
Artifice: A Deniable Steganographic File System

Austen Barker Staunton Sample Yash Gupta Anastasia McTaggart Ethan L. Miller
Darrell D. E. Long

University of California, Santa Cruz

Abstract
The challenge of deniability for sensitive data can be a life
or death issue depending on location. Plausible deniability
directly impacts groups such as democracy advocates relay-
ing information in repressive regimes, journalists covering
human rights stories in a war zone, and NGO workers hid-
ing food shipment schedules from violent militias. All of
these users would benefit from a plausibly deniable data stor-
age system. Previous deniable storage solutions only offer
pieces of an implementable solution. Artifice is the first tun-
able, operationally secure, self repairing, and fully deniable
steganographic file system.

Artifice operates through the use of a virtual block device
driver stored separately from the hidden data. It uses external
entropy sources and erasure codes to deniably and reliably
store data within the unallocated space of an existing file
system. A set of data blocks to be hidden are combined with
entropy blocks through erasure codes to produce a set of
obfuscated carrier blocks that are indistinguishable from other
pseudorandom blocks on the disk. A subset of these blocks
may then be used to reconstruct the data. Artifice presents
a truly deniable storage solution through its use of external
entropy and erasure codes, while providing better durability
than other deniable storage systems.

1 Introduction

As everyday use of strong encryption for personal data storage
becomes more common, adversaries are forced to turn to
alternative means to compromise the confidentiality of data.
In some situations, the possession of an encrypted file or
disk can expose a user to coercive cryptanalysis tactics, or
worse. In such situations it becomes necessary for the user to
establish full plausible deniability.

This encourages individuals to resort to extreme methods to
exfiltrate data from dangerous or restricted environments. In
2011, a Syrian engineer smuggled a micro SD card out in an
arm wound in order to exfiltrate information about atrocities
in Hama [14]. It is also becoming increasingly common for

nations and law enforcement to legally obligate disclosure of
encryption keys [24].

Since carrying encrypted files or dedicated hardware is in-
herently suspicious, a deniable storage system must co-exist
with an open public file system to maintain plausible de-
niability. It is highly suspicious if there are visible drivers
or firmware, unconventional partitioning schemes, unusable
space in a file system, or unexplained changes to disk free
space. The hidden file system must therefore operate in such
a way that the encapsulating file system and operating system
are unaware of the hidden file system’s existence, even when
faced with a detailed forensic examination. A deniable sys-
tem must therefore meet four requirements: effectively hide
existence of the data, disguise hidden data accesses, have no
impact on the behavior of the public system, and hide the
software used to access the hidden data.

Existing deniable storage systems only address a subset of
these requirements. Some systems such as StegFS [15] do
not disguise data accesses with deniable operations, enabling
an adversary to compare two images of the disk and find the
hidden volume in a multiple snapshot attack. While it hides
data and disguises accesses, HIVE [3] significantly slows
accesses to public volumes. No existing approach successfully
addresses deniability for the existence of both the data and
the storage system itself.

Artifice is a deniable steganographic storage system that
seeks to provide functional plausible deniability for both the
data and the Artifice system. When the user needs to access
the hidden data, they boot into an Artifice-aware operating
system, such as a patched Linux Live USB. Booting into a
separate OS provides effective isolation from the host OS. Un-
like previous systems this does not leave behind suspicious
drivers on the user’s machine. A user’s data blocks are com-
bined with entropy blocks using non-systematic erasure codes
to generate carrier blocks. The carrier blocks are then stored
in the unallocated space of the public file system. As the
public file system cannot be aware of Artifice’s existence, Ar-
tifice must protect itself from overwrite by public operations.
The aforementioned erasure codes lend Artifice overwrite



tolerance and enable self repair whenever the user boots the
Artifice aware OS. Carrier blocks are produced such that they
have high entropy, so they cannot be distinguished from other
unallocated spaces that are filled with random data, possibly
through use of an additional disk encryption system. Entropy
blocks are pseudo-random information sourced either from
user files, such as DRM protected media, or generated with a
pseudo-random number generator. Artifice’s location is gener-
ated algorithmically from a pass-phrase that must be supplied
before it can be discovered. Without the correct pass-phrase,
an Artifice instance should be undetectable. Artifice addresses
the issue of multiple snapshot attacks through deniably shuf-
fling blocks under the guise of a deniable operation, such as
defragmentation, or through operational security measures.

