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Abstract 

Modem massively parallel file systems provide high bandwidth file access by striping files 
across arrays of disks attached to a few specialized I/O nodes. However, these file systems are 
hard to use and difficult to integrate with workstations and tertiary storage. RAMA addresses these 
problems by providing a high-performance massively parallel file system with a simple interface. 
RAMA uses hashing to pseudo-randomly distribute data to all of its disks, insuring high 
bandwidth regardless of access pattern and eliminating bottlenecks in file block accesses. This 
flexibility does not cause a large loss of performance - RAMA’s simulated performance is 
within lo-15% of the optimum performance of a similarly-sized striped file system, and is a 
factor of 4 or more better than a striped file system with poorly laid out data. 

Keywords: Parallel file system; Parallel disk; Pseudo-random file block layout; High-performance I/O; 
Scientific computing 

1. Introduction 

Massively parallel computers are becoming a common sight in scientific computing 
centers because they provide scientists with very high speed at reasonable cost. 
However, programming these computers is often a daunting task, as each one comes 
with its own special programming interface to allow a programmer to squeeze every bit 
of performance out of the machine. This applies to file access as well; massively parallel 
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file systems require hints from the application to provide high-bandwidth file service. 
Each machine’s file system is different, though, making programs difficult to port from 
one machine to another. In addition, many scientists use workstations to aid in their data 
analysis. They would like to easily access files on a massively parallel processor (MPP) 
without explicitly copying them to and from the machine. Often, these scientists must 
use tertiary storage to permanently save the large data sets they work with [9,19], and 
current parallel file systems do not interface well with mass storage systems. 

Traditional MPPs use disk arrays attached to dedicated I/O nodes to provide file 
service. This approach is moderately scalable, though the single processor controlling 
many disks is a bottleneck. Recent advances in disk technology have resulted in smaller 
disks which may be spread around an MPP rather than concentrated on a few nodes. 

RAMA addresses both ease of use and bottlenecks in massively parallel file systems 
using an MPP with one or more disks attached to every node. The file system is easily 
scalable: a file read or write request involves only the requesting node and the node with 
the desired data. By distributing data pseudo-randomly, RAMA insures that applications 
receive high bandwidth regardless of the pattern with which the data is accessed. 

2. Background 

Massively parallel processors (MPPs) have long had file systems, as most applica- 
tions running on them require a stable store for input data and results. The disk is also 
used to run out-of-core algorithms too large to fit in the MPP’s memory. It is the last use 
that generally places the highest demand on file systems used for scientific computation 
[la. 

2.1. Parallel file systems 

Early MPP file systems made a concerted effort to permit the programmer to place 
data on disk near the processor that would use it. This was primarily done because the 
interconnection network between nodes was too slow to support full disk bandwidth for 
all of the disks. In the Intel iPSC/2 [21], for example, low network bandwidth restricted 
disk bandwidth. The Bridge file system [6], on the other hand, solved the problem by 
moving the computation to the data rather than shipping the data across a slow network. 

Newer file systems, such as Vesta [4] run on machines that have sufficient intercon- 
nection network bandwidth to support longer paths between disked nodes and nodes 
making requests. These file systems must still struggle with placement information, 
however. Vesta uses a complex file access model in which the user establishes various 
views of a file. The file system uses this information to compute the best layout for data 
on the available disks. While this system performs well, it requires the user to tell the 
system how the data will be accessed so Vesta can determine the optimal layout for the 
data. This option works well for many programs that use regular matrices; however, 
other programs such as irregular grid methods and Fourier transforms either lack such 
regularity or have I/O access patterns that change over the course of the program, 
making an optimal layout difficult to obtain, Vesta provides a default data layout for 
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users that do not supply hints, but using this arrangement results in performance 
penalties if the file is read or written with certain access patterns. Supplying hints may 
be acceptable for MPP users accustomed to complicated interfaces, but it is difficult for 
traditional workstation users who want their programs to be portable to different MPPs. 

The CM-5 sfi [15] is another example of a modem MPP file system. The CM-5 uses 
dedicated disk nodes, each with a RAID-3 [lo] attached, to store the data used in the 
CM-5 The data on these disks is available both to the CM-5 and, via NFS, to the 
outside world. The system achieves high bandwidth on a single file request by 
simultaneously using all of the disks to transfer data. However, this arrangement does 
not allow high concurrency access to files. Since a single file block is spread over 
multiple disks, the file system cannot read or write many different blocks at the same 
time. This restricts its ability to satisfy many simultaneous small tile requests such as 
those required by compilations. 

A common method of coping with the difficulties in efficiently using parallel file 
systems is to provide additional primitives to control data placement and manage file 
reads and writes efficiently. Systems such as PASSION [2] and disk-directed I/O [12] 
use software libraries to ease the interface between applications and a massively parallel 
file system. These systems rely on the compiler to orchestrate the movement of data 
between disk and processors in a parallel application. Parallel I/O libraries can gather 
small requests into the large requests that the file system prefers, provide a data layout 
that leads to higher I/O performance, and give programmers a higher-level interface to 
the low-level file system. However, libraries cannot address basic shortcomings of many 
parallel file systems: they do not scale well, and they are very sensitive to certain I/O 
patterns. In addition, this solution is not as adept at allowing the use of parallel file 
systems from the networks of workstations used by scientific researchers. The compute- 
intensive applications that run on the parallel processor may get good performance from 
the file system, but files must be still be copied to a standard file system before they can 
be examined by workstation-based tools because most parallel file systems have few 
facilities for sharing files with workstations. 

Another shortcoming of parallel file systems is their inability to interface easily with 
tertiary storage systems. Traditional scientific supercomputer centers require terabytes of 
mass storage to hold all of the data that researchers generate and consume [$I. Manually 
transferring these files between a mass storage system and the parallel file system has 
two drawbacks. First, it requires users to assign two names to each tile - one in the 
parallel file system, and a different one in the mass storage system. Second, it makes 
automatic file migration difficult, thus increasing the bandwidth the mass storage system 
must provide [19]. 

2.2. Parallel applications 

Parallel file systems are primarily used by compute-intensive applications that require 
the gigaflops available only on parallel processors. Many of these applications do not 
place a continuous high demand on the parallel file system because their data sets fit in 
memory. Even for these programs, however, the file system can be a bottleneck in 
loading the initial data, writing out the final result, or storing intermediate results. 
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Applications such as computational fluid dynamics (CID) and climate modeling 
often fit this model of computation. Current climate models, for example, require only 
hundreds of megabytes of memory to store the entire model. The model computes the 
change in climate over each half day, storing the results for later examination. While 
there is no demand for I/O during the simulation of the climate for each half day, the 
entire model must be quickly stored to disk after each time period. The resulting large 
I/OS are large and sequential. 

