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Abstract
Efficient provenance storage is an essential step towards the
adoption of provenance. In this paper, we analyze the prove-
nance collected from multiple workloads with a view towards
efficient storage. Based on our analysis, we characterize the
properties of provenance with respect to long term storage.
We then propose a hybrid scheme that takes advantage of
the graph structure of provenance data and the inherent du-
plication in provenance data. Our evaluation indicates that
our hybrid scheme, a combination of web graph compression
(adapted for provenance) and dictionary encoding, provides
the best tradeoff in terms of compression ratio, compres-
sion time and query performance when compared to other
compression schemes.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data compaction
and compression; H.3.2 [Information Storage and Re-
trieval]: Information Storage-File organization

Keywords
provenance graphs, storage, compression

1. INTRODUCTION
Provenance is the metadata that represents the history

or lineage of a data object. Provenance has applications in
various areas in the real world, such as experimental docu-
mentation, debugging, security, and search. The provenance
community has built a number of systems [9, 11, 8] to collect
provenance. While these systems are a great step towards
making provenance available to users, they neglect a crucial
aspect that makes these systems practical: efficient prove-
nance storage. Unoptimized provenance storage can take up
a substantial amount of space. For instance, the base data in
the PReServ [6] provenance store was 100 KB, but the prove-
nance exceeded 1 MB. In MiMI [7], an online database for
storing protein information, the size of provenance (6 GB)
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also far exceeded the size of the original data (270 MB). Sim-
ilar results are also observed in other systems [8, 10].

We cannot however, directly apply existing compression
techniques to provenance, because the structure and ac-
cess patterns of provenance are vastly different from regular
metadata:

• Provenance needs to be queriable.

• Provenance is a graph that connects objects. Its struc-
tural characteristics are similar to web graphs.

• Lossy compression techniques are not applicable, be-
cause losing an edge will mean a disconnect in the
provenance graph.

• Provenance can also have a great deal of duplication,
implying that de-duplication can help us store prove-
nance efficiently.

Accordingly, we developed a hybrid method for compress-
ing provenance graphs by combining web graph based com-
pression and dictionary based compression algorithms. The
web graph compression algorithm allows us to compress prove-
nance while still satisfying the characteristics we observed.
Dictionary encoding, because of its flexible processing gran-
ularity, allows us to eliminate any repeated separate strings
or sub-strings in the provenance graphs. Then, we compared
the performance of our hybrid approach with a compression
scheme designed explicitly for provenance compression: the
Factorization And Inheritance (FAI) method proposed by
Chapman et al. [4]. Our results indicate that the hybrid
approach used by us significantly outperforms FAI along all
axes.

2. CHARACTERISTICS OF PROVENANCE
GRAPHS

A provenance graph is composed of two distinct parts:
identity information on provenance nodes and ancestor in-
formation on provenance edge. We investigated their distri-
bution in a large variety of provenance traces as shown in
Table 1.

It can be observed that there is no particular pattern in
the distribution. In some traces, the provenance is domi-
nated by the identity information and in others it is dom-
inated by ancestry information. The identity information
typically dominates in traces from Karma system. The rea-
son is that those Karma traces are collected based on the
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Table 1: Basic descriptions of a large variety of provenance traces. The table also summarizes the prove-
nance systems that collect the traces, the percentage of size of identity and ancestor information in various
provenance traces and where these traces can be found.

Provenance Trace Description Provenance
System

Size of
Identity
%

Size of An-
cestor %

Source

NAM-WRF Weather and ocean modeling Karma 68.12% 31.88% [5]
NCFS Weather and ocean modeling Karma 60.58% 39.42% [5]
SCOOP Weather and ocean modeling Karma 71.15% 28.85% [5]
Gene2life Bioinformatics and biomedical Karma 70.43% 29.57% [5]
Motif Bioinformatics and biomedical Karma 54.08% 45.92% [5]
Animation Computer animation rendering Karma 59.21% 40.79% [5]
J062941 Managing large-scale, complex scientific

data and metadata collections
Tupelo [12] 33.49% 66.51% [3]

pc3opm A set of assertions made by the services
involved in a process

PASOA [9] 33.21% 66.79% [3]

OPMGraph-complete A sequence of steps with exit conditions Taverna [11] 33.92% 66.08% [3]

Open Provenance Model (i.e., OPM [3]) and record a size-
able amount of property-values (though this is optional in
OPM model) to describe the elements (e.g., workflowID and
serviceID) in the identity information. Ancestry information
takes up a larger percentage in the traces from Tupelo [12],
PASOA [9] and Taverna [11]. These traces do not record
the optional property-value pairs in the identity informa-
tion, but still record the ancestor information, such as role,
time and account, on the edges.