Developing tools that enable privacy are vital for nascent
democracies, peaceful dissent, and the free dissemination of
information. Artifice is designed to provide a safe, deniable
means to store information for journalists, activists, and inter-
national human rights observers.

2 Background

Plausibly deniable storage is often considered a solved prob-
lem, but there has yet to be a working and truly deniable
storage solution. While existing solutions all claim to provide
plausible deniability, they all possess easily detectable ele-
ments or dependencies. These tells can betray the existence
of the file system itself or the user’s capability of running a
plausibly deniable system.

Anderson, et al. were the first to propose a steganographic
file system [1]. Their second proposed scheme chooses car-
rier blocks in the unallocated space of the open file system
within which the blocks of the hidden file system are stored.
Although this work lacked an implementation, many deniable
file systems follow this approach.

McDonald and Kuhn implemented a variant of Anderson’s
second design as a Linux file system based on ext2, known
as StegFS [12]. StegFS uses a block allocation table to map
encrypted data to unused blocks. They argue that because no
information can be deduced from the table, they felt no need
to continue to obfuscate the existence of their system. The
authors argue that while StegFS is detectable, the data will be
safe in a lower level. Yet, it is structured such that opening a
level of StegFS also opens up all of the lower levels. Another
criticism of StegFS is that it attempts to mitigate overwrites
by replicating files. While this scheme attempts to ensure that
at least one copy of a file survives, it is not space-efficient.

Pang, et al. [15] implemented their variant of StegFS that
improved reliability by removing the risk of data loss in the
hidden file system when the open file system writes data.
However this version contains a bitmap that exposes the exis-
tence and maximum size of the hidden volume.

Goldreich [8] and Zhou [25] propose systems to obfuscate
access patterns to shared data using Oblivious RAM (ORAM).

However, both do not conceal the presence of data, only access
patterns.

Datalair [5] and HIVE [3] combine a hidden volume with
ORAM-like techniques to obscure the volume’s existence
and thwart the multiple snapshot attack. Accesses to hidden
data are disguised amongst random accesses to a public vol-
ume. In theory, this prevents an adversary from successfully
carrying out a multiple snapshot attack. In practice ORAM
and similar techniques incur significant performance penalties
that severely impact the usability of the hidden and public
volumes. Random disk write patterns and unexplained slow
performance compared to the raw disk can possibly be viewed
as suspicious.

DEFY [16] is a log structured deniable file system designed
for flash devices based on WhisperYAFFS [19]. DEFY does
not adequately protect against hidden data overwrite unless
hidden volumes are constantly mounted and requires all file
system metadata to be stored in memory.

On-the-fly-encryption (OTFE) is the basis for several ap-
proaches to a hidden file system; examples include Rubber-
hose [2], FreeOTFE [18], TrueCrypt [22], and VeraCrypt [13].
These approaches are similar to StegFS in that each nested
file system has a single key, which grants access to the hidden
data. Since such approaches coexist with the public operat-
ing system, challenges arise concerning information leakage
through programs that access the hidden volume [6].

Recently Zuck et al. proposed the Ever-Changing Disk
(ECD) [26], a firmware design that splits a device into hidden
and public volumes where hidden data is written alongside
pseudorandom data in a log structured manner. Although
the design makes significant progress towards solving the
problem of hidden data overwrite and mitigating multiple
snapshot attacks, the deniability of the partitioning scheme
and proposed custom firmware could be a vulnerability.