Some applications, however, have data sets that are larger than the memory available 
on the parallel processor. These algorithms are described as running out-of-core, since 
they must use the disk to store their data, staging it in and out of memory as necessary. 
The decomposition of a 150,000 X 150,000 matrix requires 180 GB of storage just for 
the matrix itself; few parallel processors have sufficient memory to hold the entire 
matrix. Out-of-core applications are written to do as little I/O as possible to solve the 
problem; nonetheless, decomposing such a large matrix may require sustained band- 
width of hundreds of megabytes per second to the file system. Traditionally, the authors 
of these programs must map their data to specific MPP file system disks to guarantee 
good performance. However, doing so limits the application’s portability. 

3. RAMA design 

We propose a new parallel file system design that takes advantage of recent advances 
in disk and network technology by placing a small number of disks at every processor 
node in a parallel computer, and pseudo-randomly distributing data among those disks. 
This is a change from current parallel file systems that attach many disks to each of a 
few specialized I/O nodes. Instead of statically allocating nodes to either the file system 
or computation, RAMA (Rapid Access to Massive Archive) allows an MPP to use all of 
the nodes for both computation and file service. 

The location of each block in RAMA is determined by a hash function, allowing any 
CPU in the file system to locate any block of any file without consulting a central node. 
This approach yields two major advantages: good performance across a wide variety of 
workloads without data placement hints, and scalability from fewer than ten to hundreds 
of node-disk pairs. This paper provides a brief overview of RAMA; a more complete 
description may be found in Ref. [17]. 

RAMA, like most file systems, is I/O-bound, as disk speeds are increasing less 
rapidly than network and CPU speeds. While physically small disks are not necessary 
for RAMA, they reduce hardware cost and complexity by allowing disks to be mounted 
directly on processor boards rather than connected using relatively long cables. High 
network bandwidth allows RAMA to overcome the slight latency disadvantage of not 
placing data ‘near’ the node that will use it; thus, RAMA requires interconnection 
network link bandwidth to be an order of magnitude higher than disk bandwidth; this is 
currently the case, and the gap in speeds will continue to widen. Network latency is less 
important for RAMA, however, since each disk request already incurs a latency on the 
order of 10 ms. 
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3.1. Data layout in RAMA 

Files in RAMA are composed of file blocks, just as in most file systems. However, 
RAMA uses reverse indices, rather than the direct indices used in most file systems, to 
locate individual blocks. It does this by grouping file blocks into disk lines and 
maintaining a per-line list of the file blocks stored there. Since a single disk line is l-8 
MB long, each disk in RAMA may hold many disk lines. A disk line, shown in Fig. 1, 
consists of hundreds of sequential disk blocks and the table of contents (called a line 
descriptor) that describes each data block in the disk line. The exact size of a disk line 
depends on two file system configuration parameters: the size of an individual disk 
block (8 KB for the studies in this paper) and the number of file blocks in each disk line. 
The number of blocks per disk line was not relevant for the simulations discussed in this 
paper, since they did not run long enough to fill a disk line. 

The line descriptor contains a bitmap showing the free blocks in the disk line and a 
b2ock descriptor for each block in the disk line. The block descriptor contains the 
identifier of the file that owns the block, its offset within the file, an access timestamp 
for the block, and a few bits holding the block’s state (free, dirty, or clean). 

Every block of every file in RAMA may be stored in exactly one disk line; thus, the 
file system acts as a set-associative cache of tertiary storage. File blocks are mapped to 
disk lines using the function diskline = hash(fieZd, blockOfiet). This mapping may be 
performed by any node in the MPP without any file-specific information beyond the file 
identifier and offset for the block, allowing RAMA to be scaled to hundreds of 
processor-disk pairs. 

Intrinsic metadata File blocks 

I . I 

File 713, Block 4 

Fig. 1. Layout of a disk line in RAMA. 
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The hash algorithm used to distribute data in RAMA must do two things. First, it 
must insure that data from a single file is spread evenly to each disk to insure good disk 
utilization, Second, it must attempt to map adjacent file blocks to the same line, 
allowing, larger sequential disk transfers without intermediate seeks. This is done in 
RAMA by dividing the block offset by an additional hash function parameter s. This 
scheme yields the same hash value, and thus the same mapping from file block to disk 
line, for s sequential blocks in a single file. The optimal value for s depends on both 
disk characteristics and the workload [17]. S is set to 4 for the simulations in this paper. 

The hash functions used for the experiments described in this paper are based on the 
multiplicativehash routine from the GNU libgt+ library [14]. This hash 
function is not likely to be the optimal hash function, but optimizations in the hash 
function are best explored when RAMA is implemented in hardware. In particular, we 
hope to explore hash functions that provide even distribution of data to disk lines, 
perhaps adapting to uneven disk line utilization. There has been research on this topic in 
the database community, and we hope to use some of those results in improving 
RAMA’s performance. So long as the hash function is known to all nodes, though, the 
basic operation of RAMA will remain unchanged. 

While any node in the MPP can compute the disk line in which a file block is stored, 
direct operations on a disk line are only performed by the processor to which the line’s 
disk is attached. This CPU scans the line descriptor to find a particular block within a 
disk line, and manages free space for the line. The remainder of the nodes in the MPP 
never know the exact disk block where a file block is stored; they can only compute the 
disk line that will hold the block. Since the exact placement of a file block is hidden 
from most of the file system, each node may manage (and even reorder) the data in the 
disk lines under its control without notifying other nodes in the file system. 

RAMA’s indexing method eliminates the need to store positional metuduta such as 
block pointers in a central structure similar to a normal Unix inode. This decentralization 
of block pointer storage and block allocation allows multiple nodes to allocate blocks for 
different offsets in a single file without central coordination. Since there is no per-file 
bottleneck, the bandwidth RAMA can supply is proportional to the number of disks. If 
all nodes have the same number of disks, performance scales as the number of nodes 
increases. 

The remainder of the information in a Unix inode - file permissions, file size, 
timestamps, etc. - is termed intrinsic metadutu since it is associated with the file 
regardless of the media on which the file is stored. The intrinsic metadata for a file is 
stored in the same disk line as the first block of a file in a manner similar to inodes 
allocated for cylinder groups in the Fast File System [16]. 

Because each block in RAMA may be accessed without consulting a central per-file 
index, the line descriptor must keep state information for every file block in the disk 
line. Blocks in RAMA may be in one of three states - free, dirty, or clean - as shown 
in Fig. 1. Free blocks are those not part of any file, just as in a standard file system. 
Blocks belonging to a file are dirty unless an exact copy of the block exists on tertiary 
storage, in which case the block is clean. A clean block may be reallocated to a different 
file if additional free space is needed, since the data in the block may be recovered from 
tertiary storage if necessary. 
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RAMA, like any other file system, will fill with dirty blocks unless blocks are 
somehow freed. Conventional file systems have only one way of creating additional free 
blocks - deleting files. However, mass storage systems such as RASH [8] allow the 
migration of data from disk to tertiary storage, thus freeing the blocks used by the 
migrated files. RAMA uses this strategy to generate free space, improving on it by not 
deleting migrated files until their space is actually needed. Instead, the blocks in these 
files are marked clean, and are available when necessary for reallocation. RAMA also 
supports partial file migration, keeping only part of a file on disk after a copy of the file 
is on tape. This facility is useful, for example, for quickly scanning the first block of 
large files for desired characteristics without transferring an entire gigabyte-long file 
from tape. 

