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Abstract

Probe-based storage, also known as micro-electric me-
chanical systems (MEMS) storage, is a new technology
that is emerging to bypass the fundamental limitations of
disk drives. The design space of such devices is particu-
larly interesting because we can architect these devices to
different design points, each with different performance
characteristics. This makes it more difficult to under-
stand how to use probe-based storage in a system. Al-
though researchers have modeled access times and sim-
ulated performance of workloads, such simulations are
time-intensive and make it difficult to exhaustively search
the parameter space for optimal configurations. To ad-
dress this problem, we have created a parameterized an-
alytical model that computes the average request latency
of a probe-based storage device. Our error compared to
a simulated device using real-world traces is small (less
than 15% for service time). With this model we can iden-
tify configurations that will satisfy specific performance
objectives, greatly narrowing the search space of configu-
rations one must simulate.

1 Introduction

In the last 20 years microprocessor speeds have been im-
proving by 50% to 100% per year [12] and memory ca-
pacities have been increasing by 60% per year [8]. Un-
fortunately, secondary storage has not kept pace. There
are several limitations for today’s disk technologies, such
as disk rotational speed, bit density (which is limited by
the superparamagnetic effect [23, 4]) and read-write head
technology [23]. Academia and industry are developing
new technologies to bypass these limitations. These tech-
nologies include holographic storage [14, 20, 23], atomic
force microscopy (AFM) [11, 5, 23], and MEMS stor-
age [3, 2, 6, 23]. Each of these storage alternatives has
inherent tradeoffs that govern its use in a system. In this
paper, we focus on the performance characteristics of one
specific new technology: MEMS storage. MEMS storage

technology is based on an array of atomically-sharp probe
tips that read and write data on the storage medium. While
several alternative styles of MEMS storage are currently
being explored, all of these anticipated devices share cer-
tain common characteristics: they support high through-
put, high parallelism and high density. Data is accessed
in a disk on a rotating media platter, while in MEMS stor-
age the media does not rotate but moves in a rectilinear
fashion. The design space of MEMS storage is particu-
larly interesting because we can architect these devices to
different design points, each with different performance
characteristics. This makes it more difficult to understand
how to use probe-based storage in a system. Exhaus-
tive simulation is at best extremely time-consuming and
at worst impossible, depending on the search space. In
our experiments it took approximately 20 minutes on an
Intel Pentium 3 500MHz machine to run the simulation of
a workload using a single configuration. The design space
that were concerned with included over a million configu-
rations, and it would take 14 days on a 1000 node cluster
to test them all. To address this problem, we have created
a parameterized analytical model that computes the aver-
age request latency of a MEMS storage device. Our error
compared to a simulated device using real-world traces is
small (within 15% error for service time). We used this
model to identify optimal configurations given such con-
straints as capacity and throughput.

The remainder of this paper is organized as follows.
In Section 2 we describe related work. We present ar-
chitecture and design layout of a MEMS storage device
in Section 3. In Section 4 we derive the equations gov-
erning the service time of a MEMS storage device under
uniformly distributed accesses. We use this model to iden-
tify optimal configurations subject to user-specified con-
straints in Section 5. We conclude in Section 6.

2 Related Work

Current projects on probe-based storage include those by
the Carnegie Mellon Center for High Integrated Informa-
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tion Processing and Storage Systems (CHI2PS2 [3]), De-
spont et al. [25], Mamin et al. [11], and the Atomic Res-
olution Storage (ARS) project at Hewlett-Packard Labo-
ratories [23]. While these projects use different recording
technologies, they are all based on tip arrays and media
sleds. Thus, the models we describe can be tuned with
different input parameters to describe these systems.

Disk modeling has been traditionally used to design
storage systems that use hard drives, and a complete
survey of this work is beyond the scope of this pa-
per. Because disk performance is so workload-dependent,
most simplifying assumptions cause large errors [16].
Shriver [19] developed some analytic models to incorpo-
rate effects of disk caching and I/O workload variation.

