
Reliability Modelling of Disk Subsystems
with

Probabilistic Model Checking
Technical Report UCSC-SSRC-09-05

May 2009

K. Gopinath Jon Elerath Darrell Long
gopi@csa.iisc.ernet.in jelerath@comcast.net darrell@cs.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

Reliability Modelling of Disk Subsystems with
Probabilistic Model Checking

K. Gopinath∗

Indian Institute of Science,
Bangalore 560 012, INDIA

Jon Elerath
NetApp Inc.,

Sunnyvale, CA

Darrell Long
Univ. California, Santa Cruz,

Santa Cruz, 95064, CA

Abstract
We discuss how probabilistic model checking, a variant of
model checking, can be useful in modelling multiple fail-
ures in disk subsystems, as it allows specification of prob-
abilities or rates of transitions also. Probabilistic model
checking can be used to not only check the correctness
of formulae that are augmented with a probability opera-
tor, but also to compute, as a side effect, probabilities and
Markov rewards in response to queries expressed in an
expressive logic. With exponential distributions for fail-
ures, it is possible to accurately compute the reliability of
many non-trivial disk systems. Exploiting the technique
of symmetry reduction, it is possible to handle even larger
fully symmetric systems. For non-exponential distribu-
tions, such as Weibull models of disk reliability, we can
analyze reasonable sized systems (such as RAID4/5/6) if
good approximations based on exponomials are possible.
We report our experiences and compare our results with
those from simulation.

Keywords: Probabilistic model checking, disk storage
systems, continuous time Markov chains, RAID, Weibull
models.

1 Introduction
Storage systems are complex due to a large number of
components: disks, controllers, interconnects. Each of
these components may have complex failure modes; a
disk can suffer, for example, a whole disk failure, a sector
failure or a partially written sector (“torn”) write [1]. In
addition, the reliability model of a disk is complex, given
its realization as an electro-mechanical device of consid-
erable complexity. This leads to an enormous state space
if we choose to model them in any detail.

Simulation is a widely used and powerful technique for
evaluating such systems. Simulation is the most flexible
since it allows us to use arbitrary distributions (such as
Weibull common in reliability studies) and even traces.

∗gopi@csa.iisc.ernet.in (contact author, ph.831-459-2177),
jon.elerath@netapp.com, darrell@cs.ucsc.edu

However, simulations take very long to run as the events
that we are trying to model (data loss) are rare. Further,
it requires sophistication to design statistically valid sim-
ulation runs and to interpret simulation results. We pro-
pose and investigate Probabilistic Model Checking [21]
as a technique for analyzing the reliability of disk-based
storage systems.

Model checking is a formal method for evaluating the
correctness of systems. The correctness of microproces-
sor designs in the industry depends critically on model
checking portions of its subsystems as the expensive
FDIV Pentium bug has made the use of model checking
techniques mandatory. Model checking has been used re-
cently [22] to study correctness of RAID5 protocols with
latent sector errors (when a disk sector cannot be read),
torn writes and so on. Model checking is different from
a proof-theoretic approach such as natural deduction; it
is fully automated once the model and the formula to be
checked are specified and is therefore suitable for regular
use in industry.

Probabilistic model checking (PMC) [21] is a formal
verification technique for the modelling and analysis of
systems that exhibit stochastic behaviour. While proposi-
tions with probabilistic operators can be checked for va-
lidity, it is also possible to compute certain probabilities
in the model as a side effect. This is similar to the use of
standard model checking to derive solutions from coun-
terexamples. For example, the cannibals problem can be
model checked with the assertion that there is no solu-
tion; a model checker that gives all the counterexamples
provides us the desired solution to the problem. Since
the algorithms for PMC proceed by computing the actual
probabilities necessary to evaluate a given formula with a
probability operator, no additional work is needed to com-
pute the probability that a certain path formula has.

PMC is an exact technique (modulo numerical analy-
sis errors which are common to all numerical methods)
and hence any inaccuracies in the results arise from the
modelling itself or approximations used for distributions.
Since only negative exponential distributions can be spec-
ified in current PMC tools, the usefulness of this technique

1

for reliability models based on non-exponential distribu-
tions (such as Weibull) depends on how well approxima-
tions can be carried out. We discuss this in the last part of
the paper.

The automation possible in PMC is useful in solving
reasonably large and non-trivial Markov models with ex-
ponential distributions; in comparison, analytical tech-
niques require considerable effort, even for small systems,
in solving coupled differential equations using Laplace
transforms [19] while simulation requires code develop-
ment and careful statistical validation of the results. While
individual simulation runs can be fast, simulation for rare
events in reliability studies requires many runs to reduce
the variance of the results (proportional to 1/

√
p, p being

the rare event probability) and techniques such as impor-
tance sampling have to be used. However, many of its
techniques are not easy to use and are still a research topic
[3].

Though PMC encounters roadblocks in terms of state
explosion in larger or very detailed models, we believe it
is a good midway solution between simulation and analyt-
ical models: the models are high level and there is consid-
erable automation in handling a rich query language based
on temporal logic used for posing reliability queries.

While current tools do not exploit multicore clusters
well, as the algorithms have not been parallelized, it will
be more attractive once they are effectively parallelized
on large clusters. In addition, techniques for identifying
and eliminating redundant states due to symmetry are an
important part of the computer-aided verification (CAV)
discipline and hence any advance in this area can be used
immediately. Fully symmetric systems do arise naturally;
we discuss the reliability of RAID5 systems from 5 to 10
disks as well as RAID-DP[4] systems with 8 disks under
realistic error models.

The outline of the paper is as follows. We first give
some background on the technique of PMC. We then con-
sider a few disk subsystems considered in literature and
analyze them under realistic error models using PRISM
[13], a tool for PMC. For Weibull models, we present our
modelling methodology and the approximations used. We
discuss the results of these models and how they compare
with simulation. Due to the difficulty of computing good
approximations for Weibull distributions, the agreement is
still not very satisfactory. Finally, we will conclude with
some problems with the technique and future work.