None of the previously described systems hide a user’s
capability of running a plausibly deniable system from an
adversary or address malicious software installed by an ad-
versary.

3 Security and Adversary Model

The security of Artifice lies in the inability of the adversary
to distinguish carrier blocks from random data. Each carrier
block is derived from a set of data blocks and a set of entropy
blocks, but a set of carrier blocks alone is insufficient to gen-
erate the original data blocks. Even if the adversary obtains
the correct entropy blocks, Artifice relies on combinatorics
to protect the data; the attacker does not know which entropy
blocks were used to encode each data block. The set of carrier
blocks and entropy blocks needed to rebuild a single Artifice
block could be algorithmically derived from a long key, a
pass-phrase, or even by a random value stored as part of the
i-node of which the data block is a part. An attacker would
then have to examine all possible random values, generate a



set of all possible entropy blocks, and attempt to reconstruct
the data block for each value, which is a computationally in-
feasible task [11]. Without the entropy blocks, there is no
key that will decrypt a carrier block, eliminating a common
technique for detecting a deniable storage system.

We assume our adversary can monitor all of the user’s
network communication. The adversary can confiscate the
user’s computer and perform any static forensic analysis they
want. The user could be absent and will not be aware of
such attacks beforehand, yet, the user may know that such a
confiscation has taken place. The adversary can easily break
weak encryption if needed. The adversary can force the user
to reveal a password or key if they discover any encrypted
or undisclosed partition, hidden data, or suspicious software.
The adversary cannot monitor the user continuously. As such
Artifice does not defend against an adversary that has access
to the data path and can observe operations on the hidden
volume in real time.

In order to address gaps in Artifice’s security model, a user
must take care to follow proper operational security proce-
dures while using Artifice. For instance, if a device is confis-
cated from a user it must be assumed that malware or spyware
has been installed on the device or that the adversary has
obtained an image of the disk. While the threat of malware is
partially mitigated by using a seperate OS to access Artifice,
it does not defend against the presence of firmware level mal-
ware such as a Bootkit [7]. A user must also keep their device
on their person at all times, such that they are aware of any
access by the adversary. Should the adversary gain access to
the device without direct observation from the user, it would
be ideal to replace the device.

4 Design

Artifice presents a virtual block device via the Linux Device
Mapper framework that encodes user data blocks into carrier
blocks using entropy blocks supplied from a source such as
DRM-protected media files stored in a public file system.

Artifice combines entropy blocks and data blocks with
an (n,k) error correcting scheme such as Reed-Solomon
codes [17] to produce a set of carrier blocks. For example if
we have d ≤ k data blocks and e = k−d entropy blocks, after
encoding we are left with m = n− k carrier blocks and the e
entropy blocks. The data blocks are then discarded and the
carrier blocks are stored in the unallocated space of the file sys-
tem. The entropy blocks are then stored in a known, external
location. If m < e+d, then we require entropy blocks in order
to reconstruct the original data. Whereas if m ≥ e+ d then
we do not require entropy blocks to reconstruct. Carrier block
overwrite will occur through operations performed by the un-
witting file system in the intervening time since the hidden
data was written. The use of erasure codes helps to alleviate
this problem as Artifice treats overwrites by the public file
system as bad data and rebuilds the “missing” blocks during

Entropy Data
Plaintext Data

Encoded Data

Unallocated SpaceUser 
data

User 
data

Error Correcting Code

Carrier Blocks

... ...

...Used Space

Virtual Artifice block device Entropy Blocks 
from outside 

source or used 
space of the host 

file system.

Legend

Host File System

Figure 1: Creation of carrier blocks from data and entropy.

reconstruction. This approach presents a more space efficient
and tunable method for addressing hidden data overwrite than
previous work such as the replication scheme in StegFS [12].
Additionally, unlike previous systems this scheme relies on
combinatorial security as opposed to encryption. Without
knowledge of which carrier and entropy blocks correspond
to what data blocks an adversary must attempt to reconstruct
each permutation of possible carrier and entropy blocks.