Because probe-based storage devices do not yet exist,
it is particularly useful to create models of them that can
yield insights into performance. Yang and Madhyastha
created several physical models for seek time of probe-
based storage, defining a performance range for a specific
hardware configuration [10]. A different model was pre-
sented by Schlosser and Griffin et al. [6, 17], who con-
clude that a probe-based storage device can improve ap-
plications performance by a factor of three over disks.
They compare and contrast probe-based storage and tradi-
tional disk drives, and study how aspects of the operating
system need to be changed when a system is built with
probe-based storage [7]. Uysal et al [24] evaluate several
hybrid MEMS/disk architectures, showing that hybrid ar-
chitectures can give performance benefits similar to re-
placing disks with probe-storage devices (at lower price-
performance). Ying et al [9] used this seek-time model
to devise policies for power conservation. However, these
studies all rely upon trace-driven simulation of traces. In
contrast, our focus here is to develop an analytical model
for a wide range of probe-based storage characteristics
that can be used for such performance research.

Probe-based storage devices are much faster than tra-
ditional disk drives, making the question of how probe-
based storage may be integrated into the memory hier-
archy very important. Griffin et al [18] show that using
probe-based storage as a disk replacement will improve
overall application runtime by a factor of 1.9–4.4, and
when used as a disk cache can improve I/O response time
by up to 3.5 times.

3 Probe-Based Storage

Probe-based storage devices have a wide range of con-
figurable parameters. In Section 3.1 we describe how a
probe-based storage device works and highlight the pa-
rameter space. In Section 3.2 we show how data may be
stored on such a device.
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Figure 1: (a) Mover and microactuators. The device is
shown from above; the tip array lies below the mover sur-
face. (b) A probe-based storage device that includes one
mover (the shaded areas) above a tip array. The mover is
divided into four clusters, each of which has 12 dedicated
tips. One tip per cluster is active at a time (the shaded
tips), accessing the tip areas depicted by the dark rectan-
gles. The mover has limited range of movement over the
tip array in the X and Y directions.

3.1 Architecture

Figure 1a is a top view of a typical probe-based storage
device. In this figure, the shaded parts move and the
unshaded parts are stationary. The media mover is sus-
pended above a surface on which a grid of many probe
tips are embedded. Collectively, the tip array is the logi-
cal equivalent of the read/write heads of a traditional disk
drive. Voltage applied to the fingers of the microactuator
combs exerts electrostatic forces on the mover that cause it
to move in the X and Y directions, overcoming the forces
exerted by the anchors and beams that keep it in place. To
service a read or write request, the mover first repositions
itself so that the tip array can access the required data.
This repositioning time is called seek time. The mover
then accesses the data while moving at a constant velocity
in the Y direction, incurring transfer time.
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Configurable Default Symbol
parameter value
Movement range
in X (5–80µm) 40µm δx

in Y (5–80µm) 40µm δy

Active tips (10–2560) 320 Tactive

Tips in Y
per cluster(1-20) 10 Ty

Physical
parameter
Settle time 200µs tsettle

X-move time 1ms tXM

Velocity 0.05m/s v0

Turn around time 400µs tTA

Tip change time 0 tTS

Bit width 50nm db

Acceleration 250m/s2 a0

Active tips per cluster 1 Tcluster

Workload
parameter

Average request size calculated r
from workload

Runlength calculated rl

from workload

Table 1: Configurable and physical probe-based storage
architecture parameters.

Figure 1b magnifies the mover area from Figure 1a.
This shows that a mover is divided into one or more clus-
ters. Each cluster can read data independently of the oth-
ers, which provides higher parallelism to the device. As
an example, the mover in Figure 1b is subdivided into four
clusters. Each cluster is a media area that is accessed by
many tips, only one of which can be active at a time. Us-
ing several tips in parallel, one from each cluster, compen-
sates for the low data rate of each individual tip, which is
on the order of 1Mbit/sec. The number of bits accessed
simultaneously is equivalent to the number of clusters per
mover times the number of movers in the device. We call
this the number of active tips.

The mover’s range of movement and the bit size deter-
mine the amount of data that can be manipulated by one
tip, or tip area. Because several tips are active at a time,
different tip areas of the mover are manipulated simulta-
neously, as depicted by the shaded rectangles in Figure 1b.
Different areas of the mover are accessed by switching be-
tween sets of active tips.