2 Previous Work

Elerath et al. [11] have recently used simulations to study
enhanced reliability modelling of RAID4 storage systems.
There have been many other studies that have used sim-
ulation or analytical modelling for the study of multi-

disk storage systems but we cite just two more: Qin et
al. [7], Paris et al. [2]. Hafner and his colleagues have
developed analytical models of reliability for networked
storage using RAID, and for non-MDS codes [17, 16].
These methods, however, do not have significant automa-
tion as discussed earlier. Krioukov et al. [22] have used
model checking to estimate probability of error in a 5-disk
RAID; it is not clear if their technique can handle large
state spaces or uses a general query logic with probabilis-
tic operators.

The System Availability Estimator (SAVE) tool [5] has
a reliability-based language that solves a continuous time
Markov chain for user specified measures such as steady
state availability, interval availability, reliability and the
mean time to failure. Importance sampling [5] is also sup-
ported for fast simulation using “failure biasing”.

Trivedi and his collaborators have developed SHARPE
and GSHARPE tools for reliability and performance mod-
elling [9, 10]. For example, Malhotra and Trivedi[8] have
analyzed RAID systems using SHARPE. While these
tools have been used for research and in industry, it is not
clear if any special techniques have been used to handle
large state spaces.

PMC has been used in many performance studies but
we are not aware of its use for studying storage reliability.

3 Primer on Prob. Model Checking

Model Checking [12] checks if a set of formulae have a
model, i.e. a set of valuations (an interpretation) that sat-
isfies the formulae. The formulae can be propositional,
temporal, first order logic and so on but the propositional
temporal logic is most often used. Linear temporal logic
(LTL) deals with specifying (propositional) properties,
relative to the current state in a path, in the future (≥ 1
states), past (≤ 1 states) and next state whereas branching
time logic or computation tree logic (CTL) deals with pos-
sible futures, including a notation for describing a prop-
erty in all states in all futures (“globally”), in some state
in some future (“exists”), in the next state from the cur-
rent state in all futures, etc. Probabilistic Model Check-
ing [21], in addition, can specify properties on paths us-
ing a probability operator. The probabilistic version of
CTL most widely studied is PCTL (probabilistic CTL)
and CSL (continuous stochastic logic).

Model checking requires two inputs:

• a description of the system, usually given in some
high level modelling formalism such as process al-
gebra or Petri nets.

• a specification of one or more desired properties of
the system, often in CTL, LTL, PCTL or CSL.

2

Using these inputs, a model checker constructs a model
of the system, typically a labelled state-transition system
in which each state represents a possible configuration and
each transition represents an evolution of the system from
one configuration to another over time. This is typically
done by exhaustive exploration (the state space is explic-
itly generated) or by symbolic methods (the state space
is represented implicitly using a formula in propositional
logic, often encoded in space efficient data structures such
as binary decision diagrams (BDDs), or multi-terminal
BDDs (MTBDDs)). It is then possible to automatically
verify whether or not each property is satisfied, based on
a systematic and exhaustive exploration of the constructed
state-transition system.

In probabilistic model checking, the models are pro-
vided with additional quantitative information regarding
transitions (either probabilities or rates) and the times at
which they do so. In practice, these models are typi-
cally Markov chains or Markov decision processes. If
probabilities are used in the Markov chains and time
is modelled in discrete steps, we have the discrete-time
Markov chains (DTMC). To model reliability or perfor-
mance, however, the most suitable model is continuous-
time Markov chains (CTMCs), in which transitions be-
tween states are assigned positive, real-valued rates of
negative exponential distributions. CTMCs have a contin-
uous (real-valued) model of time and probabilistic choice
but no non-determinism; they specify rates of making
a transition instead of probabilities. The logic used for
CTMCs is Continuous Stochastic Logic (CSL) that is
based on PCTL; for example, it has a steady state oper-
ator that computes steady state probabilities.

Formally, if AP is the fixed, finite set of atomic propo-
sitions used to label states with properties of interest and
R the reals, then a CTMC is a tuple (S,R,L):

• S is a set of finite states

• R : S × S → R≥0, the transition rate matrix.

• L : S → 2AP is a labelling function which asso-
ciates each state with a set of atomic propositions.

If there is more than one transition available at a state,
there is a “race condition” and the first transition to be
triggered determines the next state. The time spent in
state s before any such transition occurs is exponentially
distributed with the rate E(s) = Σs′∈SR(s, s′), the exit
rate; the transition is triggered in time t with probabil-
ity 1 − e−E(s)·t. The probability of moving to state s′

is given by R(s, s′)/E(s), and the probabilities between
the various states then defines a probability matrix for an
embedded DTMC. A CTMC can be augmented with re-
wards, attached to states and/or transitions of the model.
Rewards can be used, for example, to count how many
time units are spent in a state.

The underlying computation in probabilistic model
checking involves a combination of graph-theoretical al-
gorithms (for temporal logic model checking and qualita-
tive probabilistic model checking) and numerical compu-
tation (for quantitative probabilistic model checking, i.e.
calculation of probabilities and reward values).

There are many research tools that have been devel-
oped for probabilistic model checking. We will primar-
ily use the PRISM model checker developed at Birming-
ham/Oxford [13]; it has support for all of the above with
PCTL/CSL logic and generally considered to have good
support for exploring large state spaces [14]. It also uses
techniques such as “uniformization” for controlling some
numerical errors. In reliability models with widely dif-
fering rates for failures and repairs (4-5 orders of magni-
tude), the convergence parameter depends on the stiffness
of the problem. With many of the problems considered
here, a (relative) convergence parameter of 1E-6 is good
enough. Another well regarded tool is MRMC (Markov
Reward Model Checker) [15]. A discussion of the merits
of some of the tools available is given in [14].

3.1 Logic
The logic used in many probabilistic model checkers such
as PRISM is PCTL which extends CTL by adding a prob-
ability operator P . Example: under any scheduling of
processes, probability that event A occurs is at least p (at
most p): P≥p (P≤p). The syntax of PCTL is as follows
[21]; here AP is any atomic proposition, relop the rela-
tional operator, and X is the next state operator.