3.2. RAMA operation 

A read or write request in RAMA involves only two nodes: the node making the 
request (the client) and the node on whose disk the requested data block is stored (the 
server). If several clients read from the same file, they do not need to synchronize their 
activities unless they are actually reading the same block. In this way, many nodes can 
share the large files used by parallel applications without a per-file bottleneck. 

Fig. 2 shows the flow of control and data for a file block read in RAMA; a similar 
sequence is used to write a file block. First, the client hashes the file identifier and 
offset, computing the disk line in which the desired block is stored. The client then looks 
up the owner of the disk line, and sends a message to that server. The server reads the 
line descriptor (if it is not already cached) and then reads or writes the desired block. If 
the operation is a write, the data to write goes with the first message. Otherwise, the data 
is returned after it is read off disk. 

The common case for the file system is that the data is on disk. If a block not listed in 
the appropriate line descriptor is written, a free block is allocated to hold the data. If a 

1. Hash to find 
server node 

1 i 4. Find desired 
! I block’s address 

Fig. 2. Steps required to read a file block in RAMA. 
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read request cannot be satisfied, the block must exist on tertiary storage; a request is sent 
to the user-level tertiary storage manager process and the requested data is fetched from 
tape. While running the tertiary storage manager at user level adds context switch delays 
to the I/O time, the penalty of a few milliseconds pales in comparison to the tens of 
seconds necessary to fetch data from tape. Additionally, keeping tertiary storage 
management at user level allows much greater flexibility, as RAMA need not be 
recompiled (or even restarted) if a new tertiary storage device or migration policy is 
added. 

Note that this description of file system operation does not mention the caching of 
file blocks in memory. Certainly, RAMA will take advantage of file caching, particu- 
larly for frequently-used blocks such as those containing intrinsic metadata. Since the 
simulation experiments described in Section 5 do not involve much data reuse, a caching 
policy was not simulated. Parallel programs with high I/O rates will likely exhibit poor 
locality, since the high data rate is usually caused by an out-of-core program that must 
use disk I/O to stage data that will not fit in memory. In such cases, the application has 
wrung all possible locality from the data by doing its own ‘caching.’ Nonetheless, it is 
likely that RAMA will either cache blocks at the node on whose disk the data is stored 
or use more complex policies such as those discussed in Refs. [ 1,121, improving 
performance in situations where many nodes require access to the same few blocks. 

3.3. Data integrity and availability 

As with most file systems, data integrity and availability are major issues in RAMA. 
Previous parallel file systems did not address this issue because they were designed 
purely as working storage for parallel processors. As a result, users rarely stored their 
files on parallel file systems for any length of time; the loss of data from a file system 
merely required rereading any lost data from other sources. However, this situation will 
change as parallel processors become more common and less expensive, allowing users 
to use their file systems for long-term storage. 

File system integrity is especially acute in RAMA, since a single file may be spread 
over many disks run by many different processors. Similarly, data availability becomes a 
problem when parts of a single file are stored in many different places, as the file is 
unavailable if any of those disks or processors is down. 

Data integrity is the more important issue, as a file system must never lose data 
entrusted to it. Additionally, the file system must insure that a block is not ‘owned’ by 
the wrong file, as doing so could allow data to be accessed by someone who does not 
have the proper permission. In addition, a file system must remain consistent, insuring 
that a crash at an inopportune moment will not corrupt the file system’s data structures. 
After a crash, the file system must insure that every block on disk belongs to exactly one 
file, or is free. 

Since RAMA is designed for MPPs running scientific workloads, it is not so crucial 
that an application knows exactly when a write is complete on disk. Many long-running 
programs make checkpoints of their state [22] so they can just use the last complete 
checkpoint if a crash occurs. So long as a crash does not corrupt existing files, a 
program can restart using the most recent complete checkpoint. In a scientific computing 
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environment, losing the last few seconds of file I/O is not fatal if the application is 
notified of the loss, since the data may be regenerated by rerunning all or part of the 
application. 

One option is to use self-identifying blocks on disk. Each block would reserve a few 
words to record the file identifier and block number that the data in the block 
corresponds to. This method has several significant advantages. First, crashes no longer 
present any problem since the line descriptor can be rebuilt by scanning the disk line. 
Each node can rebuild the line descriptors on its own disks independently by reading 
each disk line, reassembling its line descriptor, and writing the descriptor back. Since the 
process uses large sequential disk reads and writes, rebuilding all of the line descriptors 
on a disk can be done in little more than the time necessary to read a disk at full speed 
- about 330 s for a 1 GB disk that can sustain a 3 MB per second transfer rate. To 
avoid even this small penalty, the file system assumes that all descriptors are correct, 
and only rebuilds one when it finds a disagreement between a line descriptor and the 
self-identification for a block in its line. Another advantage for this method is that line 
descriptors may be written back lazily. This represents a trade off between faster crash 
recovery time after a crash and improved performance during normal operation. All of 
these benefits are countered by a few drawbacks, however. One problem is the increased 
amount of metadata the file system will need. The overhead for metadata would double 
with a naive implementation that keeps a copy of all metadata in the file block as well. 
Keeping a full copy is unnecessary, though, and this overhead is only an additional 0.2% 
in any case. More importantly, though, a file block is no longer the same size as a disk 
block, and file blocks are no longer a power of two bytes long. Many programs are 
optimized to take advantage of specific file block sizes, and it is likely that this choice 
would cause poor performance. 

A better option for maintaining consistency is to introduce a fourth state - 
reclaimable - for file blocks. This state explicitly marks those clean blocks that may be 
reclaimed, and includes a timestamp indicating when they were so marked. Such blocks 
contain valid data for which copies exist on tertiary storage. However, if a crash has 
occurred more recently than when the blocks were marked as reclaimable, the blocks are 
considered free. The fourth state thus allows RAMA to use all of the available disk 
space as a cache for tertiary storage while still keeping sufficient reallocatable space. 

Under this scheme, shown in Fig. 3, all file data is written out before the line 
descriptor is updated. Clearly, this presents no difficulties if both updates are completed 
without a system crash. The only difficulty, then, is if the system crashes between the 
time that the data is written to disk and the time the line descriptor is updated. If a file’s 
blocks are overwritten by new data for the same blocks, the line descriptor still contains 
the correct description for the blocks. If free blocks are overwritten and a crash occurs 
before the line descriptor is updated, the blocks are not part of any file and are still 
marked free. Again, the last few seconds of data are lost, but the file system remains 
consistent. However, if reclaimable blocks are reused for different files, the line 
descriptor will still record that they belong to the original files. The file system then uses 
the rule that reclaimable blocks are invalid if a crash has occurred since the blocks were 
marked reclaimable. The new data written to the blocks is lost, but the file system 
remains consistent as the blocks are now marked free. Since the blocks had to be clean 



428 E.L. Miller, R.H. Katz/Parallel Computing 23 (1997) 419-446 

before they could be marked reclaimable, any data in them can be retrieved from tertiary 
storage. While retrieving the data from tertiary storage may be slow, the amount of such 
data is likely to be very small, and crashes are infrequent. 