For example, if we have d = 2 data blocks and e= 3 entropy
blocks resulting in k = 5, and assuming that n = 9, we arrive
at a set of 4 carrier blocks after encoding. Since the two
unencoded data blocks are discarded and not written to disk,
we are left with seven blocks that can be used to reconstruct
the original data. Out of this set of n−d blocks, only k are
needed to reconstruct the original data. The numbers m, d, and
e can each be adjusted by the user to provide more resiliency
or security as desired. The larger the number of carrier blocks
out of a set required to rebuild the data, the more secure the
system. Conversely, a smaller number of blocks required for
reconstruction provides more data resiliency in the face of
overwrites. One can also increase the number of carrier blocks
to provide more resiliency at the cost of space efficiency
and performance. Whereas decreasing the number of carrier
blocks can improve performance.

Artifice reads data by identifying the carrier blocks and
entropy blocks associated with the logical location through a
metadata structure called the Artifice Map (shown in Figure
2). The Artifice Map stores metadata that provides a mapping
from logical data blocks to physical carrier block locations
along with a hash of the logical data block. The map is pro-
tected by the same entropy/erasure code scheme described
earlier and stored alongside the data blocks. Whether a car-
rier block has been overwritten is determined by a checksum
stored in the map. If a carrier block has been overwritten it
is considered an erasure in our encoding scheme. Another
checksum of the original data block is stored in the map to
verify that the data block was rebuilt successfully. A hash of
a user specified passphrase is used to determine the location
of a superblock which provides general information such as
the location of the Artifice Map. This superblock is replicated
and encrypted with a unique key derived from the passphrase



...

Superblock 
contains 
pointers to 
the Artifice 
Map.

Legend
:Unallocated Space
Superblocks
Artifice Map
Carrier blocks

Each map 
entry points to 
a set of carrier 
blocks with 
associated 
checksums.

Carrier Block hashes and pointers

<10, 0xBE>, <90, 0xA1>, <17, 0xD0>42

Block Number Data Block Hash

0xCAFE

Example Map Entry:

1. Superblock 
locations are 
determined 
via chain 
hashing.

2. 3.

1 2

3

Used Space

Figure 2: Design and operation of the Artifice Map

to protect against overwrite with each location defined by the
a hash of the previous replica’s location.

Artifice has multiple ways to acquire high entropy data such
as from a user’s DRM-protected media files. The presence
of which on a publicly visible file system is not suspicious.
In addition to finding sources of entropy, Artifice must also
disguise its carrier blocks in order to thwart a forensic exam-
ination of the hard drive. Ideally the host operating system
would provide some form of whole drive encryption such that
every block, used or unallocated, would appear random and a
carrier block would be indistinguishable from any other block.
Even if the user is coerced into providing the decryption key
for the drive, it only reveals which blocks are unallocated and
does not reveal the existence of the Artifice instance. Without
entropy blocks the carrier blocks are just random data like
all other unallocated blocks. Alternatively, Artifice can make
use of secure drive wiping software to fill unallocated space
with random data, providing a place to store carrier blocks. Fi-
nally, self destruct is trivial through discarding the passphrase
and/or entropy source. Without this information data retrieval
is combinatorically infeasible and normal public operations
will eventually overwrite Artifice.

Since our adversary can confiscate a device for analysis
at any moment, Artifice must be resistant to a multiple snap-
shot attack. Similar to previous work [3, 5, 26], Artifice can
be rendered resistant to such attacks through making extra
writes during either repair cycles or normal disk operations.
However, a deniable reason and pattern for these writes is
required. One possibility is to cover writes with public file
system deletions where the newly freed blocks are immedi-
ately occupied by Artifice blocks. Another possibility is to
shuffle Artifice and public file system data during a defrag-
mentation operation.