Many architectural configurations are possible for
probe-based storage. For example, we might vary the
number of active tips, the mover’s movement range, the
media density, and so on. The values summarized in Ta-
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Figure 2: Example data layout over two movers in one
MEMS device.

ble 1 are reasonable defaults for probe-based storage de-
vices [25, 6, 1], and are the parameters we used in simu-
lations unless otherwise specified.

3.2 Data Layout

Traditional disk data layout minimizes seek time and rota-
tional latency. Analogously, we chose a layout for probe-
based storage that has a similar sequential ordering to
minimize movement for consecutive requests accessing
sequential data.

Each mover is divided into several clusters, each of
which is an area covered by a grid of tips. For each cluster,
only one read/write tip can be active at a time. This clus-
ter design helps to minimize power consumption while
increasing the size of the swept area. Given this paral-
lel architecture, where several tips can read/write data in
parallel, it was reasonable to stripe the data between the
clusters. We chose to work with bit-level striping because
it maximizes the throughput when there is only one out-
standing request.

Figure 2 shows the layout of a MEMS device with two
movers, two clusters per mover and four tips per cluster.
This makes the tip area a quarter of the cluster’s area. One
tip per cluster may be active at a time; therefore, in this
device, four tips are active at a time. Consequently, a sec-
tor of data is read/written by the four active tips simul-
taneously. The sector is bit-interleaved between the two
clusters, as depicted by the pattern of the bitstream in Fig-
ure 2. The data is accessed while the mover is moving in
the ±y direction. Figure 3 shows how data is accessed on
a single cluster.

A single device may contain several movers, increas-
ing parallelism. To exploit this secondary level of par-
allelism, we stripe data bitwise among all the clusters of
these movers. For example in Figure 2 there are four si-
multaneously active tips, one per cluster, and the bitstream
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Figure 3: Data access for a single mover with four clusters and one tip per cluster. (a) Tip 1 is activated and the mover
slides up, reading the column of bits the tip passes over. (b) Tip 2 is activated after the shaded bits have been read, and
the mover reverses direction. (c) After all columns have been read, with an x-move between each column to reposition
the tips over the new column of bits, tip 3 is activated and the mover slides up, analogously to (a). (d) Tip 4 is activated
and the mover reverses direction, analogously to (b). (e) All bits in the mover are read.

is striped among them all. First the stream is split into
groups of four bits each, as depicted by the different gray
shades. Then each such group of four bits is interleaved
between the four active tips, as shown by the arrows in
Figure 2.

4 Service Time Model

The performance of a particular probe-based storage de-
vice depends on its configuration and the workload that it
is subject to. We can measure performance using a model
of probe-based storage implemented in Pantheon, an I/O
device simulator created by Hewlett-Packard [26, 16]. We
used this model to explore the behavior of probe-based
storage under several workloads and identify a configura-
tion with performance characteristics similar to disks [21].
However, the number of different configuration parame-
ters is too large to use such a simulator to explore the de-
sign space exhaustively.

To address this problem, we created an analytical model
that predicts the response time for various configurations.
We make the simplifying assumption that requests are uni-
formly distributed across the device. This assumption
does not hurt us as significantly as it would with disk
drives because seek time is dominated by transfer time
except at large degrees of parallelism [22]. Furthermore,
as shown in [21], seek time is not as sensitive to other
architectural parameters as transfer time.

4.1 Performance Dependencies

Based on the architecture and the layout model described
in Section 3, we know that the design space of probe-
based storage is relatively complex and involves many
parameters such as the number of active tips per device,
mover’s movement range, and acceleration. To choose
one configuration over another, we must understand how

the physical configuration affects the performance. There-
fore, we analyze the dependencies in the model between
these parameters and the service time, which we wish to
minimize.

Figure 4 is a dependency graph showing how perfor-
mance is related to probe-based storage parameters [21].
The graph edges represent the dependencies, the leaf
nodes are parameters, and the remaining nodes are inter-
mediate variables. The dependencies in this graph reflect
the parameters and layout presented in Section 3, although
other models could be used both for the layout and for the
physical behavior of the device [10]. The target in the
graph is the service time, which is the sum of seek time
and transfer time, as shown in Equation 1. We model each
of these components separately:

tservice = tseek + ttransfer (1)

Our model for seek time, described in Section 4.1.2,
assumes uniformly distributed requests. To adjust for
sequentiality in workloads, we parameterize Equation 1
with the runlength calculated from the trace. To compute
the runlength, we calculate the length, in bytes, of each
sequential run in the trace and average these runs to com-
pute the runlength in bytes, rl.