Since RAMA does not keep separate free block free lists as used in other file 
systems, blocks on disk cannot be ‘lost.’ Each block’s state is listed in its block 
descriptor, so RAMA can quickly rebuild its per-line free block maps after a crash. 
Additionally, RAMA never needs a file system-wide consistency checking program. 
This is a necessary criterion for a file system that integrates tertiary storage, since 
checking a multi-terabyte archive could take days. 

File availability is another problem that RAMA must address. Uniprocessor file 
systems spanning more than one disk may arrange disks in a RAID [9] to keep data 
available even when a disk has failed. It should be possible to use similar techniques for 
RAMA. However, it is not clear how they would be integrated into the file system, since 
each node may rearrange its own disks without notifying other nodes. RAMA can utilize 
techniques learned from RAID to provide availability even when a disk or processor 
fails. The precise method for accomplishing this is not addressed by this paper, but 
remains open for further research. 

Line descriptor File blocks 

file Id b&k # Before writes 

After file block writes 

After line descriptor updates 

 free  dirty  clean reclaimable  file block 

Fig. 3. Scheme for ensuring consistency after a RAMA crash. 
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3.4. Disk storage utilization 

Since file blocks in RAMA are assigned to disk lines by a pseudo-random algorithm, 
some lines in the file system will fill up with valid data while others have plenty of free 
space. RAMA’s use of tertiary storage, can mitigate the problem by using migration to 
balance the storage load. Unlike traditional file systems that must keep lo-20% of the 
disk blocks free [16,24], RAMA can fill the entire disk with valid data so long as there 
are enough clean blocks to reallocate to new files. 

A disk line in RAMA is considered full only if all of its blocks are dirty. Free blocks 
may be reused immediately, and clean blocks can be converted to reclaimable blocks 
and then reallocated without referencing tertiary storage. If most or all of a line’s file 
blocks are dirty, they must be quickly copied to some other location in the storage 
hierarchy so future writes can proceed at full speed. This can be done quickly if the 
MPP running RAMA has one or more relatively large disks running a conventional file 
system attached to it. This additional storage is considered part of the tertiary storage 
system, but it has much lower latency and higher bandwidth than tapes or optical disks. 
Data that must be moved here can be retrieved with latencies on the order of 100 ms or 
less, as compared to the multiple second penalties that tape drives impose. Since the 
external storage will be used infrequently - ideally for fewer than 1% of total accesses 
- its lower performance will have little impact on overall system performance. In this 
way, RAMA can greatly improve the disk storage utilization of the disks within the 
MPP at little performance and hardware cost. 

One issue that arises with this design is that the disk lines that fill fastest must put 
their overflow data onto a storage medium that is considerably slower than the disks in 
RAMA itself. This problem may be mitigated by allowing RAMA to use a portion of 
each disk as a ‘second chance’ storage area. Disk lines that overflow before others are 
full may store their extra blocks here, allowing the data to be retrieved in just twice the 
time of ‘normal’ file system requests. Since the simulations in this paper did not run 
until disk lines became full, we were unable to gauge the effectiveness of this strategy. 
However, we plan to implement it as part of the RAMA file system, allowing us to 
measure the performance loss due to unevenness in file block distribution to disk lines. 

3.5. Tertiary storage and RAMA 

RAMA is designed to be used in high-performance computing environments requir- 
ing many terabytes of storage. File migration to and from slower, cheaper media must be 
well integrated into the file system. RAMA’s data layout on disk is designed to facilitate 
such migration. While a few other file systems were designed with tertiary storage in 
mind [ 11,201, they are not designed for parallel systems. This limits their performance, 
and makes them unsuitable for use in a scientific computing environment. 

Tertiary storage is integrated into RAMA via one or more user-level storage 
managers, Whenever a block of data is not found on disk, a tertiary storage manager is 
queried to find the data. Clearly, this method introduces longer latency than a kemel- 
based storage manager would. However, latency to tertiary storage is already well over a 
second; the additional few milliseconds make little difference in overall request latency. 
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It is likely that RAMA would use prefetching as well as request batching, since disk file 
blocks are only 8 to 32 KB long, while tertiary storage blocks might be as long as 
several megabytes or more. In such a case, RAMA might fetch all or much of a file 
from tertiary when a single block from the file was requested. If this strategy was not 
optimal - for example, a user might scan the first thousand bytes of each of one 
hundred one gigabyte files - RAMA would not have to read the entire file. Managing 
tertiary storage at user level also allows the use of different storage managers, permitting 
the integration of new devices and new algorithms for managing file migration without 
recompiling the operating system kernel. 

Migration from secondary to tertiary storage is also managed by user-level processes. 
There may be more than one of these processes, but they will likely be coordinated to 
avoid duplication of effort. This is not a requirement, however. These processes, called 
migration managers, direct the copying of files from secondary to tertiary storage. 
RAMA has special hooks into the file system to allow this, though they are only 
available to programs run by the superuser. Migration managers are allowed to change 
the state of a file block, marking dirty blocks as clean. They may also adjust the 
modification time of a clean block so it will be more or less likely to be written over as 
more disk space is needed. However, migration managers use the standard file system 
interface to actually transfer file data between disk and tertiary storage. 

A typical migration manager searches through every disk line looking for dirty file 
blocks older than a certain time. This finds file identifiers that are good candidates for 
migration to a lower level of the hierarchy. This task is easily parallelizable, using one 
migration manager for each disk. Each process reads and scans all of the line descriptors 
on a single disk. This is not a long procedure; a 1 GB disk has less than 4 MB of line 
descriptors which may be read and scanned in a few seconds. The results from all of 
these processes are reported to a high-level migration manager. This migration manager 
decides which files will be sent to tertiary storage, and manages their layout on tertiary 
media. It also optimizes scheduling for the tertiary media readers, trying to minimize the 
number of media switches. 

Once a file has been written to tertiary storage, its blocks become available for reuse. 
However, these disk blocks are not immediately freed; instead, they are marked as clean 
so they may be reclaimed if necessary. There is usually no reason to free blocks once 
they are safely stored on tertiary media, as they might satisfy a future file request. 
However, the blocks’ modification time might be changed. The migration manager 
could, for example, decide to preferentially keep blocks from small files on disk. If so, it 
would mark clean file blocks from large files as being older than blocks of the same age 
from small files. This will not confuse the file system, as a whole file’s modification 
date remains unchanged, as does the modification date for dirty blocks. Only clean 
blocks which need not be written to tertiary storage may have their last access dates 
changed. 