• state formulae:

φ :: true | AP | φ1 & φ2 | not φ | Prelop c(α)
relop :: ≥ | ≤ | > | <

• path formulae:

α :: X φ | φ1 untilkφ2 | φ1 until φ2

“X φ” is true if φ is true in all the states reachable in one
step from the current one. The “φ1 until φ2” path formula
is true if φ2 becomes true in some future state and φ1 is
true starting from the 1st state in the path till that state.
If the until is bounded (untilk), this transition has to
happen in exactly k steps. Note that a PCTL formula is
always a state formula with the path formulas occurring
only inside the P operator. Since we will use CTMC for
our studies, we discuss its logic CSL next.

3.2 CSL over CTMC
Continuous stochastic logic (CSL) is based on PCTL. In-
stead of the bounded until operator, it has a until

3

interval operator; a path formula “φ1 untilt1,t2φ2” is true
if φ2 is true some time instant in the interval [t1, t2] and
φ1 holds at all preceding time instants. It has, in addi-
tion, a steady state operator that computes the probability
of staying in a state satisfying a formula in the long run
relop p. Example: if a wireless channel is free, the prob-
ability that it will be busy within t time units is less than
10%: “P<0.1[free until <= t busy]”.

While the above query language is powerful (one is not
limited to a “canned” set of queries one can pose), CSL is
still not powerful enough to handle some natural queries
such as: find the time at which the probability becomes a
certain value. This is needed, for example, in computing
the five 9’s reliability [2]. Currently, this has to be solved
by the “bisection” method by guessing the time and then
increasing or decreasing the time. This simple procedure
is guaranteed to be effective as the reliability function over
time is a decreasing monotone function.

3.3 Example of Model Checking a formula
We will take a very simple formula “Xφ” for illustration.
For simplicity, let us assume that the full state graph has
already been generated from the model. We can therefore
find which of the states satisfies φ; let us represent all the
states whether they satisfy this formula by a state-indexed
column vector of 0 or 1s, B. If the formula that is being
model checked is Xφ, the matrix vector product of the
embedded probability matrix of the induced DTMC and
B gives the required probabilities for Xφ. For other path
operators (such as until), more involved computations
(such as fixpoints) are needed but they all boil down to
matrix vector multiplications or solving linear equations
[21].

We will not discuss the computational complexity of
model checking here due to lack of space; the most ex-
pensive complexity is cubic in the number of states.

3.4 PRISM modelling language
PRISM has a simple, state-based language for
DTMCs/CTMCs/MDPs with process algebra-based
primitives. Modules can be defined for each system
component and they can be composed in parallel. Vari-
ables are finite-valued and either local or global to the
module. It has guarded commands that are labelled with
probabilities (in case of DTMC/MDP) or rates (CTMC).
Though we do not use it in this paper, synchronization
between modules is possible through action labellings;
they can also be used for process algebra-style operations.
For illustration, we consider a simple RAID51 model

1In RAID5, a parity disk block is computed as the xor of the n-1
data disk blocks. If a disk fails, the lost disk block (data or parity) can
be rebuilt using the xor of the other n-1 disk blocks.

in PRISM with a very simple on/off model of the disk
but that handles latent sector errors (LSE) and rebuilds
the failed disk onto a spare disk [16] (note that we use
the exact same “optimized” Markov model they used in
their studies). h >1 means that the rebuild cannot be
successful.

ctmc // Continuous Time Markov Chain
//Next 4 decls common to all code examples below
const int MTTFd; // MTTF of disk
const int MTTRd; // MTTR of disk
const double lambda=1/MTTFd; //failure rate
const double mu=1/MTTRd; //repair rate

const int d; // num of disks
const double HER; // hard error rate/GB
const int dcap; // disk capacity in GB
const double h=(d-1)*dcap*HER;//rebuild perr

module raid5
s: [0..2] init 0; //state of disk

//s=0: working; 1: repair; 2: fail
[] (s=0) -> d*(1-h)*lambda:(s’=1) +

d*h*lambda:(s’=2);
[] (s=1) -> mu: (s’=0) + (d-1)*lambda: (s’=2);

endmodule

rewards
!(s=2): 1; // unit reward if disk OK

endrewards

The RAID5 model has only a single module; if there are
more than one, the composite state space of the model is
obtained, by default, as the cross-product of the states of
all the modules by interleaving each guarded statement.
The action labellings (inside []) are empty in the two
statements of the module as we do not use process alge-
bra type synchronization between the modules. The two
guard conditions are (s=0) and (s=1). The second
statement means: if state s is 1 (repair state), there are
two possibilities (separated by the process-algebraic nota-
tion for composing processes, namely +): either a repair
process at rate mu that takes the system to state 0 (s’=0)
or another failure process with rate (d-1)*lambda that
takes it to the fail state (s’=2). A variable that is rede-
fined has a prime (’) as a suffix for the new version. Note
that the arithmetic + can be used by overloading but not at
the outermost level. The & is similarly overloaded: in the
guards on the LHS, it means the logical operator (just as
negation ! and or |) whereas on the RHS it means con-
junction of assignments.

The query language is based on CSL but augmented
with Markov reward models: thus we can compute the
mean time to data loss (MTTDL) by the formula R=?
[F (s=2)]. Here, R=? is the query for computing the
cumulative rewards until (F, signifying “finally”) the state
2 is reached ((s=2)) i.e. until a disk fails or data gets cor-
rupted during reorganization; this is realized by assigning
a unit rate of accumulation of reward when in states that

4

0 1 2

mu

d.(1−h).lambda (d−1).lambda

d.h.lambda

Figure 1: RAID5 Model from Rao et al. [16]

are not (s=2): namely, !(s=2):1. Absorbing states
are detected (state 2 is one) and handled without any dif-
ficulty.

Figure 1 gives the Markov Model. There is a di-
rect and natural 1-1 mapping of the transitions in the
Markov model and the disjunctive expressions in the
PRISM model. In addition to computing MTTDL, we
can compute the reliability at time t by model checking,
P=? [true U<=t (s=2)], which queries the proba-
bility (P=?) of reaching the fail state (s=2) until time
t (true U<=t). Note that, in general, an analytical
solution involves solving a potentially complex system
of linear differential equations . This simple model can
be solved analytically with ease [16] and PRISM, which
uses numerical techniques corresponding to the analytical
methods, gives identical results.