2.1 Duplication in provenance graphs
Duplication is widespread among annotation information

in both of the identity information (e.g., account, type and
workflowID) and ancestry information (e.g., account and
Time) in some OPM traces. For example, the account,
which is identical for every node and edge in an individ-
ual workflow, is recorded for every node and edge in OPM
traces. The experimental results on those Karma traces in
Section 4 show that the percentage of duplicates can be from
34.86% to 37.50% in the identity information, and 38.83% to
40.26% in the ancestor information of six workflow graphs
in the Karma traces.

2.2 Similarity to web graphs
A web graph has a node for each URL and an edge for each

hyperlink from one web page pointing to another. Existing
web graph compression algorithms [1] typically exploit the
following two key properties to significantly compress web
graphs:

• Locality: Many links are within a URL domain, and
therefore are not likely to point to pages far away.

• Similarity: Adjacent web pages have a high proba-
bility to have a common set of neighbors.

Provenance graphs also have similar structure properties
as web graphs. Table 2 shows a series of provenance nodes
from the NAM-WRF provenance trace presented as an adja-
cency list that represents the provenance graph. We assign
an ID to each node according to their order in the prove-
nance trace. Provenance nodes in this adjacency list have
a common ancestor node 15. This is because many pro-
cesses, represented by nodes like 15, trigger a new process

Table 2: A slice of the adjacency list for the NAM-
WRF provenance trace.

Node string Node ID Ancestors
Process 25367 1 2, 3, 15, 16
File 140 3 15
Process 25412 4 5, 6, 15, 17
File 230 6 15
...... ...... ......

Table 3: Statistics of provenance nodes on locality
and similarity

Trace No. of nodes
in total

No. of local
nodes (%)

No. of similar
nodes (%)

NAM-
WRF

65000 60000 (92.31%) 40000 (61.54%)

NCFS 4140 2530 (61.11%) 2990 (72.22%)
SCOOP 77000 70000 (90.91%) 35000 (45.45%)

(e.g., node 1) and generate a file (e.g., node 3). Further,
some configuration files are also repeatedly used as input by
many processes, therefore they appear as the common an-
cestors of many processes. These nodes also exhibit locality.
For example, the ancestors of provenance node 1 are only
between 2 and 16, and the ancestors of node 4 are only be-
tween 5 and 17. The reason is that we assign ID to these
nodes based on the orders of their appearance in the trace,
so one node has a high probability to be located not far from
its ancestors.

Table 3 shows the number of provenance nodes that have
these two properties in some provenance traces. We spec-
ify a node has the locality property (i.e., “local node”) if
the difference between its biggest and smallest ancestor is
no larger than 15. A node has the similarity property (i.e.,
“similar node”) if this node shares at least one common an-
cestor with the node in preceding 10 nodes. One can see that
all these traces have a large percentage of similar nodes and
local nodes. This indicates that these provenance graphs
also exhibit locality and similarity, like web graphs.
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Table 4: Overview of various workflow characteristic in Karma trace
Workflow Name Scientific domain Failure

rate
Number of
Manipulations
in a workflow

Number of
Provenance
Graphs

Total
Graphs
Size

NAM-WRF Weather and ocean modeling 39% 6 5990 160MB
NCFS Weather and ocean modeling 47% 7 298 10.3MB
SCOOP Weather and ocean modeling 38% 6 7987 208MB
Gene2life Bioinformatics and biomedical 46% 8 7990 257MB
Motif Bioinformatics and biomedical 75% 138 498 294MB
Animation Computer animation rendering 72% 22 430 45.6MB

2.3 Provenance should be queriable
For provenance to be useful, it needs to be queriable, even

when it is compressed. So a compression scheme that makes
queries difficult or has a high query overhead is not pre-
ferred.

3. COMPRESSION ALGORITHMS

3.1 Web Compression Algorithms
There are two critical ideas incorporated in the current

web compression algorithms [1]. First, Exploitation of Simi-
larity, i.e., expressing the ancestor list of one node in terms of
another node with similar ancestors, thus efficiently avoiding
encoding the duplicate data. Second, Exploitation of Local-
ity, i.e., rather than storing the ancestors of a node, storing
the gaps between them, which typically requires fewer bits
to be encoded.