This architecture fits well into the Mass Storage Systems Reference Model [31. 
RAMA itself acts as a bitfile server and storage server for magnetic disk. The user-level 
tertiary storage managers are bitfile servers for tertiary storage devices; however, they 
do not necessarily act as storage servers for these devices. 

Tertiary storage devices such as tape libraries and optical disks may be connected to 
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RAMA in one of two ways. First, a device may be connected directly to a node of the 
parallel processor. In this case, the migration managers must know the nodes to which 
each device is attached. Since there will be relatively few tertiary storage devices 
connected directly to the parallel processor, keeping a static list of them at each 
migration manager presents little problem. Increasingly, though, storage libraries are 
being implemented as network-attached peripherals. Here, too, migration manager 
processes need only keep lists of devices and their network addresses, routing data and 
messages for them through the parallel processor nodes connected to the external 
network. 

This paper does not address the issue of tertiary storage performance; there have been 
several papers addressing that issue. We believe, however, that RAMA provides an 
excellent platform from which to use tertiary storage because of the built-in mechanisms 
for handling files that are not disk-resident and migrating unused files from disk to 
slower storage. We plan to experiment with tertiary storage devices when an experimen- 
tal RAMA file system is built. 

4. Simulation methodology 

We used a simulator to compare RAMA’s performance to that of a striped file 
system. The simulator modeled the pseudo-random placement on which RAMA is 
based, but did not deal with unusual conditions such as full disk lines. This limitation 
does not affect the findings reported later, since none of the workloads used enough data 
to fill the file system’s disks. The simulator also modeled a simple striped file system 
using the same disk models, allowing a fair comparison between striping and pseudo- 
random distribution. 

The interconnection network and disks in the MPP were both modeled in the 
simulator. While it would have been possible to model the applications’ use of the 
network, this was not done for two reasons. First, modeling every network message sent 
by the application would have slowed down simulation by a factor of 10 or more. 
Second, the network was not the bottleneck for either file system, as Section 5.3 will 
show. The simulator did model network communications initiated by the file system, 
including control requests from one node to another and file blocks transferred between 
processors. This allowed us to gauge the effect of network latencies on overall tile 
system performance. 

The disks modeled in the simulator are based on 3.5” low-profile Seagate ST3 12OGN 
drives. Each disk has a 1 GB capacity and a sustained transfer rate of 3.5 MB/s, with an 
average seek of 10 ms. The seek time curve used in the simulation was based on an 
equation from Ref. [13] using the manufacturer’s seek time specifications as inputs. 

The workload supplied to the simulated file systems consisted of both synthetic 
benchmarks and real applications. The synthetic access patterns all transfer a whole file 
to or from disk using different, but regular, orderings and delays between requests. For 
example, one simple pattern might require each of n nodes to sequentially read 1 /nth of 
the entire file in 1 MB chunks, delaying 1 s between each chunk. This workload 
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generated access patterns analogous to row-order and column-order transfers of a full 
matrix. 

Real access patterns, on the other hand, were generated by simulating the file system 
calls from a parallel application. All of the computation for the program was converted 
into simulator delays, leaving just the main loops and the file system calls. This allowed 
the simulator to model applications that would take hours to run on a large MPP and 
days to run on a workstation, and require gigabytes of memory to complete. 

The modeled program used for many of the simulations reported in this paper was 
out-of-core matrix decomposition [7,26], which solves a set of n linear equations in n 
variables by converting a single n X n matrix into a product of two matrices: one upper- 
and one lower-triangular. Since large matrices do not fit into memory, the file system 
must be used to store intermediate results. For example, a 128K X 128K matrix of 
double-precision complex numbers requires 256 GB of memory - more than most 
MPPs provide. The algorithm used to solve this problem stores the matrix on disk in 
segments - vertical slices of the matrix each composed of several columns. The 
program processes only one segment at a time, reducing the amount of memory needed 
to solve the problem. Before ‘solving’ a segment, the algorithm must update it with all 
of the elements to its left in the upper-triangular result. This requires the transfer of 
c2/2 segments to decompose a matrix broken into c segments. The application 
prefetches segments to hide much of the file system latency; thus, the file system need 
only provide sufficiently fast I/O to prevent the program from becoming I/O bound. 
The point at which this occurs depends on the file system and several other factors - 
the number and speed of the processors in the MPP, and the amount of memory the 
decomposition is allowed to use. 

5. RAMA performance 

The RAMA file system is the product of a new way of thinking about how a parallel 
file system should work. It is easier to use than other parallel file systems, since it does 
not require users to provide data layout hints. If this convenience came at a high 
performance cost, however, it would not be useful; this is not the case. I/O-intensive 
applications using RAMA may run 10% slower than they would if data were laid out 
optimally in a striped file system. However, improper data layout in a striped file system 
can lead to a 400% increase in execution time, a hazard eliminated by RAMA. 

Parallel file system performance can be gauged by metrics other than application 
performance. Most parallel file systems use the MPP interconnection network to move 
data between processors. This network is also used by parallel applications; thus, a file 
system that places a high load on the network links may delay the application’s 
messages, reducing overall performance. RAMA’s pseudo-random distribution proba- 
bilistically guarantees even distribution of network load while not excessively congest- 
ing individual links. 

Uniform disk utilization is another important criterion for parallel file systems with 
hundreds of disks. Using asynchronous I/O enables applications to hide some of the 
performance penalties from poorly distributed disk requests. However, uneven request 
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distribution will result in lower performance gains from faster CPUs because some disks 
remain idle while others run at full bandwidth. RAMA meets or exceeds striped file 
systems in both network utilization and uniformity of disk usage. 

5. I. Application execution time 

The bottom line in any comparison of file systems is application performance. We 
simulated the performance of several I/O intensive applications, both synthetic and real, 
under both RAMA and standard striped MPP file system with varying stripe sizes. We 
found that RAMA’s pseudo-random distribution imposed a small penalty relative to the 
best data layout in a parallel file system, while providing a large advantage over poor 
data layouts. 

The first benchmark we simulated read an entire 32 GB file on an MPP with 64 
nodes and 64 disks. Each processor in the MPP repeatedly reads 1 MB, waiting for all of 
the other processors to read their chunk of data before proceeding to the next one. These 
reads could be performed in two different orders resembling those shown in Fig. 4: node 
sequential and iteration sequential. For node sequential access, the file was divided into 
512 MB chunks, each of which was sequentially read by a single node. Iteration 
sequential accesses, on the other hand, read a contiguous chunk of 64 MB each iteration, 
using all 64 nodes to issue the requests. While the entire MPP appeared to read the file 
sequentially, each node did not itself issue sequential file requests. 