4 Case Studies
We model the following to study the suitability of proba-
bilistic model checking for analyzing disk subsystems:

• A small disk array with/without LSEs and scrubbing

• Larger disk arrays with 3-state HMM (“Hidden
Markov Model”) models for disks that model burn-in
failures; smaller disk arrays but with LSEs

• RAID5/6 systems with Weibull models for disk fail-
ures, LSEs, scrubbing and rebuild times.

4.1 Simple Reliability Models for Small
Disk Arrays

4.1.1 SSPiRAL

Amer et al. [19] have considered an array structure that
is more robust than mirrored schemes but is close to them
in simplicity; it also requires fewer number of disks to
be read fully for a rebuild compared to RAID5 schemes.
A SSPiRAL layout is defined by three parameters: the
degree of the system (the number of devices the data will
be distributed across), the total number of devices (data
and parity), and the x-order (the number of devices used

Figure 2: SSPiRAL 3+3 disk array from Amer et al.[19].

for the parity calculation; it is also the maximum number
devices to be read in case of a rebuild).

Basic Model For the 3-degree, 2-order design with 3
data disks + 3 parity disks design with x=2 (Fig. 2) and
not considering latent sector errors, we can specify the
reliability model in PRISM as follows (we assume the 1st
4 declarations in the previous model):

const int MAX=4; // max failures
// formula is a ‘‘macro’’
formula cond = ((s1=1) & (s2=1) & (s3=1)

|(s1=1) & (s12=1) & (s31=1)
|(s2=1) & (s12=1) & (s23=1)
|(s3=1) & (s31=1) & (s23=1));

module disks
s1: [0..1] init 0;
s2: [0..1] init 0;
s3: [0..1] init 0;
s12: [0..1] init 0;
s23: [0..1] init 0;
s31: [0..1] init 0;
fail: [0..MAX] init 0;
dataloss:[0..1] init 0;

[] (fail<MAX-1) & (s1=0) ->
failrate: (s1’=1) & (fail’=fail+1);

[] (fail<MAX-1) & (s2=0) ->
failrate: (s2’=1) & (fail’=fail+1);

[] (fail<MAX-1) & (s3=0) ->
failrate: (s3’=1) & (fail’=fail+1);

[] (fail<MAX-1) & (s12=0) ->
failrate: (s12’=1) & (fail’=fail+1);

[] (fail<MAX-1) & (s23=0) ->
failrate: (s23’=1) & (fail’=fail+1);

[] (fail<MAX-1) & (s31=0) ->
failrate: (s31’=1) & (fail’=fail+1);

[] (fail>0) & (s1=1) ->
repairrate: (s1’=0) & (fail’=fail-1);

[] (fail>0) & (s2=1) ->
repairrate: (s2’=0) & (fail’=fail-1);

[] (fail>0) & (s3=1) ->
repairrate: (s3’=0) & (fail’=fail-1);

[] (fail>0) & (s12=1) ->
repairrate: (s12’=0) & (fail’=fail-1);

[] (fail>0) & (s23=1) ->
repairrate: (s23’=0) & (fail’=fail-1);

[] (fail>0) & (s31=1) ->
repairrate: (s31’=0) & (fail’=fail-1);

endmodule

5

rewards
!((fail=MAX-1) & cond | (fail=MAX)): 1;

endrewards

The 3+3 system enters a fail state if any 4 disks fail or
4 of the specified configurations with 3 disks fail. We can
compute the probability of failure at time t by the formula

P=? [true U<=t ((fail=MAX) | (fail=MAX-1) &
((s1=1) & (s2=1) & (s3=1)
|(s1=1) & (s12=1) & (s31=1)
|(s2=1) & (s12=1) & (s23=1)
|(s3=1) & (s31=1) & (s23=1)))]

The graph plotting the probability of failure against
time from 1 year to 100 years turns out to be linear and is
given in Figure 3(a). On an Opteron single core2, it takes
about 2.5 min elapsed time for the whole run. The previ-
ously reported results on SSPIRAL [19] are approximate
as the analytical approximation used aggregates the states
of data and parity disks, when appropriate, for tractabil-
ity. It has only 5 states and 8 transitions compared to the
114 states and 700 transitions of the PRISM model ob-
tained by an optimized cross-product operation. It may
be possible to remove still some of the redundant states
and transitions arising from symmetry in the system but
current state of art in symmetry reduction [23] requires
“fully symmetric systems” which SSPIRAL is not (as the
parity and data disks are not interchangeable). We present
the results reported by PRISM and the analytical results,
along with running PRISM on the approximate analytical
model SSPIRAL (fig. 3 of [19]) for a disk with MTTF of
105 hours and MTTR of 30 hours in Table 1 (being one set
of parameters used in [19]). It cannot be done analytically
without approximations, and simulation requires consid-
erable number of runs to be sure of statistically valid re-
sults. For a confidence interval of 95% and maximum
relative half-width (or deviation) of 10%, the number of
simulation runs necessary is 384 · (1 − p)/p where p is
the probability of the rare event [3]. Since p is quite small
(of the order of 1E-6) for this example, large number of
runs are necessary even for a deviation of just 10% unless
special methods are used in the simulation (such as impor-
tance sampling). The model checking technique provides
a much quicker and accurate answer and with much less
user effort, with a relative error of less than 1E-6.

However, just as with the simple RAID5 model, this
model is not realistic. It does not take into account latent
sector errors (LSE) that are detected when a sector cannot
be read nor does it take into account the non-exponentially
distributed (total) failure rates of the disk that are seen in
practice. We will take into account LSE first and the latter
once we develop better disk models (see Sec. 4.3).

2For this and other results reported in this paper, we use one core of
a 2GHz Opteron. Also, we have selected the SOR technique for solving
the Markov chains with a convergence parameter of 1e-06. We have
used the default “hybrid” method for representing data structures using
MTBDDs; using sparse matrices is faster but needs more memory.

years PRISM Analyt[19] Analyt(PRISM)
4 3.77E-7 3.78E-07 3.78E-7
5 4.72E-7 4.73E-07 4.72E-7

20 1.89E-6 1.89E-06 1.89E-6
100 9.44E-6 9.46E-06 9.45E-6

Table 1: Failure probability vs time for SSPIRAL 3+3
array: PRISM vs approx. analytical [19] (“Analyt”), and
approx. analytical model in PRISM (“Analyt(PRISM)”).