We express a provenance graph as a set of provenance
nodes which have a series of ancestors (See Table 2). Each
provenance node is assigned an ID, in order of appearance,
during provenance generation. Let Out(x) denote the an-
cestor list of node x and W indicate the window parameter.
We detail the web compression algorithm as follows:

1. Reference compression: check if there exists a similar
ancestor list in the preceding W ancestor lists. If y is
such a reference node, x − y is called reference num-
ber and Out(y) (ancestor list of y) is called reference
list. We encode Out(x) into three parts: the reference
number x−y, a sequence of bits that specify which an-
cestor in Out(y) also appears in Out(x), and the rest
of the ancestors in Out(x).

2. Encode gaps: Let the ancestors of x yet to be en-
coded after the above step be x1, x2, x3, ..., xk. If
x1≤x2≤...≤xk, then we encode gaps x1−x, x2−x1, ...,
xk−xk−1.

Note that if we want to query the ancestor list (Out(x))
of node x, we have to first decode its reference list Out(y),
and then we have to decode the reference list of Out(y),
and so on. This would form a reference list chain, with a
long chain obviously resulting in bad query performance. In
our implementation, we confine the length of this chain to a
maximum level of 5.

3.2 Dictionary Encoding
Dictionary encoding scans the entire database or text files

to find the frequently occurring strings, and then replace
them with integer codes.

For provenance, we look for frequently occurring strings
in the provenance graph data, then we use integer codes to
encode them and store this mapping relationship into a dic-
tionary database. The granularity of the repeated strings is
very flexible. It can be a whole string, the prefix of it or an
arbitrary substring in a big string. For example, the edge
in an OPM graph is usually annotated with time which in-
dicates when this process (or dependency relationship) hap-
pens. We can use dictionary encoding to encode the com-
mon prefix that consists of year, month and day in the time
information.

3.3 Combination of Web Compression Algo-
rithms and Dictionary Encoding

As we have stated above, web compression algorithms can
compress the ancestor information very effectively and dic-
tionary encoding can eliminate the duplicates existing in the
provenance graph data. Their combination provides a prac-
tical and efficient method to compress a provenance graph.
Additionally, since web compression and dictionary encod-
ing are both light-weight compression schemes, this hybrid
method (i.e., web+dictionary) retains a good query perfor-
mance on provenance datasets.

4. EVALUATION
The experiments were run on a machine with the Windows

7 (32-bit) operating system, Pentium(R) Dual-Core E6500
2.93 GHz*2 CPU, 2 GB memory and 500 GB hard drive.

The provenance traces we used were extracted from a
10GB noisy provenance database [5] generated by using the
Karma [2] system. These traces consist of provenance gen-
erated from six kinds of workflows (See Table 4). The work-
flows are from different scientific domains and accordingly
have different characteristics.

We compressed these traces using FAI and our hybrid
method respectively. In both cases, we store the compressed
provenance records in a Microsoft SQL Server 8.0 database.
Table 5 shows the schema that we used for the two tech-
niques. In our hybrid method, for ancestor information,
we assign each node string a unique identifier (in the or-
der of appearance in the trace) to make the web compres-
sion easier. Since a node can have a series of ancestors, we
encode them into one“ancestors coding”using web compres-
sion algorithm and store each record in a concise format (i.e.,
(Node identifier, ancestors coding)) in AncestorDB. While
FAI is composed of a series of factorization and inheritance
methods (See Table 6), argument factorization achieves the
best compression ratio and is used in the rest of the paper; it
finds the duplicate node strings in AncestorDB and encodes
them using integer codes, and stores them in DictionaryDB.
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Table 5: Database schema for web+dictionary and FAI techniques.
Compression
techniques

Provenance
composi-
tion

Databases Provenance records

web+dictionary

identity
ArtifactDB (node string, account, size, fileURL)
ProcessDB (node string, account, workflowID, serviceID, timestep, workflowNodeID)
DictionaryDB (id, duplicate)

ancestor

AncestorDB (node ID, ancestors coding)
NodeDB (graphID, node ID, node string)
TimeDB (node string, times)
RoleDB (node string, Roles)
AccountDB (node string, accounts)

FAI
identity

ArtifactDB (node string, account, size, fileURL)
ProcessDB (node string, account, workflowID, serviceID, timestep, workflowNodeID)

ancestor
AncestorDB (node string/node id, ancestor, role, account, time)
DictionaryDB (node id, duplicate)