Only the first request of a sequential run will require
repositioning the mover, incurring seek time. Thus the ra-
tio of average request size (r) to runlength (rl) represents
the fraction of requests that require seeks. We modified
the service time equation (1) to use the runlength and ob-
tained Equation 2:

tservice =
r

rl
tseek + ttransfer (2)

4.1.1 Transfer Time Model

Transfer time (ttransfer), the time to actually read/write
the data, has four components. The first is the time to read



2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 107

seek time

� � � � � � 	 �

time

� 
 
 	 � 	 � � � � � �settle
time

� � � � � � 	

seek dis-
tance in x

seek dis-
tance in y

total turn-
around time

total 
� � � � � 	

time

total
tip-change

time

total
read/write

time

x position
in cluster

turnaround
time

y position
in cluster

� � � �
e

time

# of bits to
read/write
per cluster

tip change
time

� 	 � � 
 � � �

# of bits
per cluster

in y

# of sector
bits that each

tip access

# of sectors
to access

# of bits
per tip

in x

# of tips
in y per
cluster

# of bits
per tip

in y

# of
� 
 � � � 	 � � � �

� 	 
 � � � � � � � 	

in bits

� � �
ement

� � �  	 � � �

� � �
ement

� � �  	 � � �

interior node

workload dependent


 � � � �  " � � � � 	 � � � � � 	 � 	 �

� $ � � � 
 � � � � �
ameter

Figure 4: A simplified design space parameter depen-
dency graph. The head of the graph represents the service
time, which is the minimization target. From the graph we
can identify the parameters (represented by the leaves) on
which service time depends.

or write the data by moving the mover over the tip array
with a constant velocity (read/write time, or tRW ). Sec-
ond, if a request spans more than one bit column, we must
add the time that it takes for the mover to reverse direction
(e.g., from moving down to moving up); we call this time
the turnaround time (tTA). To minimize wasted space,
a sector can begin at any bit within a column, and con-
tinue at the next column. The MEMS device controller is
responsible for tracking the starting positions of sectors.
Thus, a single read/write request may require one or more
bit column movements in the X direction. This third com-
ponent is called an x-move (tXM ). The last component is

the time that it takes to switch between sets of active tips,
or tip switch time (tTS).

Thus, the transfer time is a sum of four terms: nTA, the
number of turnarounds, multiplied by tTA, the turnaround
time; nTS , the number of tip switches times tTS , the tip
switching time; nXM , the number of moves in X, times
tXM , the time to move one bit in X, and tRW , the time
it takes to actually read the data. Equation 3 shows this
combination.

ttransfer = nTA × tTA + nTS × tTS +
nXM × tXM + tRW (3)

As described in Section 3.2,the data to be read or writ-
ten is divided among all active tips, which work in paral-
lel. Each tip reads rf bits, which is equal to the number of
bits per request (8 r) divided by the number of active tips
Tactive, as shown in Equation 4.

rf =
8r

Tactive
(4)

The read/write time, tRW , depends on the number of
bits rf that each active tip has to read, the velocity of the
device (v0), and the bit width db (to translate the number
of bits into distance). To read or write each bit, it will
take db/v0 time for each active tip to move over it. This
relationship is given in Equation 5.

tRW =
rf × db

v0
(5)

The number of turnarounds, X-moves, and tip changes
depend on the number of requested bits that each active
tip accesses, the starting position, and the the number of
bits in a bit column (nbitsinY ). To calculate this quan-
tity we divide the movement range in Y by the bit-width.
Using the layout described in Section 3.2, the number of
turnarounds is the same as the number of tip switches, be-
cause a tip switch is necessary at every turnaround. The
X-move component also depends on the number of tips in
Y per cluster that determines the cluster dimension (i.e.,
the number of bits in one cluster column).

