
Managing Flash Crowds on the Internet†

Ismail Ari Bo Hong Ethan L. Miller Scott A. Brandt Darrell D. E. Long
Storage Systems Research Center

University of California, Santa Cruz�
ari,hongbo,elm,sbrandt,darrell � @cs.ucsc.edu

Abstract

A flash crowd is a surge in traffic to a particular Web site
that causes the site to be virtually unreachable. We present
a model of flash crowd events and evaluate the performance
of various multi-level caching techniques suitable for man-
aging these events. By using well-dispersed caches and with
judicious choice of replacement algorithms we show reduc-
tions in client response times by as much as a factor of 25.
We also show that these caches eliminate the server and
network hot spots by distributing the load over the entire
network.

1. Introduction

A flash crowd is a large spike or surge in traffic to a
particular Web site. Major news Web sites experience this
problem during major world events. Sometimes unpopular
Web sites instantly become extremely popular after being
mentioned in a popular news feed, also called the Slashdot
effect [7]. Flash crowds often cause very poor performance
at the server side and result in a significant number of un-
satisfied clients.

Our focus is on unexpected flash crowds or on flash
crowds directed to “poor” Web sites that cannot afford out-
sourcing the distribution of their Web content via Content
Distribution Networks (CDNs) even if they expect this to
happen eventually. To survive flash crowds, these sites need
a publicly available and Internet-wide infrastructure sup-
port such as widely distributed hierarchical Web proxies,
caching networks [2], or peer caching via peer-to-peer over-
lays [6, 7].

Related work on flash crowds within Web context in-
clude solutions using CDNs [5] and peer-to-peer over-
lays [6, 7]. We focus on the hierarchical caching solutions
and quantify the effects of using different cache replacement
algorithms, changing the placement of caches, using hetero-
geneous multi-level caching and size-based partitioning of
the document space.

R
normal

R
flash

t
0

t
1

t
2

t
3

Traffic rate

Time

(a) A model of flash crowd traffic.

Time (minutes)
0 200 400 600 800 1000 1200 1400

N
um

be
r o

f r
eq

ue
st

s

0

2000

4000

6000

8000

10000 Normal traffic
Flash traffic

(b) The flash workload generated by applying the model over “normal”
(non-flash) Web server traffic.

Figure 1. Modeled and simulated flash traffic.

2. Modeling the Flash Scenario
Our model for the flash crowd scenario consists of mod-

els for the flash traffic, a Web server, and a hierarchical
topology that connects the clients, caches and server.

2.1. Flash Crowd Traffic Model

Several Web server traces containing flash crowds have
been analyzed and presented in previous research [4, 6, 5].
Our proposed flash crowd model captures the most promi-
nent flash crowd characteristics observed in these traces.
Possible extensions to this model are mentioned at the end
of this section.

We first define the shock level parameter to be equal
to the order of magnitude increase in the average request
rate [5, 4] seen by a Web site. Hence, if Rnormal is the av-
erage daily (non-flash) load expected by the server in re-
quests/sec and Rflash is the load on a server during the peak

This paper will appear at the 11th IEEE/ACM International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS 2003), Orlando, FL, October 2003.

of a “flash event” (event that causes the flash crowd), then
Rflash � shock level � Rnormal. We calculate the average re-
quest rate for the normal load from real Web traces.

A flash event has three major phases, a ramp-up phase,
a sustained traffic phase and a ramp-down phase as shown
in Figure 1(a). The shock level parameter determines the
length of each of these phases.

The flash event starts at time t0. In the ramp-up phase
more and more people are interested in the event, and the
traffic level rises from Rnormal to a maximum level, Rflash, at
time t1. The rate is sustained at this level until time t2, since
people come to and leave the Web site at roughly the same
rate during this period. The traffic level of this Web site
gradually decreases and is back to its normal rate at time t3.

We generally argue that the more shocking an event is
the less time it takes to reach the maximum request rate of
the flash event during the ramp-up phase. We choose to
take the logarithm of the shock level to simulate the effect
of “numbness” or inability to react proportionally to linearly
increasing shock. Currently, the ramp up time, l1 � t1 � t0,
is given by l1 � 1

log10 � 1 � shock level � and the ramp-up function
is linear. The second phase is also related to the shock level.

We again use the logarithm to slow down the amount of
reaction of the crowd. The sustained time l2 � t2 � t1 is
given by l2 � log10 � 1 	 shock level
 .