Any activity in the open file system has the potential to
destroy carrier blocks in Artifice. A second challenge is en-
suring Artifice can repair extensive damage caused by normal
file system writes in higher levels. One approach is altering
the number of carrier blocks and the number of entropy blocks
needed to reconstruct. Increasing the overall number of car-
rier blocks and decreasing the number of blocks required to

reconstruct will further mitigate the effects of overwrites. Al-
ternatively we can make smarter choices in the selection of
carrier block locations so that an operation in the open file
system is less likely to affect more than one carrier block in a
set. A combination of these techniques is used to tune Artifice
to provide maximum resiliency. The simplest solution Artifice
can employ is to randomly scatter carrier blocks around the
drive because clustering them together is more likely to result
in data loss from higher-level file system activity. Lastly, a
user must avoid activities such as large data writes and SSD
TRIM operations. These pose a significant risk to the carrier
blocks regardless of efforts to protect them.

5 Survivability

Conventional systems are predominantly designed for use
with highly reliable devices. Traditional magnetic drives have
an uncorrectable error rate on the order of 10−13 to 10−15

[9]. If a block can be read at all it is extremely unlikely to
be incorrect. Blocks that are marginal can be remapped by
the drive, or by the file system. Failed blocks are typically
protected through error correcting codes or replication. In
contrast, Artifice will have destruction of its constituent blocks
as the norm. As the public file system operates, it will write
to believed free blocks, some of which may be Artifice carrier
blocks. For instance, assume that each Artifice Map entry
represents m carrier blocks, two data blocks, and k−2 entropy
blocks for a total of n blocks per codeword. The drive being
used is 1 TB, where 512 GB is left free for Artifice to hide
in. We use an Artifice instance with 5 GB of utilizable space,
and about 6.4% of the Artifice block device used for storing
the Artifice map. It is assumed that the user writes 5 GB
of data per day and mounts Artifice at least once a day to
repair any overwritten blocks. Recall from section 3 that we
require k out of n blocks to reconstruct our data. We can
calculate the survival probability of the Artifice metadata
with the following where t is time in days, p is the probability
that a carrier block is overwritten, and Size(s,m,k) is the size
of the Artifice metadata.

Pr
Survival

(k,m) = (
m

∑
i=0

pi
(

k+m
i

)
(1− p)k+m−i)Size(s,m,k)·t

We can perform a similar calculation to determine the sur-
vival probability for the entirety of an Artifice instance where
Size(s,m,k) is instead the effective size of the entire instance
when accounting for write amplification. Figure 3 shows the
survival probability of our example instance over the course of
a year with a repair cycle run each day for both the metadata
and the entire instance. This shows that Artifice can sustain
severe damage, as long as the user i) maintains a certain per-
centage of the encapsulating file system free for Artifice to
occupy, and ii) regularly mounts Artifice to carry out self-
repair.



Figure 3: Probability of survival for Artifice data in a variety of configurations where m is the number of carrier blocks.

6 Multiple Snapshot and Disguising Accesses

A multiple snapshot attack is a significant problem that most
recent deniable storage systems attempt to defend against
[3, 5, 6, 16, 26]. While this is theoretically a serious threat
to a system, it is easily mitigated through through relatively
simple countermeasures.

The first solution is proper operational security. When an
adversary gains access to the device, without the user su-
pervising, it must be assumed to be compromised whether
through imaging the disk or newly installed malware. The eas-
iest and most reliable response is to replace either the device
or the disk. With any data already contained in an Artifice
instance copied to the new device, there is then nothing for
the adversary to meaningfully compare to the initial snapshot.
Although such a scenario is ideal, it will likely not always be
practical for a user to replace a device.