Specifically, the average number of turnarounds (or tip
switches) per request is the ratio of the number of bits
each tip must access to service the average size request
(rf ) and the number of bits in each column (nbitsinY ), as
shown in Equation 6.

nTA =
rf

nbitsinY
(6)

The average number of X-moves is the ratio of the av-
erage requested number of bits per active tip (rf ) divided
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by the product of the number of bits in Y times the num-
ber of tips in Y per cluster (Ty), as shown in Equation 7.

nXM =
rf

nbitsinY × Ty
. (7)

The number of bits in Y is equal to the movement range
in Y divided by the bit-width.

Substituting Equations 4–6 in Equation 3 gives us an
expression for the transfer time in milliseconds shown in
Equation 8.

ttransfer(δy, Tactive, Ty, r) =
8rdb

Tactive
(

1
δy

(tTA +
tXM

Ty
) +

1
v0

) (8)

4.1.2 Seek Time Model

Seek time is the time that it takes to reposition the
mover above the relevant tips when servicing a new non-
sequential request. To model the seek time we used a
probabilistic approach. We assume that the starting loca-
tions of requests are uniformly distributed across the de-
vice.

Because the movement in X and Y may be consid-
ered independently [10, 6], the seek time can be computed
as the greater of the seek times in X and Y. We com-
puted the average seek time when the seek in X is greater
(tseek x(δx)), and the average seek time when the seek in
Y is greater (tseek y(δy)) and estimated these probabil-
ities a and b, which add up to 1, to obtain Equation 9.
We reason that a higher average seek time in one direc-
tion will have a higher impact on the overall seek time, so
a/b = tseek x(δx)/tseek y(δy).

tseek(δx, δy) = a × tseek x(δx) + b × tseek y(δy) (9)

While several models exist to estimate the seek time,
the one we adopted is based on simple acceleration rules
from Newtonian mechanics [13, 10] and is given in Equa-
tion 10, for a specified distance δ. The mover can seek
achieve a much higher velocity than is used to read/write
because it can accelerate during the seek. At the end of a
seek, the data must be accessed by moving in the Y direc-
tion. Therefore, a settle time, tsettle (for the mover to po-
sition itself accurately) applies only to the calculated seek
time in X, since the mover has to come to a complete stop
in that direction. Notice that seeking takes place within
one tip area. Therefore, the seeking distance and the seek
time are relatively short, and depend on the mover move-
ment range.

t(δ) =
√

2πδ

a0
(10)

We calculate the average seek time in X and Y as fol-
lows. First, we calculate the probability function p(d)
of an incoming request incurring a certain movement d
over the tip array either X or Y (we can consider each
direction independently). Because the starting sectors are
uniformly distributed, the distances in each direction will
be the distance between two uniformly distributed start-
ing sectors. This probability will vary linearly with dis-
tance and will be at its maximum for a zero displace-
ment, and it will be equal to zero when the displacement
is equal to the movement range. The form of the equation
is p(d) = c bd, where c and b are constants. Because
p is a probability function, the area under it in the range
0 to δ, where δ is the movement range in X or Y, which
is cδ/2 will be equal to 1. Additionally, when d = δ,
the probability is equal to zero, p(δ) = 0. Using these
constraints, we can calculate the values for the constants c
and b, which we substitute back in the expression for p(d)
to obtain Equation 11:

p(d) = 2(δ d)/δ2 (11)

Unfortunately, we need to calculate seek time distribu-
tions, not distance distributions. We can use Equation 10
to express t as a function of a displacement d, converting
Equation 11 from the distance domain to the time domain.
This gives us the probability of a seek incurring time t in
either X or Y. After substituting 250 m/s2 for the physical
parameter acceleration, a0, we obtain Equation 12:

p(t) =
500t

πδ
(1

250t2

2πδ
) (12)

The movement ranges δx and δy in X and Y from Ta-
ble 1 specify the maximum distance we can move in each
direction. We use them in Equation 10 to find the maxi-
mum seek time tmax in X or Y, shown in Equation 13.

tmax =

√
2πδ

250
(13)

The actual seek time is the greater of the seek times in
X and Y, so the probability distribution function P (t) of
the seek time when it is greater in one direction than the
other will be different than p(t). Reasoning that taking
the maximum will bias us towards larger seek times, we
approximated P (t) with Equation 14.