We simulated this access pattern on several different configurations for the striped 
file system as well as the RAMA file system. Each curve in Fig. 5 shows the time 
required to read the file for the striping configuration with N disked nodes and D disks 
per node, denoted by Nn, Dd on the graph. We varied the size of the stripe on each 
disked node to model different layouts of file data on disk. The horizontal axis of Fig. 5 
gives the amount of file data stored across all of the disks attached to a single disked 
node before proceeding to the next disked node in the file system. The dashed lines 
show the execution time for the iteration sequential access pattern, while the solid lines 
graph node sequential access. RAMA’s performance for a given access pattern is 

Time 111__+ CPU Time -p 

Iteration Node 
sequential sequential 

0 Megabytes in file 15 

Fig. 4. Transfer ordering for iteration sequential and node sequential access patterns. 
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Fig. 5. Time required to read a 32 GB tile on an MPP with 64 processors and 64 disks. 

constant since it does not use layout information; thus, there is only one execution time 
for each access pattern. Since the execution times for the different access patterns under 
RAMA were within O.l%, RAMA’s performance is shown as a single line. 

As Fig. 5 shows, RAMA is within 10% of the performance of a striped file system 
with optimal data layout. Non-optimal striping, on the other hand, can increase the time 
needed to read the file by a factor of four. Worse, there is no striped data layout for 
which both access patterns perform better than RAMA. There is thus no ‘best guess’ the 
file system can make that will provide good performance for both access patterns. With 
RAMA, however, pseudo-random data layout probabilistically guarantees near-optimal 
execution time. 

Real applications such as the out-of-core matrix decomposition described in Section 
4, exhibit similar performance variations for different data layouts in a striped file 
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,600O -I 

.I 

4000 

2000 
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0’ 
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Per-disked node stripe size (KB) 

Fig. 6. Execution time for LU decomposition under RAMA and striped file systems on a 64 node MPP with 64 
disks. 
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Fig. 7. Execution time for LU decomposition with an alternate data layout. 

system. As with the earlier benchmarks, however, RAMA provides consistent run times 
despite variations in the algorithm. 

Matrix decomposition stresses striped file systems by only transferring a portion of 
the file each iteration. If each of these partial transfers is distributed evenly to all of the 
disks, the performance shown in Fig. 6 results. Most of the data layouts for the striped 
file system allow the application to run without I/O delay, while only the largest file 
system stripe sizes are suboptimal. Performance under RAMA matches that of the best 
striped arrangements, and is better than execution time for the worst data layouts. 

Just a small change in the algorithm’s source code governing the placement of data, 
however, can cause a large difference in performance for matrix decomposition under 
striping. The data in Fig. 7 were gathered from a simulation of a matrix decomposition 
code nearly identical to that whose performance is shown in Fig. 6. The sole difference 
between the two is a single line of code determining the start of each segment in the 
matrix. A minor arbitrary choice such as this should not result in a radical difference in 
performance; it is just this sort of dependency that makes programming parallel 
machines difficult. Performance under file striping, however, is very different for the 
two data layouts. The small stripe sizes that did well in the first case now perform 
poorly with the alternate data layout. On the other hand, large stripe sizes serve the 
second case well, in contrast to their poor performance with the first data layout. In 
contrast, the execution times for the two variants using RAMA are within 0.1%. 

Simulation results from other synthetic reference patterns and application skeletons 
showed similar results. A global climate model, for example, attained its highest 
performance for medium-sized stripes. Execution time using either large or small stripes 
was two to four times longer. Using RAMA’s pseudo-random distribution, the climate 
model was able to run at the same speed as the optimal striped data layout. 

5.2. Disk utilization 

There are two reasons for the wide variation in program performance under file 
striping: poor spatial distribution and poor temporal distribution of requests to disks. The 
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Fig. 8. Disk utilization in a striped file system for a 32KX 32K matrix decomposition. 

first problem occurs when some disks in the file system must handle more requests than 
others because the application needs the data on them more frequently. Even if all of the 
disks satisfy the same number of requests during the course of the application’s 
execution, however, the second problem may remain. At any given time, the program 
may only need data on a subset of the disks; the remaining disks are idle, reducing the 
maximum available file system bandwidth. RAMA solves both of these problems by 
scattering data to disks pseudo-randomly, eliminating the dissonance caused by conflict- 
ing regularity in the file system and the application’s data layouts. 

Fig. 8 shows the average bandwidth provided by each of 64 disks in a striped file 
system during the decomposition of a 32K X 32K matrix. The bandwidth is generally 
highest for the lowest-number disks because they store the upper triangular portions of 
each segment which are read to update the current segment. The disks on the right, 
however, store the lower triangular parts of the segments which are not used during 
segment updates. Since the file system is limited by the performance of the most heavily 
loaded disks, it may lose as much as half of its performance because of the disparity 
between the disks servicing the most and fewest requests. 

To prevent this poor assignment of data to disks, RAMA’s hash function randomly 
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Fig. 9. Disk utilization in RAMA for a 32KX 32K matrix decomposition. 
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Fig. 10. Disk activity over time for a striped file system during differently-ordered reads of a 1 GB file. 

chooses a disk for each 32 KB chunk of the matrix file. The result is the distribution of 
requests to disks shown in Fig. 9. Each disk delivers between 0.584 and 0.622 MB/s for 
the 32K X 32K matrix decomposition, a spread of less than 6.5%. This difference is 
much smaller than the factor of two difference in the striped file system. Thus, RAMA 
can provide full-bandwidth file service to the application, while the striped file system 
cannot. 

Striped file systems can also have difficulties with temporal distribution, as shown by 
the disk activity during a 1 GB file read graphed in Fig. 10. The left graph shows the 
ideal situation in which every disk is active all of the time. Often, however, poor disk 
layout results in the situation shown in the graph on the right. Though every disk 
satisfies the same number of requests during the program’s execution, only half of the 
disks are busy at any instant, cutting overall bandwidth for the file system in half. 

Here, too, RAMA’s pseudo-random distribution avoids the problem. As Fig. 11 
shows, each disk is active most of the time. By randomly distributing the regular file 
offsets requested by the program, RAMA probabilistically assures that all disks will be 
approximately equally utilized at all times during a program’s execution. 

- I OllSlS 8 f Ii 
Elapsed time (seconds) 

Fig. 11. Disk activity over time for RAMA during a read of a I GB file. ‘The access pattern is the same as the 
right graph of Fig. 10. 
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5.3. Interconnection network utilization 

5.3.1. Network load distribution 
Many older parallel file systems [21,23] required data placement hints from programs 

to reduce network traffic as well as balance disk traffic. On some older machines, each 
interprocessor link was slower than 10 MB/s - hardly faster than a disk. On such a 
system, pseudo-random placement as done in RAMA would be a poor choice because it 
would place too high a load on the interprocessor links. However, interconnection 
networks have become faster; each processor in the Cray T3D [5] is connected to its 
neighbors by six links each capable of transferring over 150 MB/s. The gap between 
network and disk speeds will only widen, since network technology is electronic while 
disk speeds are limited by mechanics. 