Another, more practical, approach is to move enough blocks
in the free space not occupied by Artifice that it prevents the
adversary from confirming its existence with a reasonable
doubt. With a mechanical disk this can be done by keeping
the public file system fragmented for the first snapshot and
defragmenting through the Artifice aware OS such that Ar-
tifice has the opportunity to move its blocks and avoid total
overwrite. Another approach would be to shuffle public and
hidden file system blocks with each write to Artifice, masking
accesses to hidden data with dummy writes [26]. The pattern
of these dummy operations must reflect changes to the public
file system. Therefore it would be advisable to maintain a pool
of unimportant public files that could be moved or deleted to
provide a deniable reason for changes on the disk.

7 Multiple Levels

It is commonly assumed in the realm of deniable encryption
that a person who is coerced can reveal some set of verifiable

truths while keeping others secret [2, 12]. The same method
of hiding data within the unallocated space of an unaware file
system can be applied when the host file system is another
instance of Artifice. The user is then able to nest an arbitrary
number of instances within one another so that under coercion
a user is able to reveal the contents of one Artifice instance
while insisting that is all that exists. For example, a journalist
might have one set of sources in the first level file system
while protecting another more sensitive set of sources. Al-
though the effectiveness of such an approach is questionable
if an adversary has prior knowledge of Artifice and its inner
workings.

In order to implement nesting, Artifice must also under-
stand its own metadata structures and the metadata of higher
level instances. The primary challenge lies in obtaining the
metadata of higher level instances in order to determine which
blocks are free. To solve this problem Artifice uses the de-
terministic hash function, CRUSH [23]. It is essential that
a lower level be able to view the metadata of higher level
instances without exposing the lower level.

8 Design issues for Solid State Drives

Solid State Drives (SSD) create a set of different issues for
Artifice versus traditional hard drives. The logical block store
that the Flash Translation Layer (FTL) presents to the oper-
ating system allows the SSD to relocate physical pages so
that garbage collection can reclaim pages invalidated by more
recent writes. This process occurs independently of the oper-
ating system. It is necessary for the SSD to create free flash
blocks (encompassing a moderate, but fixed number of pages)
that can be erased and made available to future writes. Erased
blocks are not available via the logical interface as they are not
mapped into the logical address space. This layer of abstrac-
tion and garbage collection presents problems for Artifice.



The FTL may mark Artifice blocks as written which creates
an opening for detecting Artifice through forensic analysis.
Also the FTL may erase hidden data as part of normal garbage
collection operations if it is unaware of Artifice’s presence.

Modern operating systems support the TRIM function,
which notifies the SSD which flash blocks are no longer in
use by the file system, allowing the FTL to correctly handle
deletions. Specifically, it notifies the SSD that there is no need
to keep copies of pages during garbage collection.

Common forensic analysis of an SSD only uses SATA
commands and sees the drive as the OS does. Access to
raw flash is possible, but not standard in practice because
of variation in SSD designs [10]. Many SSDs implement
Deterministic Read After Trim (DRAT), in which the SSD
returns the same data for blocks that have been TRIMmed,
regardless of whether the block survives in flash. It is common
to disable the TRIM command if using a drive encryption
system as it could leak the locations of the unallocated blocks
and reveal the possible size of stored data [4, 20, 22]. These
characteristics make disabling TRIM an ideal choice as we
need not worry about hiding carrier blocks among zeroed data
or carrier blocks being wiped by garbage collection.

The Artifice file system can still write to blocks in the
free space of the open system. No TRIM command would be
issued for these and Artifice can read them through normal
means. It is yet unclear whether or not these blocks would be
considered abnormal. To our knowledge, there are no accumu-
lated statistics on the frequency of zeroed or random blocks
after TRIM, and we will attempt to gain a better understanding
of this issue.

9 Performance Considerations

First and foremost, Artifice is not intended to be a high per-
formance system; its goal is the protection of users in hostile
environments. That said, adequate performance is essential to
the real-world use of a deniable storage system. The largest
overhead will be the additional processing erasure codes re-
quire and the write amplification. There are many traditional
ways of speeding up access to files that also apply to the Arti-
fice file system. Despite these methods, reading blocks from
seemingly random locations will hinder performance.