P (t) = αp(t)t (14)

To solve for the constant factor α we integrated P (t)
from 0 to tmax and normalized it (because it is a prob-
ability function). Using our default values for physical
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parameters, we obtained α = 75
√

5/(8
√

πδ), or α =
11.83/

√
δ.

The average value of the seek time in one direction,
taken over all the requests for which its seek time was
greater than that in the other direction, can be estimated by
integrating its probability function over all possible times
(0 to tmax), shown in Equation 15.

taverage seek(δ) =
∫ tmax

0

P (t)tdt (15)

When we substitute in Equations 12, 13 and 14 for P (t)
we obtain Equation 16:

taverage seek(δ) =
1
8

√
πδ

5
(16)

Seeking in X involves a settling time tsettle that we
add to the prediction for the average seek time in X. The
final formulae for seek times in X and Y are shown in
Equations 17 and 18.

tseek x(δx) =
1
8

√
πδx

5
+ tsettle (17)

tseek y(δy) =
1
8

√
πδy

5
, (18)

We can now substitute Equations 17 and 18 in Equa-
tion 9 to obtain an expression for the seek time, which is
shown in Equation 19.

tseek(δx, δy) =
1

√
δx +

√
δy + 8tsettle

√
5
π

(
√

δx + 8tsettle

√
5
π

)(
1
8

√
πδx

5
+ tsettle) +

δy
1
8

√
π

5
)

(19)

4.2 Service Time Model

In Section 4.1.2 and Section 4.1.1 we obtained expres-
sions for the seek and transfer times. We can now sub-
stitute these equations (19 and 8) for tseek and ttransfer

in Equation 2. This gives us an expression for the service
time as shown in Equation 20:

Workload Average Runlength
request size

cello92 6.4 KB 6.5 KB
snake 6.8 KB 8.9 KB

cello99 6.8 KB 7.2 KB
tpcd 29.3 KB 252.0 KB

Table 2: Average request size and runlength values for
workloads used in our simulations.

tservice(δx, δy, Tactive, Ty, r, rl) =
r

rl(
√

δx +
√

δy + 8tsettle

√
5
π )

(
√

δx + 8tsettle

√
5
π

)(
1
8

√
πδx

5
+ tsettle) +

δy
1
8

√
π

5
)

+

8rdb

Tactive
(

1
δy

(tTA +
tXM

Ty
) +

1
v0

)

(20)

4.3 Model and Simulation Comparisons

To compare our model with the performance of a proto-
typical probe-based storage device we conducted experi-
ments using the Pantheon simulator from HP. We used a
probe-based storage device simulator that implements the
architecture and layout described in Section 3 [22], using
a variant of the unconstrained sled model [10, 22]. We
used four workloads: 1992 cello (4% sequential, /news
partition, most requests smaller than 8KB, sector size is
256 bytes) [15], 1992 snake (23% sequential, /usr2 parti-
tion, most requests smaller than 8KB, sector size is 512
bytes) [15], 1999 cello (disk 128, 30% sequential, large
requests where more than half are larger than 8KB, sec-
tor size is 1024 bytes) [22] and 1999 tpcd (disk 80, which
accounted for 12.5% of the requests). All traces recorded
one week of activity. In our simulations, we issue the re-
quests at the original times they occur in the traces, so
queuing behavior in the original workloads will not be as
pronounced on the faster probe-based storage devices.

All original traces were recorded by HP Laboratories.
The average request size and runlength for each workload
are shown in Table 2.

We used as default physical parameter values from Ta-
ble 1 and varied configurable parameters one at a time
within the ranges shown in same table. These ranges
were selected because they represent reasonable variation
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Figure 5: Graphs of service time of the simulated snake, cello92 and cello99 workloads and values calculated with
our probe-based storage model. The initial configuration used had a 40µm movement range in both X and Y, 320
active tips and 10 tips in Y per cluster. (a) varying the movement range in X; (b) varying the movement range in Y;
(c) varying the number of active tips; (d) varying the number of tips in Y per cluster.

around default values for which behavior is well under-
stood [22].