In the ramp-down phase of a flash event, the server traffic
decreases as the information in the Web site is exploited by
the clients and as the interest shifts to other news sources or
other events. In this model, the ramp-down time l3 � t3 � t2
is given by l3 � n � log10 � 1 	 shock level
 , where n is a
constant. The ramp-down function is also linear.

The base trace that we use to characterize normal oper-
ation for the Web server is a day long trace collected from
a busy Web proxy server in the NLANR Squid cache hi-
erarchy. It contains 675,342 requests (4.2 GB) to 269,031
unique Web objects (1.2 GB). The infinite hit rate is 60%
and infinite byte hit rate is 72%.

Figure 1(b) shows the rates (in requests/minute) seen in a
real Web proxy trace and the flash crowd zone. The average
request rate, which is 480 reqs/min (8 reqs/sec) increases
to around 10,000 reqs/min (160 reqs/sec) during the flash
crowd with a shock level of 20. We assume independent
inter-arrivals for clients and use a Poisson arrival model for
requests during a flash event. We choose 200 documents
to be subject to the flash and fix their size at 10 KB. This
makes it easier to track the cacheability of the cumulative
flash content with various cache sizes.

Our initial flash model considers an event with a single
shocking subject. It is possible that events in real life trig-
ger each other and multiple shocking events occur in one
epoch in the form of shock waves. Other interesting param-
eters that could be included in the model are burstiness of
requests and the client dependencies.

0

2

12

3 4 5

6 7 8 9 10 11 13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1

LAN

MAN

WAN

Hosts

Figure 2. Topology used for the simulation.
The thicker lines are subject to higher traffic.

2.2. Web Server Model
We developed a multi-threaded Web server model based

on the scalability tests done by the SPECWeb bench-
marks [1] on real Web servers. This server can simultane-
ously service a specified maximum number of requests. The
three parameters that we use in the model are, maximum
number of threads (threads), maximum requests per sec-
ond completed by each thread (RPST), and the server queue
length (qlen). Bursts of requests up to the queue length can
be accepted by the server to receive service while the server
threads are busy servicing prior requests. Higher queuing
capacity in the server results in better utilization under high
loads. At full utilization the server scalability, Sserver , is
therefore approximately Sserver � threads � RPST . This is
a simple, yet accurate model of the Apache Web server.

2.3. Topology Modeling and Generation
We generate wide-scale network topologies with user di-

rected input for (1) the number of nodes in a Wide Area
Network (WAN), (2) the number of Metropolitan Area Net-
work (MAN) nodes per WAN, (3) the number of Local Area
Network (LAN) nodes per MAN (4) the number of hosts in
a LAN, (5) the propagational delays, and (6) the bandwidths
for each link. Delays and bandwidths are the same for links
of the same type, e.g. all the links between the LAN and the
MAN levels are the same.

The topology used in the simulations is illustrated
in Figure 2. There are 58 directed links. Fig-
ure 2 highlights the hot links in this topology. The
network delays were based on our traceroute collec-
tions from our university machines to different univer-
sities. The � delay � bandwidth parameters for links are
as follows: WAN-to-WAN � 50ms � 1Gbps , WAN-to-MAN

� 2ms � 100Mbps , MAN-to-LAN links � 1ms � 4 � 5Mbps , and
LAN-to-Host � 0 � 1ms � 10Mbps .

Both the clients and the server (host 29) are at the edges
of the topology, as shown in Figure 2. The flash content is
stored in a single server as this is one aspect of flash crowd
events. All clients are assumed to be involved in the flash
event. Requests from the trace file are assigned to randomly
selected clients. These requests are then directed by the
network towards the flash server. Caches are on the paths
from clients to the server and a cache replacement policy
(e.g., LRU, LFU, GDSF, etc.) is assigned to each caching

node by the simulator. Detailed description of replacement
policies can be found in previous work [2, 3].

3. Results and Discussions
We measured the effects of flash crowds on client re-

sponse times (CRTs), server and network loads in three ex-
periments.

3.1. Replacement Policies

In this experiment we compare LRU and GDSF policies
with caches only at the LAN level. Using the initial normal
Web trace we calculate that a server with a 28 requests/sec
capacity would be able to handle 99.9% of the requests. We
leave some slack capacity and choose the final server to be
capable of handling 40 reqs/sec (8 threads � 5 RPST). Our
goal is to show that even the upgraded server can not cope
with the flash. The server queue length (qlen) is 8 and when
the queue is full “server busy” messages are returned after
5 seconds.

