

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson. RAID: High-performance, reliable sec-
ondary storage. ACM Computing Surveys, 26(2):145–185,
June 1994.

[7] Data Domain. http://www.datadomain.com.
[8] Diligent Technologies. http://www.diligent.com.
[9] F. Douglis and A. Iyengar. Application-specific delta-

encoding via resemblance detection. In Proceedings of the
2003 USENIX Annual Technical Conference, pages 113–
126. USENIX, June 2003.

[10] zlib Compression Library. http://www.zlib.net.
[11] EMC Corporation. EMC Centera: Content Addressed Stor-

age System, Data Sheet, Apr. 2002.
[12] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter.

Efficient Byzantine-tolerant erasure-coded storage. In Pro-
ceedings of the 2004 International Conference on Depend-
able Systems and Networking (DSN 2004), June 2004.

[13] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated
failures. In Proceedings of the 2nd Symposium on Networked
Systems Design and Implementation (NSDI), Boston, MA,
May 2005. USENIX.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for
global-scale persistent storage. In Proceedings of the 9th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
Cambridge, MA, Nov. 2000. ACM.

[15] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosen-
thal, and M. Baker. The LOCKSS peer-to-peer digital preser-
vation system. ACM Transactions on Computer Systems,
23(1):2–50, 2005.

[16] J. McKnight, T. Asaro, and B. Babineau. Digital Archiv-
ing: End-User Survey and Market Forecast 2006–2010. The
Enterprise Strategy Group, Jan. 2006.

[17] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-
bandwidth network file system. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP
’01), Oct. 2001.

[18] Nexsan Technologies. http://www.nexsan.com.
[19] NIST. Secure hash standard. FIPS 180-1, Apr. 1995.
[20] NIST. Secure hash standard. FIPS 180-2, Aug. 2002.
[21] Permabit Inc. http://www.permabit.com.
[22] J. S. Plank. A tutorial on Reed-Solomon coding for fault-

tolerance in RAID-like systems. Software—Practice and Ex-
perience (SPE), 27(9):995–1012, Sept. 1997. Correction in
James S. Plank and Ying Ding, Technical Report UT-CS-03-
504, U Tennessee, 2003.

[23] S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. In Proceedings of the First Conference on
File and Storage Technologies (FAST), pages 89–101, Mon-
terey, California, USA, 2002. USENIX.

[24] M. O. Rabin. Fingerprinting by random polynomials. Tech-
nical Report TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

[25] R. Rivest. The MD5 message-digest algorithm. Request For
Comments (RFC) 1321, IETF, Apr. 1992.

[26] T. J. Schwarz. Generalized Reed Solomon codes for erasure
correction in SDDS. In Workshop on Distributed Data and
Structures (WDAS 2002), Paris, Mar. 2002.

[27] T. J. E. Schwarz, Q. Xin, E. L. Miller, D. D. E. Long,
A. Hospodor, and S. Ng. Disk scrubbing in large archival
storage systems. In Proceedings of the 12th Interna-
tional Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS ’04),
pages 409–418. IEEE, Oct. 2004.

[28] Storage Technology Corp. http://www.storagetek.com.
[29] The Internet Archive. http://www.archive.org.
[30] The Santa Cruz Sentinel. http://www.santacruzsentinel.com.
[31] Q. Xin, E. L. Miller, T. J. Schwarz, D. D. E. Long, S. A.

Brandt, and W. Litwin. Reliability mechanisms for very large
storage systems. In Proceedings of the 20th IEEE / 11th
NASA Goddard Conference on Mass Storage Systems and
Technologies, pages 146–156, Apr. 2003.

[32] Q. Xin, E. L. Miller, and T. J. E. Schwarz. Evaluation of dis-
tributed recovery in large-scale storage systems. In Proceed-
ings of the 13th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC), pages 172–181,
Honolulu, HI, June 2004.

[33] L. L. You and C. Karamanolis. Evaluation of efficient
archival storage techniques. In Proceedings of the 21st IEEE
/ 12th NASA Goddard Conference on Mass Storage Systems
and Technologies, College Park, MD, Apr. 2004.

[34] L. L. You, K. T. Pollack, and D. D. E. Long. Deep Store: An
archival storage system architecture. In Proceedings of the
21st International Conference on Data Engineering (ICDE
’05), Tokyo, Japan, Apr. 2005. IEEE.

[35] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on Information The-
ory, 23(3):337–343, 1977.