Figures 5a–d show the results we obtained for snake,
cello92, and cello99 workloads, and 6a–d show our re-
sults for the tpcd workloads. In Figure 5a, we see that for
snake and cello92, as δx increases, the predicted service
time deviates more from the experimental values. This is
because the original disk from which the traces are taken
is smaller than the probe-storage devices we are mapping
those requests to. Thus, seeks occur over only a small
fraction of the movement range in X , and our model over-
estimates the seek time as the device capacity increases.
For cello99 and tpcd, traces taken from disks with higher
capacity, this effect is much smaller. In fact, the error de-
creases in the case of the tpcd workload, as we can see
from Figure 6a.

In general, model error decreases as we increase move-

ment range in Y (Figure 5b). Because the sectors are or-
dered vertically, seeks are distributed across the entire Y
movement range during the workload simulation. Thus
the seek time predicted by our model better approximates
the experimentally obtained values. This error becomes
even smaller for higher movement ranges in Y, when
seeks in Y dominate those in X. We can see from Fig-
ure 5b that when the movement range in Y is greater
than 20µm, service time for cello92, snake and cello99,
which have similar request sizes and runlengths, does not
change significantly. Increasing the movement range in
Y increases the average number of bytes that can be read
before the mover must turnaround, however, these work-
loads with small requests do not benefit from this. In con-
trast, tpcd has a much larger request size and runlength,
hence its service time is minimized for greater values of
the movement range in Y, as shown in Figure 6b.
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Figure 6: Graphs of the service time of the simulated tpcd workload and values calculated using our probe-based
storage model. The initial configuration used had a 40µm movement range in both X and Y, 320 active tips and 10
tips in Y per cluster. (a) varying the movement range in X. (b) varying the movement range in Y. (c) varying the
number of active tips. (d) varying the number of tips in Y per cluster.

Figures 5c and 6c confirm our expectation that the num-
ber of tips in Y per cluster has a negligible effect on per-
formance at values greater than two.

Finally, Figures 5d and 6d show that increasing the
number of active tips increases the level of parallelism
inside the device, decreasing transfer time. The smaller
transfer time at higher numbers of active tips makes er-
rors in seek time more pronounced, causing the deviation
between models and simulation.

We show the model error for each configurable param-
eter in Table 3. The percent error is calculated by com-
puting the average percentage difference of the model-
predicted values from the simulated values at each data
point. The RMS difference is the root-mean squared ver-
tical difference between the model predictions and the
simulated workload value (in ms). The data in Table 3
show that our model closely approximates the simulated

service time for all four workloads. Even though we
mapped workloads to devices with different capacities and
assumed random distribution of requests, our model was
within 8% of the simulated values.

5 Optimal System Design

We used our probe-based storage model to optimize de-
sign of MEMS devices for specific performance goals. We
used the range of values for each configurable parameter
shown in Table 1 to bound our search, with the exception
of the number of tips in Y per cluster. Because this param-
eter has a negligible contribution to the transfer time when
its value is greater than 2, as can be seen from Figures 5b
and 6b, we set it to the default value 10.

To find the optimal set of configurable parameters, we
exhaustively searched the entire range of the configurable
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Varied Workload
parameter cello99 cello92 snake tpcd

mean error RMS error mean error RMS error mean error RMS error mean error RMS error
δx 2.2 % 0.03 ms 8.0 % 0.10 ms 7.8 % 0.09 ms 1.4 % 0.02 ms
δy 0.8 % 0.01 ms 6.2 % 0.07 ms 8.3 % 0.08 ms 1.4 % 0.02 ms
A 1.1 % 0.02 ms 6.0 % 0.07 ms 8.4 % 0.08 ms 3.2 % 0.03 ms
Ty 1.6 % 0.02 ms 6.6 % 0.07 ms 6.7 % 0.06 ms 1.4 % 0.02 ms

Table 3: Comparison of the service time of several simulated workloads to our model as both a percentage difference
and a root mean squared difference, as we vary several parameters.

parameter space to find a set of values that optimized the
given metric. We varied each parameter by intervals of
1µm for the movement range in both X and Y and 10 for
the number of active tips.

5.1 Minimizing Service Time for a Fixed
Capacity and Request Size

For a given bit density, the capacity of a MEMS device
is determined by the product of active tips and movement
ranges in X and Y . We looked for a configuration that
minimized mean response time for a probe-based storage
device with a fixed capacity of 2GB.