With the flash trace and when there is no caching, al-
most half (51.4%) of the requests receive a “server busy”
message. This 51.4% number is comparable to the result
of dynamic page phase of MSNBC September 11 trace
analysis [6], which reported a 49.4% busy message value.
With caches at the LAN level, the GDSF replacement pol-
icy achieved more hits and reduced the server load more
than caches using LRU. For example, with 0.31% of infi-
nite cache size LRU results in 11.1% “busy” responses to
clients and whereas this value is 9.5% for GDSF.

Since our flash trace has a shock level of 20, Rflash is
20 � 8 � 160 requests/sec. This means the initial server at
40 requests/sec capacity has to be upscaled 4–5 times before
it can handle this flash load. Unfortunately, for 99.9% of the
cases with the normal trace, more than 160 � 28

160 � 82% of the
capabilities of the upscaled server will be idle. The server
solution also can not alleviate the network bottlenecks.

With an average object size of 10 KB the 160 re-
quests/sec would result in a 12.8 Mb/s data rate that renders
both the 4.5 Mbps MAN–LAN and 10 Mb/s LAN to server
links to be bottlenecks. Therefore, only under the flash
crowd load in the network with no or very little (0.31%)
caching, CRTs, which are already high, are expected to be
much higher due to queuing and finally packet drops in the
routers.

Table 1 illustrates the average CRTs for the normal and
the flash workloads for different cache sizes at the LAN
level, comparing LRU and GDSF policies. For the normal
load, the infinite cache size can provide up to 1 � 230

342 � 33%
reduction in CRT. GDSF is approximately 6% better in CRT
than LRU and this difference is significant, since due to di-
minishing returns it would take 4 times more cache space
for LRU to achieve the same reductions as GDSF. As for the
flash trace, there are two sharp drops in average CRT levels,

Table 1. Performance under LRU and GDSF.
Cache Size Client Response Times (ms)

Normal Flash
LRU GDSF LRU GDSF

0 342 342 2600 2600
0.31% 287 281 506 440
0.62% 284 276 108 96
1.25% 279 269 89 86
2.5% 275 261 87 84
5% 268 253 85 82
10% 261 246 84 80
20% 252 238 81 79

100% (∞ � 230 230 75 75

Link rank
0 5 10 15 20

Tr
af

fic
 v

ol
um

e
(M

B
)

0

2000

4000

6000

8000

10000 0%
0.62% − LRU
0.62% − GDSF
5% − LRU
5% − GDSF
0.62% − GDSF

Figure 3. Caching causes both reductions in
and better distribution of the network load.

first from � 2600 ms to � 500 ms and then from � 500 ms to
� 100 ms, which is as much as 25 times. These are the cache
sizes at which approximately half and then all of the flash
objects can be cached, respectively.

Figure 3 shows the traffic reduction in high-traffic links
during flash crowd. The links are ranked based on the
amount of traffic they witness. Note that in addition to
lowering the total traffic (areas under the curves), caches
also provide a better load distribution over all the network
links as seen by a flattening of the curves. When the load is
distributed over the entire network the other servers in the
LAN, MAN and WAN of the server will still be reachable.

A comparison of GDSF and LRU with no less than 5%
cache size, shown in Figure 3, surprisingly reveals that LRU
is better than GDSF in reducing the network load on hot
links. This is due to the lower byte hit rates of GDSF com-
pared to LRU, which is also recognized by various other
prior work [2, 8].

3.2. Placement of Caches
In this experiment we evaluate the costs and benefits of

placing caches at various levels of the hierarchy. We remove
caches from the LAN level and place an aggregated amount
of cache at the MAN level; we repeat the procedure between
the MAN and the WAN levels.

Aggregating the caches at an upper level has two benefits
both due to client sharing. First, duplications of objects at
the lower levels is avoided and some space is saved that can
be used to hold more unique objects to avoid some of the
capacity misses. Second, since the aggregated cache serves
a larger community there is a higher chance of also avoiding
some of the compulsory or first-time misses.