Model with LSE In the context of the configurations
of the previous 3-disk failure dataloss cases, we have dat-
aloss even if only 2 disks fail and the other 3rd disk has
a LSE. If only one disk fails and 2 other necessary disks
have LSEs, we assume that the system can recover as two
disks having the LSE at the same sector position is im-
probably small. If the state of a disk i is xi, with 0 be-
ing UP, 1 being LSE and 2 being DOWN, then all these
dataloss cases can be conveniently coded as satisfying∑3

i=1 xi > 4. Adding regular scrubbing of disks, the
modified PRISM code is given below (we again assume
the 1st 4 declarations from the first code example):

const int MAX=4; // max failures
const double lse; //latent sector err rate
const double lscr; // scrubbing rate
const double HER; //hard error rate/GB
const int dcap; // disk capacity in GB
const double h=(3-1)*dcap*HER; //perrebuild
const int UP =0;
const int LSE =1;
const int DOWN =2;

global dataloss: bool init false;
global fail: [0..MAX] init 0;

formula fdataloss= (x1+x2 +x3 >4) |
(x1+x12+x31>4) |
(x2+x12+x23>4) |
(x3+x31+x23>4);

//data loss if 3 disks fail, or 2 disks
//fail and one other disk has an LSE in
//the configurations involving 3 failures

module disk1
x1: [0..2] init 0; //state of disk
[](fail<MAX) & (x1=UP) ->

lambda:(x1’=DOWN) & (fail’=fail+1)+
lse: (x1’=LSE);

[](fail<MAX) & (x1=LSE) -> lscr: (x1’=UP)+
lambda:(x1’=DOWN) & (fail’=fail+1);

[](x1=DOWN) & !fdataloss ->
(1-h)*mu: (x1’=UP) & (fail’=fail-1)+

h*mu: dataloss’=true;
endmodule
// instantiate 5 more disks by renaming vars
module disk2 =disk1[x1=x2, x2=x1] endmodule
module disk3 =disk1[x1=x3, x3=x1] endmodule
module disk12=disk1[x1=x12,x12=x1] endmodule
module disk23=disk1[x1=x23,x23=x1] endmodule
module disk31=disk1[x1=x31,x31=x1] endmodule

rewards
true: 1;

endrewards

6

(a) Basic Model (b) With LSEs

Figure 3: (a) Failure probability of the SSPiRAL 3+3 array from 1 to 100 years. (b) The same with LSEs. Note that
due to the 6 orders of magnitude difference, we cannot plot them together on the same graph. Each has 100 data points.

The failure in t hours is given by the query:

P=? [true U<=t (dataloss | (((x1=2)|(x2=2)|
(x3=2)|(x12=2)|(x23=2)|(x31=2)) &
((x1+x2+x3>4) | (x1+x12+x31>4) |
(x2+x12+x23>4) | (x3+x31+x23>4))))]

Taking the rate of LSE at 1 in 104 hours (close to the
value of 9259 hours in [11]) and, scrub disk rate of once
every 50 hours (rebuild times will be incorporated in the
more detailed models in Sec. 4.3), the probability of fail-
ure is given in Figure 3(b); the total run takes 16041.6
secs (approx. 4.5 hours). Note the dramatic change of the
failure probability by six orders of magnitude and the no
longer strictly linear graph.

4.2 Simple Reliability Models for Large
Disk Farms

IDEMA [20] has modelled disk reliability by specifying
variable rates of failures by specifying the rates for the
first 3 months, then for the next 6 months, etc. Qin et
al. [7] have used a 3-state HMM for approximating this
model (Figure 4). A disk is modelled as being in the
burn-in phase (state 0), burnt-in phase (state 1) or failed
state (state FS). Using the parameters in [7], we can in-
vestigate, say, a 100-node disk systems using the 3-HMM
model (Figure 5); we can also investigate much larger disk
systems from 200 to 2000 disks or more (we use a simple
C++ program to generate the PRISM programs given the
required number of disks). Given that the failure model in
[7] assumes data loss on the second disk failure (dataloss),
the number of states and transitions in the Markov model
increase only linearly with number of disks; it is there-
fore possible to analyze even much larger disk systems in
PRISM but we give results only up to 2000 disks (Table
2). Such results are not easy with other techniques. When

#disks states edges exectime(secs) MTBF
50 102 399 0.066 161500

100 202 799 0.079 42148
500 1002 3999 0.462 2729
600 1202 4799 0.748 2071
700 1402 5599 1.270 1644

1000 2002 7999 4.793 965
2000 4002 15999 24.167 347

Table 2: MTBF (in hrs) computed by the query R=? [F
(s=dataloss)] with parameters from [7], with s the
state.

the first failure occurs, an exponential repair process is
started. In addition, an exponential process replaces the
disk “before” end of life (EOL) of the disk. Note that
with a 2000 disk system, the system fails within about 15
days due to only one type of disk failure (whole disk fail-
ure during burn-in and after), but this is optimistic as the
model does not take into account latent sector failures.

In addition to computing the survival time of the sys-
tem for various nodes, we can compute the failure of the
system at time t by model checking the following formula

Figure 4: 3-state HMM disk reliability model from [7]. γ
is the burn-in rate; α and β are the pre- and post- burn-in
failure rates.

7

Figure 5: A 100-disk Markov reliability model assuming
the 3-state HMM disk model. From [7].

9’s Time
5 4.5 hours
4 45 hours
3 415 hours
2 3487 hours
1 34354 hours

Table 3: Time interval for k 9’s probability of availability.

P=? [true U<=t (s=dataloss)]. By using this
formula for various values of t, we can also compute the
time for k 9’s reliability [2] which is given in Table 3.