Fortunately, the use of magnetic hard drives is rapidly de-
creasing and with them painfully long seek times. SSDs im-
pose no significant seek penalty and have high read perfor-
mance. Excess reads will therefore present less of an issue.
Contrarily, using erasure codes to generate the carrier blocks
will inevitably impose excess writes and CPU overhead. Tra-
ditional buffering techniques can be used to mitigate these
delays, though care must be taken to avoid correlation of the
carrier blocks and their associated data blocks. Simple meth-
ods applied in traditional file systems, such as contiguous
allocation, are not applicable as they introduce correlations
that would make Artifice insecure. Technological advances

Figure 4: Read and write performance of the Artifice proto-
type block device versus raw disk.

such as SSDs and on-bus non-volatile memories (NVM) make
contiguity less important. As seen in figure 4 the current Ar-
tifice prototype with a rudimentary disk scheduling sheme
and configured to write four carrier blocks per data block on a
commodity SSD provides performance on par with USB 2.0
flash drives [21]. This performance is sufficient for most tasks
including compressed 1080p video playback and is a signifi-
cant improvement over recent ORAM based systems [3, 5].

10 Conclusion

Artifice will offer the first operationally secure, tunable, and
self repairing deniable storage system. Unlike previous sys-
tems, Artifice provides a means to both deny the existence of
data but also the Artifice software itself. Artifice is designed
to be used in a hostile environment and provides functional
avenues for defeating a multiple snapshot attack. Through
its use of external entropy and erasure codes, it protects data
through combinatoric security without the use of encryption.
These features offer those in harm’s way a method to not
only protect themselves, but the free flow of information in
restricted environments. Those in need of a deniable storage
system, aid workers, democracy advocates, or journalists, will
be able to entrust their lives to a usable system like Artifice.

Acknowledgments

We would like to thank Thomas Schwarz for assistance with
the survivability calculations and our paper shepherd Rishab
Nithyanand. This research was supported in part by the Na-
tional Science Foundation grant number IIP-1266400, award
CNS-1814347, and by the industrial partners of the Center
for Research in Storage Systems.



References
[1] Ross Anderson, Roger Needham, and Adi Shamir. The Steganographic

File System. In David Aucsmith, editor, International Workshop on
Information Hiding, pages 73–82, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

[2] Julian Assange, Ralf P. Weinmann, and Suelette Dreyfus. Rub-
berhose. https://web.archive.org/web/20100915130330/http:
//iq.org/~proff/rubberhose.org/.

[3] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarli-
oglu. Toward Robust Hidden Volumes Using Write-Only Oblivious
RAM. In Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’14), pages 203–214, New
York, NY, USA, 2014. ACM.

[4] M. Broz and V. Matyás. The TrueCrypt On-Disk Format–An Indepen-
dent View. IEEE Security Privacy, 12(3):74–77, May 2014.

[5] Anrin Chakraborti, Chen Chen, and Radu Sion. DataLair: Efficient
Block Storage with Plausible Deniability against Multi-Snapshot Ad-
versaries. Computing Research Repository (CoRR), abs/1706.10276,
2017.

[6] Alexei Czeskis, David J. St. Hilaire, Karl Koscher, Steven D. Gribble,
Tadayoshi Kohno, and Bruce Schneier. Defeating Encrypted and Deni-
able File Systems: TrueCrypt V5.1a and the Case of the Tattling OS
and Applications. In Proceedings of the 3rd Conference on Hot Topics
in Security (HOTSEC ’08), pages 7:1–7:7, Berkeley, CA, USA, 2008.
USENIX Association.

[7] Jake Edge. Thwarting the Evil Maid. lwn.net, 2015.

[8] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simu-
lation on Oblivious RAMs. J. ACM, 43(3):431–473, May 1996.