Due to limited space we summarize our findings here.
For the normal trace and with LRU policy we found that
for all cache sizes (except infinite) the two aspects of client
sharing resulted in CRT reductions by 3–9%. For LAN
to MAN cache aggregation the benefit of client sharing
outweighed the cost of additional 2ms round-trip-delay to
MAN and the CRT dropped from 230 ms to 157 ms (32%
reduction). However, due to diminishing returns of client
sharing within larger communities the MAN to WAN cache
aggregation did not pay off for the additional 4 ms round-
trip-delay for each request. For the flash trace whenever the
infinite cache size for the flash content was met via aggre-
gation, i.e., all flash content was cached, large reductions in
CRT were found. In summary, we found a trade-off between
the benefit of client sharing at upper levels and the cost of
additional delays spent for caching away from the clients.

3.3. Multi-Level Caching

In this experiment we allow caching at multiple levels of
the hierarchy. We compare three major strategies: single
policy caching, heterogeneous caching and size-based par-
titioning. The cache sizes are fixed to 0.62% at the LAN
and 1.25% at the MAN levels, which can hold most of the
hot objects if the correct policy is used.

Table 2 shows that LFU, which can keep popular objects,
performs better than LRU during flash crowds. GDSF is the
best static policy to be used in all cache levels, since it con-
siders all of the frequency, size, and aging criteria instead
of a single recency or frequency factor. For heterogeneous
policies we found that combinations of only recency (LRU)
and frequency (LFU) together (only one shown for brevity)
were not good enough to perform better than GDSF for the
same reason.

In size-based partitioning [8], the lower level caches only
hold objects smaller than a certain size, S, and the upper
levels hold the rest. For the SIZE replacement policy that
replaces the largest size objects, the 12 KB threshold deci-
sion had a detrimental effect. It cluttered the lower level
cache with objects smaller than 10 KB flash objects. The
upper cache was, unfortunately, not even caching these hot
objects. We also tried other replacement policies with size-
based partitioning (some omitted here), but could not per-
form better than their counterparts that did not use this tech-
nique. Our conclusion is that frequency and recency metrics
provide a more powerful ordering than a manually split doc-

Table 2. Client response times for Section 3.3.

Method Policy CRT (ms)
normal flash

LRU 270 90
LFU 273 88Static

GDSF 252 83
LRU-LFU 272 88Heterog.

GDSF-LRU 263 87
SIZE-SIZE-12KB 275 512
SIZE-SIZE-9KB 275 114
LRU-LRU-12KB 279 95

Size-Part.

GDSF-GDSF-9KB 272 102

ument space based on size, no matter how well the threshold
is tuned.

4. Concluding Remarks
We presented a model for flash crowd traffic scenar-

ios and evaluated some caching solutions that alleviate this
problem. We found that a caching infrastructure provi-
sioned to handle normal Web loads can be enough to handle
flash crowds. Upgrading the servers does not help, GDSF
is the best the replacement policy among all the tested and
finally adding caches at the MAN level has benefits due to
client sharing.

References
[1] SPECWeb, http://www.specweb.org.
[2] I. Ari. Adaptive Caching using Multiple Experts (ACME)

and Storage Embedded Networks (SEN). Technical Re-
port UCSC-CRL-03-01, University of California Santa Cruz,
Santa Cruz, CA, 2003.

[3] I. Ari, A. Amer, R. Gramacy, E. L. Miller, S. A. Brandt, and
D. D. E. Long. ACME: adaptive caching using multiple ex-
perts. In Distributed Data and Structures, volume 4. Carleton
Scientific, 2002.

[4] M. Arlitt and T. Jin. A workload characterization of the 1998
World Cup web site. IEEE Network, 14(3):30–37, May 2000.

[5] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds
and denial of service attacks: Characterization and implica-
tions for CDNs and web sites. In Proceedings of the 11th
International World Wide Web Conference, pages 252–262.
IEEE, May 2002.

[6] V. N. Padmanabhan and K. Sripanidkulchai. The case for co-
operative networking. In Proceedings of the First Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS’02), pages
178–190, Cambridge, MA, USA, March 2002.

[7] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching
schemes to address flash crowds. In Proceedings of the First
International Workshop on Peer-to-Peer Systems (IPTPS’02),
pages 203–213, Cambridge, MA, USA, March 2002.

[8] C. Williamson. On filter effects in web caching hierarchies.
ACM Transactions on Internet Technology (TOIT), 2(1):47–
77, 2002.