As Fig. 12 shows, the message traffic created by RAMA does not place high loads on 
a toroidal mesh interconnection network with 100 MB/s links, even while all of the 
disks are transferring data at full speed. Average link utilization during the matrix 
decomposition ranged from 1.6 to 2.8%, leaving the remainder of the bandwidth for 
application-generated messages. The network load was evenly distributed throughout the 
matrix with no hot spots because the disks and requests to them were evenly spread. 
This uniform load decreases the travel time variation for ‘normal’ messages, simplifying 
(a little bit) the creation of parallel programs. 

The striped file system also caused relatively little congestion of the interconnection 
network - no link averaged more than 5.9% utilization over the course of the matrix 
decomposition. However, variation in file system link utilization was much higher than 
in RAMA. The links connecting to the disked nodes were, as expected, more heavily 
used by file system messages than those away from the disked nodes, as Fig. 13 shows. 
The overall amount of file system message traffic was similar for RAMA and striping. 
However, RAMA’s messages were more evenly spread through the interconnection 

- < 1%  I  3%  -  4%  

-  l%-2%  I  4%  -  5%  

I  2%  -  3%  m  >  5%  

Fig. 12. Interconnection network load under RAMA. Each of the shaded nodes has a single disk attached, and 
all are being used to read a file at full speed. 
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Fig. 13. Interconnection network load under a striped file system with 8 disked nodes, each of which has 8 
disks attached. The program run is the same as in Fig. 12. 

torus. Thus, a side benefit for RAMA is better interconnection network load leveling 
from more uniform distribution of file system message traffic. 

5.3.2. Sensitivity to network performance 
Since RAMA distributes data to disks pseudo-randomly, it relies heavily on the MPP 

interconnection network to move data from where it is stored to where it is needed. As 
Section 5.3.1 showed, RAMA distributes its network load more evenly than standard 
striped file systems. However, what happens when network latency is increased or 
network bandwidth is decreased? We ran simulations of the RAMA file system using 
two network topologies: a toroidal mesh, as in Section 5.3.1 and a star network with 
finite-speed links and a hub with infinite bandwidth. Networks of workstations [l] are 
commonly interconnected using variations of a star network, albeit with a finitely fast 
hub. Our simulations show that RAMA performs well on star networks, even those with 
high latency and relatively low bandwidth. Thus, we believe RAMA would be suitable 
for a network of workstations as well as for more traditional MPPs. 

RAMA relies on high network bandwidth to move data between the disk the data is 
stored on and the MPP node requesting it. Links of 100 MB/s allow RAMA to run at 
full speed without congesting the interconnection network. Our first simulations tested 
the effects of varying network bandwidth on the time required to read a large file. While 
RAMA does not suffer much of a performance loss at lower bandwidths, it does cause 
more network congestion. Since MPP applications make heavy use of the interconnec- 
tion network, they may run slower when the file system places a heavy load on the 
network links. Fig. 14 shows the total time needed to read a 32 GB file and the average 
load per network link for various link bandwidths on a 16 X 8 processor mesh. It takes 
less than 1% more time to read a file with 10 MB/s links than it does with 200 MB/s 
links. However, the average link load is, as expected, 20 times higher for the 15 MB/s 
links than for the 200 MB/s links. If the network links are, on average, 30% loaded by 
the file system, any applications that use the interconnection network will likely run 
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interconnection network on RAMA read 

slower due to link contention. Thus, low bandwidth links are not acceptable for MPPs 
running, large scientific applications. However, a 30% load on the network links would 
be acceptable for workstation file service since file data is normally a large component 
of network traffic in such systems. Additionally, most workstation programs do not rely 
heavily on high-bandwidth low-latency network communications and would not be 
adversely affected by the relatively high network load. 

Writing a 32 GB file produces a curve similar to that of the 32 GB read, as Fig. 15 
shows. Again, file system bandwidth remains relatively constant while link bandwidth 
drops from 200 to 10 MB/s. The disks, not the network links, were the bottleneck in 
both the read and write cases. While a 10 MB/s network takes 100 ms to deliver a 
megabyte of data, a single disk takes at least half a second to read or write the same 
data. A single one megabyte file request is split into many smaller requests, each sent to 
a pseudo-randomly chosen disk. Since each node in the MPP is doing the same thing, 
each disk receives many small I/O requests. As network speed decreases, some of the 
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disk I/O requests are delayed. However, those same I/OS must wait even longer for the 
disk to finish servicing the first few requests. Thus, the file system’s speed is limited by 
disk bandwidth. As long as the interconnection network remains close to an order of 
magnitude faster than disk, RAMA will perform at full efficiency for large reads and 
writes. 

The results of a simulation using a workstation-style network are shown in Fig. 16. 
This set of simulations uses a star network (also called a hub-and-spoke network) rather 
than a toroidal mesh to connect all of the nodes, more closely resembling a network of 
workstations. The RAMA design provides the same bandwidth in this configuration as 
in the mesh configuration, but average link utilizations are lower for a star network. In 
an x X y mesh network, each message between client and disk must traverse an average 
of x/4 + y/4 links. If the overall file system delivers b MB/s of data, each link must 
carry b( x/4 + y/4)/(2n) MB/ s, where the MPP is composed of n = xy nodes. In a 
star network with n nodes, however, each message only crosses two links - the link to 
the client node and the link to the disk node. Since there is only one connection to each 
node, however, each link carries 2b/n MB/s. A star interconnection network will thus 
run RAMA better than a mesh network with the same number of nodes and the same 
link bandwidth whenever (x + y) > 16. However, mesh networks scale much better than 
star networks. In a star network, all traffic must pass through a central hub. Building a 
hub that can support sufficiently high bandwidths between any two of hundreds of nodes 
is expensive, as the hub may require additional components to support the added 
bandwidth. On the other hand, adding nodes to a mesh simply involves replicating a 
basic network interface. Nonetheless, the RAMA design performs sufficiently well on a 
relatively slow star network to permit its use as a file system for a network of 
workstations. 

Another important network measure is the overhead required to send a packet of 
information from one node to another. Most of this overhead is due to software, 
particularly managing the protocol stack and routing messages. Modem computer 
systems can take anywhere from 1 to 2000 ps to send out a single message. This delay 
is largely a software delay caused by a multi-layered network protocol stack. Fortu- 
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Fig. 17. Effects of varying network message latency on RAMA performance on a 16 X 8 toroidal mesh (top) 
and 128 node star network (bottom). The mesh network has 100 MB/s links, while the star network has 25 
MB/s links. 

nately, this penalty is usually paid only once per packet, even if the data is transmitted 
as many physical-layer packets and must traverse several network links. 

The network model used in the RAMA simulations charges the overhead at the 
source node before the data is placed into the network. Since this overhead is typically a 
software delay, the physical network link is not considered in use during this period. 
Incoming or traversing messages may thus use the link while an outgoing message is in 
the process of being sent. Long message latencies can potentially lower overall file 
system performance by increasing the total response time for I/O requests. In particular, 
a read incurs two delays - one in sending the request, and the other in replying with 
the requested data. 