[9] Jim Gray. Empirical Measurements of Disk Failure Rates and Error
Rates. Technical report, December 2005.

[10] Yuri Gubanov and Oleg Afonin. White Paper: SSD Forensics 2014: Re-
covering Evidence from SSD drivers: Understanding TRIM, Garbage
Collection, and Exclusions. Technical report, Belkasoft, 2014.

[11] A. Kiayias and M. Yung. Cryptographic Hardness Based on the De-
coding of Reed–Solomon Codes. IEEE Transactions on Information
Theory, 54(6):2752–2769, June 2008.

[12] Andrew D McDonald and Markus G Kuhn. StegFS: A steganographic
file system for Linux. In International Workshop on Information Hiding,
pages 463–477. Springer, 1999.

[13] Mounir Iddrassi. Veracrypt. https://www.veracrypt.fr/en/Home.
html.

[14] J. Mull. How a Syrian Refugee Risked His Life to Bear Witness to
Atrocities. Toronto Star Online, March 2012.

[15] H. Pang, K. Tan, and X. Zhou. StegFS: a steganographic file system.
In Proceedings 19th International Conference on Data Engineering
(Cat. No.03CH37405), pages 657–667, March 2003.

[16] Timothy Peters, Mark A. Gondree, and Zachary N. J. Peterson. DEFY:
A Deniable, Encrypted File System for Log-Structured Storage. In
Network and Distributed System Security Symposium (NDSS), 2015.

[17] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics,
8(2):300–304, 1960.

[18] Sarah Dean. FreeOTFE. https://web.archive.org/web/
20130305192701/http://freeotfe.org/docs/Main/version_
history.htm.

[19] SignalApp. Github: WhisperYAFFS. https://github.com/
signalapp/WhisperYAFFS/wiki.

[20] Adam Skillen and Mohammad Mannan. On Implementing Deniable
Storage Encryption for Mobile Devices. In 20th Annual Network &
Distributed System Security Symposium, February 2013.

[21] Zachary Throckmorton. USB 3.0 Flash Drive Roundup. Anandtech,
2011.

[22] Truecrypt Foundation. Truecrypt. http://truecrypt.sourceforge.
net/.

[23] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn.
CRUSH: Controlled, scalable, decentralized placement of replicated
data. In Proceedings of the 2006 ACM/IEEE Conference on Supercom-
puting (SC ’06), Tampa, FL, November 2006. ACM.

[24] Wikipedia contributors. Key disclosure law — Wikipedia, The Free
Encyclopedia, 2019. [Online; accessed 14-May-2019].

[25] Xuan Zhou, HweeHwa Pang, and Kian Tan. Hiding Data Accesses
in Steganographic File System. In Proceedings 20th International
Conference on Data Engineering, pages 572–583, April 2004.

[26] Aviad Zuck, Udi Shriki, Donald E. Porter, and Dan Tsafrir. Preserving
Hidden Data with an Ever-Changing Disk. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems (HotOS ’17), pages

50–55, New York, NY, USA, 2017. ACM.

https://web.archive.org/web/20100915130330/http://iq.org/~proff/rubberhose.org/
https://web.archive.org/web/20100915130330/http://iq.org/~proff/rubberhose.org/
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://web.archive.org/web/20130305192701/http://freeotfe.org/docs/Main/version_history.htm
https://web.archive.org/web/20130305192701/http://freeotfe.org/docs/Main/version_history.htm
https://web.archive.org/web/20130305192701/http://freeotfe.org/docs/Main/version_history.htm
https://github.com/signalapp/WhisperYAFFS/wiki
https://github.com/signalapp/WhisperYAFFS/wiki
http://truecrypt.sourceforge.net/
http://truecrypt.sourceforge.net/

	Introduction
	Background
	Security and Adversary Model
	Design
	Survivability
	Multiple Snapshot and Disguising Accesses
	Multiple Levels
	Design issues for Solid State Drives
	Performance Considerations
	Conclusion