4.2.1 Taking care of LSEs

To make the above model more realistic, let us combine
the first two models: RAID5 with latent sector failures
and the HMM models. It is not practical to use more than
8 to 10 devices as part of a parity group due to LSEs;
higher number of devices makes the rebuild unlikely to
complete without errors. Using the combined error model
for a RAID5 across 10 disks, we need to have, for a 100
disk system, 10 instances of these; we can run these in
parallel and the system fails as a whole if any of them
fails. However, the state explosion for even this small sys-
tem is tremendous: there are 36,439,964,604,647 states
and 1,445,587,465,949,086 transitions (obtained by con-
structing the model in PRISM); note that each 10-disk
HMM model has atleast 20 bits of state and a simple cross
product results in atleast 2010 states. Instead of 10 in-
stances, if we use 5 instances (for a composite 50 disk sys-
tem), the resulting system is feasible for model checking
as is (with 6,223,163 states and 122,712,702 transitions).
With 500GB disks, and using the same previous param-
eters and hard error rate of 8E-06 per GB, the total time
for model checking (both construction and execution) is
10799.4 secs (approx. 3 hours on an Opteron core).

In comparison with the basic (non-RAID5) 50-node
HMM model (where any 2 errors anywhere causes the
system to “lose” data), the 5 RAID5 50-node system is
more robust even after taking into account the LSEs as

disksize exectime MTTDL
GB secs hours
100 23701.58 251882
200 16655.61 148016
500 10604.99 66466

1000 8151.33 34939
1500 7263.93 23876
2000 6740.96 18241

Table 4: Time to data loss (MTTDL) for 5 copies of a
RAID5 with 10-disk HMM-based model and handling
LSEs during reconstruction.

k etime states trans MTTDL
5 8086 78430 1316612 66466
6 39033 361790 7033400 55525
7 154405 1480050 32429540 47712

Table 5: MTTDL of k copies of 10-disk RAID5 HMM
model using symmetry reduction.

the 2 errors have to be in the same RAID5 instance for
data loss in the latter case (Table 4).

To reduce the size of the models, we can exploit the
technique of symmetry reduction that maps equivalent
states into a single state. In SMP systems, for exam-
ple, the caches are indistinguishable for certain properties:
the system behaviour depends on whether it has cached a
line or not and whether it is exclusive or shared, but it is
not important for some properties which particular cache
has the exclusive line. Such symmetric states can be fac-
tored out to get a much smaller (“quotient”ed) state space.
When the symmetry reduction technique is applied to the
disk system under consideration, we can now solve from
5 to 8 copies of the 10-disk RAID5 models (Table 5). The
reduction in the number of states and transitions is, for the
5 copies of RAID5, by two orders of magnitude.

4.3 Weibull Modelling for Disk Systems
To make the disk model more realistic, we can use the
Weibull reliability models which have given good results
for modelling disks [18]. The 2-parameter (β, η) Weibull
probability density function is given by:

f(t) = (β/η)(t/η)(β−1)e−(t/η)β

where β is the shape parameter, η is the scale parame-
ter (here, “life”). Note that Weibull models either model
increasing failure rates (IFR; β > 1) or decreasing fail-
ure rates (DFR; β < 1); β = 1 makes it an exponen-
tial distribution. Since PRISM does not support anything
other than exponential distributions, we need to model
Weibull using a sum of exponential distributions (expono-

8

mials). Probabilistic model checking can, therefore, in-
vestigate many of the disk-based designs if Weibull mod-
els can be approximated well using exponential distribu-
tions. Malhotra and Reibman [10] have described meth-
ods for approximating many distributions such as deter-
ministic, Weibull, or lognormal using exponentials.

4.3.1 Modelling of a Single Disk

Elerath et al. [11] have modelled errors resulting from
whole failures of disks, and LSEs arising from the inten-
sity of read traffic to disks using Weibull models. They
are also used for the time taken for disk repairs, the re-
build time after a failure of a disk and scrubbing time:

• Time to operational failure (TTOp) with a 2-
parameter Weibull (shape=1.12, scale=461386 hrs)

• Time to restore (TTR) with a 3-parameter Weibull
(shape=2, scale=12 hours and offset 6 hours)

• Time to scrub (TTScr) with a 3-parameter Weibull
(shape=3, scale=168 hours and offset 6 hours)

• Time to latent defect (TTLd) with shape=1 (an expo-
nential distribution) and scale=9259 hours

We do not use the 3-parameter Weibull distribution in this
paper due to its significant additional complexity in ap-
proximating distributions and the attendant increase in the
state space. The intent of using the 3-parameter model is
to signify that the repair or scrub time is at least a min-
imum amount and avoid having to use an unrealistic ex-
ponential time distribution; however, a deterministic re-
pair/scrub time can as well be used as a good first approx-
imation. Since we will be using M-stage Erlang models
(M-Erlang) – a convolution of M exponentials – our mod-
elling is simpler and it also captures some variation of the
repair/scrub time.

4.3.2 Approximating the Weibull Distributions

The realization of approximations to the Weibull models
is however tricky. The simple technique of matching mo-
ments such as the mean (1st) and variance (2nd) is useful
in some cases. Consider the modelling of a Weibull IFR
by a M-stage Erlang distribution:

E(t,M, λ) = 1 −
M−1∑

k=0

((λt)k/k!)e−λt

The first two moments of the M-Erlang are given by

m1 = M/λ and m2 = M(M + 1)/λ2

(hence, λ = m1/(m2 − m2
1) and M = m2

1/(m2 − m2
1))

whereas those for Weibull IFR distributions are given by

m1 = ηΓ((β + 1)/β) and m2 = η2Γ((β + 2)/β)

0 10000 20000 30000 40000 50000

0.
0e

+0
0

5.
0e

−0
7

1.
0e

−0
6

1.
5e

−0
6

hours/100

(b
 *

 s
 *

 e
xp

(−
b

*
t)

+
(a

 −
 b

) *
 (s

 +
 a

) *
 e

xp
(−

(s
 +

 a
) *

 t)
)/(

s
+

 a

 −
 b

)

Figure 6: PDF of Weibull IFR (thin line) and for our ex-
ponomial approx. (thick line) for disk reliability.

Equating the two, we take M as the floor of the value and
compute λ using the new value of M [10]. For TTR, we
get M=3 and λ = M/m1 = 3/10.63472 = 0.2821. For
TTScr, we get M=8 and λ = M/m1 = 8/150.0206 =
0.05333. Since an 8-stage approximation is too expensive,
we will use a simpler 3-stage one, with λ = 0.01922.