The RAMA simulations, however, show that message latency has little effect on file 
system performance on large files, as file system performance is disk-limited. While 
long message latencies also added to the source node’s processor utilization, they did not 
saturate it in any of the experiments. Fig. 17 shows RAMA’s performance as network 
message latency increases from 5 to 2500 ps. The increase in message latency causes 
less than a 2% increase in the time needed to read a 32 GB file. Since the total elapsed 
time and total bandwidth show little change, link utilization also varies little as message 
latency increases. 
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This lack of variation is unexpected, as two delays of 2.5 ms each should add 5 ms to 
the length of each file request. However, there are two reasons why the variation due to 
message latency is so small. First, average response time for an individual disk request 
- in this case 32 KB - is nearly 300 ms. While requests use the disk for only 18.45 
ms each, every processor issues 32 requests to various disks to read a total of 1 MB 
from disk every iteration. For a 128 processor system, this results in 4096 requests 
being, issued at once, for an average of 32 requests per disk. Since all of the requests are 
made at the same time, each request will wait, on average, for half of the 32 requests for 
its disk to finish before it begins service. This incurs a delay of approximately 280 ms 
which, when added to the average service time of 18 ms, yields a response time of just 
under 300 ms. An increase of 5 ms in a 300 ms request is less than 2%, in contrast to the 
27% increase from a 5 ms increase to an 18 ms request. 

Additionally, the disks themselves distribute replies over time. This effect is similar 
to the one that occurs for slower network links. The entire file system request is delayed 
by the message latency from the last disk request to complete. However, the latencies 
for the other messages do not increase the time needed to complete the file system 
request. While these latencies do make each individual message take longer, only the 
finishing time of the last disk request determines when the entire file system request 
finishes. The data from the other disk requests will be available to the requesting node, 
regardless of message latency, before the arrival of the data from the last disk request to 
complete. 

6. Small file performance 

A major attraction of the RAMA file system is that it performs well on high-volume 
small file workloads as well as on supercomputer workloads. The workloads in Fig. 18 
use constant file sizes requested at different rates to generate each curve. Rather than use 
a closed system in which a fixed number of processes make requests as rapidly as 
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Fig. 18. RAMA read performance for small files. 
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possible, the RAMA simulator schedules requests according to a Poisson process whose 
average size and request rate are parameters to the workload. If there are too many 
outstanding requests, the simulator throttles the workload by delaying until an unfinished 
request completes, avoiding infinite queue growth. 

RAMA has low latency for small file transfers, enabling workstations connected to an 
MPP to access files directly instead of copying them to and from the MPP file system. 
Fig. 18 shows RAMA’s simulated performance on transfers of small files, 75% of which 
are reads. Even for 32 KB files, RAMA’s performance does not begin to decline until 
the average request rate exceeds 40 requests per MPP node (and disk) per second. For 
the 16 X 8 processor mesh in Fig. 18, this is an average rate of over 5000 requests per 
second. 

RAMA is able to maintain this high level of performance for small files because file 
data is already distributed pseudo-randomly. The request stream from a workstation 
network results in a disk request stream similar to that for a single large file - both 
request lots of data in a somewhat random fashion. As with large files, no layout 
information need be supplied for small files, allowing workstations to use standard Unix 
file access semantics. 

7. Future work 

The simulation results in this paper show that the RAMA file system design has great 
promise as a file system for future massively parallel machines. Many questions still 
remain to be answered, however. Issues to be explored further include RAMA’s 
integration with tertiary storage and file migration, the testing of additional parallel 
applications, and the actual implementation of the RAMA file system using the 
experience gained from simulation. 

One of the main attractions of RAMA for a scientific environment is its tight 
integration with tertiary storage. RAMA provides a facility unique among file systems 
for scientific storage - support for partial file migration. We are exploring file 
migration algorithms, considering partial file migration and other developments in the 
fifteen years since Ref. [25]. 

We are hoping to build a prototype version of RAMA on a parallel processor. This 
can be done in two ways: as a software library layered over a generic file system, or as a 
replacement for an MPP file system. The first approach would be simpler, but the latter 
will prove a better test of RAMA’s ideas. A true RAMA system will provide a good 
testbed for I/O-intensive parallel applications. Running real programs on this testbed 
will show that programmers need not spend their energy trying to lay data out on disk; 
the file system can do the job just as well using pseudo-random placement. 

An implementation of RAMA will also be a good place to explore RAMA’s design 
space. How much consecutive file data should be stored on a disk before randomly 
selecting another? How big should a disk line be? How will performance be affected as 
disk lines fill and allocation becomes more difficult? A RAMA prototype will allow us 
to address these issues by experimenting on a real system. 
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8. Conclusions 

Traditional multiprocessor file systems use striping to provide good performance to 
massively parallel applications. However, they depend on the application to provide the 
file system with placement hints. In the absence of such hints, performance may degrade 
by a factor of four or more, depending on the interaction between the program’s data 
layout and the file system’s striping. 

RAMA avoids the performance degradation of poorly configured striped file systems 
by using pseudo-random distribution. Under this scheme, an application is unlikely to 
create hot spots on disk or in the network because the data is not stored in an orderly 
fashion. Laying files on disk pseudo-randomly costs, at most, lo-20% of overall 
performance when compared to applications that stripe data optimally. However, 
optimal data striping can be difficult to achieve. Applications using striped file systems 
may increase their execution time by a factor of four if they choose a poor data layout. 
This choice need not be the fault of the programmer, as simply using a machine with its 
disks configured differently can cause an application’s I/O to run much less efficiently. 
RAMA’s performance, on the other hand, varies little for different data layouts in 
full-speed file transfers, matrix decomposition, and other parallel codes. 

The flexibility that RAMA provides does not exact a high price in multiprocessor 
hardware, however. RAMA allows MPP designers to use inexpensive commodity disks 
and the high-speed interconnection network that most MPPs already have. It is designed 
to run on an MPP built from replicated units of processor-memory-disk, rather than the 
traditional processor-memory units. This method of building MPPs removes the need 
for a very high bandwidth link between an MPP and its disks; instead, the file system 
uses the high-speed network that already exists in a multiprocessor. Since the file system 
is disk-limited, though, the network is never heavily loaded. 

Disks, too, are utilized well in RAMA. Pseudo-random distribution insures an even 
distribution of data to disks. Disk requests are evenly distributed to disks in time as well 
as in space. Thus, no disk serves as a bottleneck by servicing too many requests at any 
time. In addition, all disks are used nearly equally at every step of an I/O-intensive 
application without the need for data placement hints. 

The simulations of both synthetic traces and cores of real applications show that the 
pseudo-random data distribution used in RAMA provides good performance while 
eliminating dependence on user configuration, While RAMA’s performance may be 
lo-15% lower than an optimally configured striped file system, it provides a factor of 
four or more performance improvement over a striped file system with a poor layout. It 
is this portability and scalability that make RAMA an excellent file system choice for 
the multiprocessors of the future. 
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