Given this constraint, our model identified an optimal
configuration for each workload as shown in Figure 7b.
We can see that the optimum number of active tips is at
the top of the range for the values of that parameter. This
is not surprising, because additional active tips lower ser-
vice time. The movement ranges in X and Y are small,
which also reduces service time. If we compare the values
of the optimal configurations to the behavior of the exper-
imentally obtained values for the service time in Figure 7a
we can see that our predictions point out very well where
the minimum of the service time will occur.

Note that the error is greatest for the tpcd workload,
where the model generally underestimates the service
time. Specifically, the model underestimates the seek time
for tpcd because the distribution of seeks in the real work-
load does not fit our assumption of a uniformly random
distribution. The tpcd workload has a significant num-
ber of large seeks that increase the overall average. As
we change the movement range in X and Y , the model
prediction changes more quickly than the real workload.
Thus, at higher values of δy , the simulated and predicted
service times converge.

5.2 Minimizing Service Time for a Fixed
Number of Active Tips

In reality, design of a probe-based storage device is likely
to be constrained by cost. We approximate this by fixing

the number of active tips at 320 (assuming that the num-
ber of tips is proportional to the cost of the device) and
determining a configuration that minimizes service time.

Figure 8b shows the configurations that minimize the
service time for each workload. Figure 8a shows the
service time when the movement range in Y is varied.
Our model again does an accurate prediction of where the
minimum service time occurs for all four workloads. In
the case of snake, cello99 and cello92 this is just around
30µm, while in the case of tpcd this happens at the upper
bound for the movement range in Y , 80µm. This makes
sense because the tpcd workload has larger request sizes
and runlengths, and therefore can benefit from the fewer
turnarounds offered by long movements in Y .

6 Conclusions

The design space of probe-based storage devices is vast,
but can be explored more quickly with the use of a pa-
rameterized model. We have presented a model for a
probe-based storage device that allows a system designer
to predict performance for a set of configurable parame-
ters. We validated this model using a simulator for probe-
based storage and several workloads and found that the
error was within 15%. We successfully used this model to
quickly identify optimal configurations to satisfy different
performance objectives.
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Optimal
Configuration cello99 cello92 tpcd snake

δx(µm) 9 9 5 9
δy(µm) 22 22 40 22
Tactive 2560 2560 2560 2560

Service time
simulated (ms) 0.52 0.51 0.26 0.38
predicted (ms) 0.50 0.52 0.22 0.42
error 3.8% 1.9% 15.4% 13.5%

Default
Configuration cello99 cello92 tpcd snake

Service time
simulated (ms) 0.98 0.91 1.31 0.79
predicted (ms) 0.97 1.00 1.38 0.85

Difference
from optimal

simulated 88% 78% 403% 108%
predicted 94% 92% 527% 102%

Figure 7: Performance of configuration minimizing ser-
vice time when capacity and request sizes are fixed.
Above: Graph of the service time for a range of values for
the movement range in Y for the simulated trace work-
loads. The movement range in X was adjusted at each
point to keep the capacity at 2GB. Below: Experimentally
obtained and predicted service times for the four work-
loads, and optimal configurations.
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Configuration cello99 cello92 tpcd snake

δx(µm) 5 5 5 5
δy(µm) 29 27 80 32
Tactive 320 320 320 320

Service time
simulated (ms) 0.80 0.83 1.08 0.70
predicted (ms) 0.77 0.78 1.06 0.69
error 3.8% 6.0% 1.9% 1.4%

Default
Configuration cello99 cello92 tpcd snake

Service time
simulated (ms) 0.98 0.91 1.31 0.79
predicted (ms) 0.97 1.00 1.38 0.85

Difference
from optimal

simulated 23% 9.6% 21.3% 13%
predicted 26% 28.2% 30.2% 23%

Figure 8: Performance of configuration minimizing ser-
vice time for a fixed number of active tips. Above: Graph
of the service time for a range of values for the movement
range in Y for the simulated trace workloads. Below: Ex-
perimentally obtained and predicted service times for the
four workloads and optimal configurations.
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