Table 6: FAI techniques: resulting size (% of original)
FAI techniques NAM-WRF NCFS Animation Gene2life Motif SCOOP Total
Basic Factorization 100% 100% 100% 100% 100% 100% 100%
Node Factorization 100% 100% 100% 100% 100% 100% 100%
Argument Factorization 37.9% 41.7% 35.9% 45.0% 36.5% 42.8% 39.5%
Structural Inheritance 100% 100% 100% 100% 100% 100% 100%
Predicate Inheritance 78.75% 83.69% 81.80% 78.60% 83.33% 78.85% 80.31%
Argument Factorization and
Predicate Inheritance

37.9% 41.7% 35.9% 45.0% 36.5% 42.8% 39.5%

4.1 Compression Performance
Figure 1 shows the compression size and time for various

workflow traces using FAI and the web+dictionary meth-
ods respectively. Web+dictionary outperforms FAI in both
cases. The reason for the improvement of compression size is
that FAI can only eliminate the duplicate node strings in the
ancestor information, while web+dictionary seeks the local-
ity and similarity between the ancestors of different nodes,
and encodes all the ancestors that belong to a node to a 0/1
sequence. In addition, it reduces the duplicate strings in the
annotation information in both ancestor and identity infor-
mation. This exploits the redundancy in provenance graph
to the maximum extent possible.

The reason for the improvement on compression time is
two-fold. First, web+dictionary eliminates the duplicate
strings in the identity information, making the size of the
provenance records loaded to ArtifactDB and ProcessDB
much smaller. In turn, this reduces the time needed to store
the provenance records. Second, FAI employs a hash table
to store the duplicate node strings and the frequency with
which they appear in the edge (or ancestor) information.
For provenance graphs that have a large number of nodes,
such as motif, the time to query the hash table increases as
the number of nodes increases. This indicates that FAI is
not suitable for compressing large provenance sets.

4.2 Query Performance
To compare the query performance of compression meth-

ods, we ran a series of queries on the NAM-WRF trace as
shown in Figure 2.

Q.1 looks up the ancestor of a specific object. The query
process in Q.2 is similar to Q.1. However, the query has to
repeat the step in Q.1 recursively until all the descendants

have been located. In both cases, web compression performs
better than FAI. The reason for the improvement is twofold.
First, web compression significantly reduces the number of
provenance record in AncestorDB. The query on the ances-
tor of a node will return a series of records in FAI, but only
one record under web compression. Second, web compres-
sion algorithm further reduces the size of each record by
exploiting the similarity and locality in the ancestors, mak-
ing the size of the records to be read much smaller than in
the FAI case. Though web decompression can incur time
overhead during the ancestor queries, we have reduced this
impact by confining the length of the provenance chain to 5
to avoid a limitless decompression.

In Q.3, the web+dictionary encoding also outperforms
FAI. The improvement is because, for the web+dictionary
encoding case, the TimeDB stores all the time information of
a node string (these time information are on the edges that
starts from this node string) in only one database record,
while FAI uses one record for storing the time information on
each edge in AncestorDB. So the number of the entries that
needs to be queried in TimeDB in web+dictionary encod-
ing is much fewer than in AncestorDB in FAI. On the other
hand, the time information in TimeDB has been encoded
using dictionary encoding, so the size of the record is much
smaller than in the FAI case. Though querying the Dictio-
naryDB incurs overhead, the total time in web+dictionary
case is still smaller than in the FAI case. Similarly, in Q.4,
the elements (such as workflowID) are encoded and stored
using small integer numbers in ProcessDB in dictionary en-
coding. Hence the query time in ProcessDB is much smaller
than in the uncompressed case and FAI. Despite the cost
of querying the DictionaryDB for the final strings, the total
query performance with dictionary encoding is better than
the uncompressed and FAI case.
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Figure 1: Compression performance for various workflow traces.
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Figure 2: Query performance. Q.1 looks up the ancestor of a specific object. Q.2 looks up all the descendants
of a specific object. Q.3 looks up the time information on the edges. Q.4 looks up the element in identity
information of ProcessDB. For each query, we present three sample results.

5. CONCLUSIONS
As provenance accumulates over time, it can occupy a

significant amount of storage. Today, users have two non-
options: archive it in a non-queriable format or discard
the provenance. In this paper, we have addressed this cru-
cial issue and have provided users with a practical solution
for storing provenance efficiently. Our compression method
(web+dictionary) performs significantly better than the FAI
algorithm in both compression and query performance.
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