For TTOp, we get M=1 (a single stage!), hence it is
not useful; we need to use other methods. As mentioned
earlier (Sec. 4.2), Qin et al. [7] have used a HMM model
that achieves something close to a Weibull model by us-
ing 3-state and 4-state HMM models (these are also Cox
models). We follow this line of work as there is intuitive
justification for the model. A disk is modelled as being
in the burn-in phase (x0), burnt-in phase (x1) or failed
state (x2). Assuming the transitions are modelled expo-
nentially with rates s (x0 to x1), a (x0 to x2), b (x1 to
x2), we can derive the pdf of the fail state as follows

(b · s · e−bt + (a − b) · (s + a) · e−(s+a)t)/(s + a − b).

Discovering values of s, a and b that match those by a
given Weibull distribution has been done through a trial
and error method as the publicly available tools such as
EMpht [6] (expectation-maximization fitting for phase
type distributions) did not give good results on parame-
ters of interest such as η =461386 and β=1.12 (the al-
gorithm can get stuck in an insignificant local minima
or even a saddlepoint [6]). A reasonably good approxi-
mation for TTOp is a=1e-07, b=1.7e-06 and s=0.00035
(though the skew (“asymmetry” of distribution) and kur-
tosis (“peakedness”) of these curves do not match that
closely). The PDF of the failure density function for
Weibull IFR and our approximation are given in Fig. 6.

4.3.3 Weibull Disk Approx. using only Exponentials

Using Elerath et al.’s work as the starting point but us-
ing deterministic distributions for repair and for scrub, we
now discuss how we construct our composite disk model

9

1’:Exp

1:Exp

5:Exp

3:Exp

Disk(Burntin)

Disk(Down)

5’:Exp
6’:Exp

6:Exp 4’:3−Erlang

4:3−Erlang

3’:Exp

Disk(LSE1)
Disk(LSE2)

Disk(Up)

2:3−Erlang

s

s

b

b

a

a

scrub rate

build rate

scrub rate

LSE rate

LSE rate

Figure 7: Our “Weibull” disk model approx. using only
exponentials. Transitions are labelled with an id and the
distribution (exponential, or M-Erlang). All transitions
with the same id have the same rate (below). The transi-
tion from Disk(Down) to system error state is not given as
it is relevant only with multi-disk RAID modelling when
a LSE occurs elsewhere during rebuild.

(Fig. 7). When there are “competing” transitions out of a
state (such as the Weibull transition for modelling whole
disk failure and the exponential for modelling the LSE),
we need to cross-product the substates resulting from ap-
proximating each of these “macro-transitions”. To avoid
serious state explosion with multiple disks, our cross-
product model of the disk adds states and transitions as
few as possible. First, we add two Disk(LSE) states to
take care of LSEs before and after the disk is completely
burnt-in. Similarly, we add new transitions (such as be-
tween the Disk(LSE) state to the burnt-in state and from
these two LSE states to the Disk(DOWN) state) but we
have not added some transitions such as those modelling
the substates corresponding to the scrubbing macrostate
transition as their impact is likely to be negligible.

4.3.4 Modelling multiple disks in RAID5

By using the above model for a disk and running multi-
ple instances of disks for a RAID5 configuration, we can
compute time to data loss as well as the probability of
failure at time t. Without symmetry reduction, the state
explosion problem increases dramatically with the accu-
racy (number of bits needed to represent the state dia-
gram) used to represent the approximation to a distribu-
tion using exponentials. Our results are given in Table 6.
Note that we cannot run RAID5 models with 8 and more
disks without symmetry reduction due to the serious state
explosion; for a 7 disk RAID5 model, there are 125 mil-
lion states and 1.34 billion transitions; the time to compute
the MTTDL takes about 36 hours on a single core of an
Opteron. With symmetry reduction, however, we can run
8 to 10-disk RAID5 models in significantly less time.

years DDFs sDDFs years DDFs sDDFs
1 15.7 10.1 6 88.7 75.9
2 30.9 22.9 7 102.6 89.8
3 45.8 35.1 8 116.2 105.1
4 60.3 48.5 9 129.7 120.4
5 74.6 61.3 10 142.9 136.0

Table 7: Double-disk failures (DDF) per 1000 RAID5s
with Weibull models in PRISM with symm. reduction,
and with simulation (sDDF).

years DDFs sDDFs years DDFs sDDFs
1 2.27 1.92 6 13.47 14.82
2 4.52 3.84 7 15.70 18.24
3 6.77 6.46 8 17.94 21.52
4 9.00 9.32 9 20.17 24.56
5 11.24 12.16 10 22.40 28.16

Table 8: Double-disk failures (DDF) per 1,000,000
RAID6/RAID-DPs with Weibull models in PRISM with
symm. reduction, and with simulation (sDDF).

Note that Elerath et al. have used 8-disk RAID5 in
their simulation studies. For β=1.12 and scrub rate of 168
hours, the double-disk failure (DDF) rate for 1000 RAID5
instances is given in Table 7; our results using the above
models in PRISM are similar. The set of approximations
used are reasonable but, at lower values of time, we do
have a significant difference (such as a DDF of 10.1 at the
end of the first year vs 15.7 in our model). Further, it re-
mains mostly linear with time whereas it is mildly convex
in the simulation results [11].

RAID6/RAID-DP Model Using the previous model
of the disks for the RAID6/RAID-DP[4] configuration
where failure results when there are either two whole disk
failures and an LSE, or more than two whole disk failures,
we get the following results (Table 8); the system failures
are now much more rare than in the previous RAID5 case.

However, both the RAID5 and RAID-DP results show
that PMC gives results that are not in very good agree-
ment with the simulation results as the DDFs of the former
consistently show a mild concavity with time whereas the
latter show the opposite mostly (as they are much more
accurate with respect to sampling from a Weibull distri-
bution). The main reason is that the our approximation
has a hazard function that increases rapidly in the begin-
ning and becomes flat thereafter; this is different for the
actual Weibull IFR which increases as (t/η)(β−1). Using
a 4-state Cox model (found manually) did not improve
the results3. Our attempt to use a 10-state Cox model (us-

3If the CDF for the exponomial is 1 − Σcie
−ait, ai ≤ ai+1, the

10

disks etime* states trans symmstates symmtrans MTTDL
5 601.8 742586 5838767 12376 76749 1510785
6 9640.2 9653618 89408965 37128 257355 1029710
7 129663.6 125497034 1337588683 100776 763359 748776
8 2244.9* 1631461442 19662987617 251940 2053698 570302
9 8804.7* 21208998746 285135363111 587860 5099460 460601

10 25090.2* 275716983698 4089945286077 1293292 11832444 380293

Table 6: MTTDL (hours) in a Weibull-based RAID5 model with 5-10 disks. The number of states and transitions are
given for models with and without symmetry reduction. *The execution time (etime) (in seconds) for 8-10 disks are
given for the run with symmetry reduction; without it, the state space is so large that it is currently impossible.

ing EMpht [6] to compute the parameters) was not suc-
cessful as the approximation generated is not as close to
the actual Weibull distribution as the previous 4-state Cox
model. The simplified state diagram has an effect also but
this is small as we have experimentally confirmed. An-
other minor contributor for the differences could be that
the simulation results are based on averages of 10 experi-
ments; on one set of results, the coefficient of variation is
around 0.06 while it is around 1E-6 for PMC.

5 Conclusions
Probabilistic model checking is useful for analyzing prac-
tical disk subsystems, and gives results with high accuracy
if distributions are exponential. For non-exponential ones,
it can give good results if good approximations are possi-
ble using a few states. Our experience indicates that get-
ting good approximations is the current bottleneck. Disk
systems with up to 10 disks are easy to model check in
PRISM if we use symmetry reduction; larger systems are
difficult, from a computational viewpoint, due to state ex-
plosion; however, large parity groups are not useful as the
rebuild in RAID-like systems then fails with high prob-
ability. If parallelism in large clusters can be exploited
for the model checking problem, analysis of larger disk
systems is possible.

We have used symmetry reduction [23] as a technique
for reducing the state space of the system. However, the
stringent requirement of “full symmetry” makes its appli-
cability somewhat narrow; we plan to study this aspect as
future work. Another problem is that the language for ex-
pressing a model is based on process algebra and hence it
is not easy to code combinatorial reasoning often needed
in reliability studies.

Acknowledgments Thanks are due to David Parker,
T Schwarz, Jay Wylie, Hari Prasad, Kevin Greenan and
A.Amer for their help. Funding from Kumar Malavalli
and NSF is gratefully acknowledged.

hazard function is Σciaie
−ait/Σcie

−ait. If a1 � a2 � a3, it is
approx. a1 − a1(c2/c1)e−a2t.

References
[1] L N. Bairavasundaram et al., “An Analysis of Latent Sector

Errors in Disk Drives,” SIGMETRICS’07, Jun’07.

[2] J F Paris, T J E Schwarz, “On the Possibility of Small,
Service-Free Disk Based Storage Systems,” 3rd Intl. Conf.
on Availability, Reliability and Security, Mar’08.

[3] S. Juneja, P. Shahabuddin, “Rare-event Simulation Tech-
niques: An Introduction and Recent Advances,” Handbook
on Simulation, Elsevier, 2006.

[4] Peter Corbett, et al., “Row-Diagonal Parity for Double
Disk Failure Correction,” FAST04, 2004.

[5] A M Blum, et al., “Modeling and Analysis of System
Dependability Using the System Availability Estimator,”
Fault-Tolerant Computing, 1994. FTCS-24.

[6] S. Asmussen, et al., “Fitting phase-type distribution via the
EM algorithm,” Scand. J. Statist. 23, 419-441 (1996)

[7] Q Xin, T J E Schwarz, E L Miller, “Disk Infant Mortality
in Large Storage Systems,” MASCOTS 2005.

[8] Malhotra, M. and Trivedi, K. S. “Reliability analysis of
redundant arrays of inexpensive disks,” J. Parallel Distrib.
Comput. 17, 146–151, 1993.

[9] Sahner R A, Trivedi K, Puliafito A, “Performance & Relia-
bility Analysis of Computer Systems: An Example-Based
Approach Using SHARPE,” Academic Publishers, 1997.

[10] Manish Malhotra, Andrew Reibman, “Selecting and Im-
plementing Phase Approximations for Semi-Markov mod-
els,” Commun. Statist. -Stochastic Models, 9(4), 1993.

[11] J. G. Elerath, M. Pecht, “Enhanced Reliability Modeling
of RAID Storage Systems,” DSN, 2007.

[12] E M Clarke, D Peled, O Grumberg, “Model Checking,”
MIT Press, 2000.

[13] www.prismmodelchecker.org

[14] H A Oldenkamp, “Probabilistic model checking. A com-
parison of tools,” Master’s Thesis, Univ. Twente, May’07.

[15] http://www.cs.utwente.nl/ zapreevis/mrmc/.

[16] K. K. Rao, James Lee Hafner, Richard A. Golding, “Relia-
bility for Networked Storage Nodes,” DSN 2006: 237-248.

11

[17] James Lee Hafner and KK Rao, “Notes on Reliability
Models for Non-MDS Erasure Codes,” IBM Research Re-
port RJ10391, 2006.

[18] Bianca Schroeder, Garth A. Gibson, “Disk failures in the
real world: What does an MTTF of 1,000,000 hours mean
to you?,” FAST’07.

[19] Ahmed Amer et al., “Increased Reliability with SSPiRAL
Data Layouts,” IEEE/ACM MASCOTS 2008. Baltimore.

[20] Intl. Disk Drive Equipment & Materials Assoc. (IDEMA),
“R2-98: Specification of hard disk drive reliability,” 1998.

[21] M. Kwiatkowska, “Model Checking for Probability and
Time: From Theory to Practice,” In Proc. 18th IEEE Symp.
on Logic in Computer Science (LICS’03), Jun’03.

[22] A. Krioukov et al., “Parity lost and parity regained,”
FAST’08, 2008.

[23] M. Kwiatkowska, G. Norman and D. Parker. Symmetry
Reduction for Probabilistic Model Checking. CAV’06, vol.
4144 LNCS, August 2006.

12

