Computer Hard Drive Geolocation by HTTP Feature Extraction

Technical Report UCSC-SSRC-12-04 May 2012

Ziqian WanAlex J. NelsonTao Liwan.ziqian@gmail.comajnelson@cs.ucsc.edulitao@scu.edu.cn

Darrell D. E. Long darrell@cs.ucsc.edu Andy Hospodor hospodor@soe.ucsc.edu

Storage Systems Research Center Baskin School of Engineering University of California, Santa Cruz Santa Cruz, CA 95064 http://www.ssrc.ucsc.edu/

Computer Hard Drive Geolocation by HTTP Feature Extraction

Ziqian Wan Sichuan University Alex J. Nelson University of California, Santa Cruz Tao Li Sichuan University

Darrell D. E. Long University of California, Santa Cruz Andy Hospodor University of California, Santa Cruz

Abstract

Geolocation data have high value to forensic investigators because computer activities may be associated with physical locations in the past. However, locating and extracting useful location information from an off-line disk image is a difficult problem. Most forensic investigations employ tools that focus on extracting content, such as emails, databases, and hidden or deleted data, and then manually investigate the results with practices like keyword searches. While this can work on a drive-by-drive basis, without a uniform approach to the location question, it is easy for an investigator to miss an answer that could be found from an evaluated technique known to other investigators.

To determine drive location, we develop a two-step approach that analyzes a drive image for geolocation purposes, finding substantial location information in HTTP headers from common and default sources. First, we extract HTTP headers from the memory page (swap) files that reside on the hard drive. Second, we apply a weight based algorithm that parses those headers to determine the past geographical locations of the drive. We apply our method to drive images from the publicly available M57 Patents corpus and identify the hard drives' location with low recall but high precision.

1 Introduction

The locations of a computer are valuable data in forensic investigations. However, investigators may only have a subject's powered-off computer and need evidence that pinpoints where it has been in the past. For example, one may need to corroborate a suspect's given travel story with evidence from their laptop. Today, this is often a difficult and manually intensive task. An automated method for extracting geographic information from the hard drive image would allow the investigators to spend less time finding forensic data and more time analyzing it.

We have devised a method to automatically recognize a computer's recent locations, solely by analyzing the HTTP header content from prominent websites. Our method exploits the web sites' practice of embedding the user's location in a recognizable metadata field. We found several major web sites, including the Windows default home page of Internet Explorer, provide a discoverable geolocation artifact in a predictable location.

Our method works around several significant challenges with hard drive geolocation, compared to network host location, including:

- 1. The only resource we have for hard drive location is the hard drive image itself. We cannot access real time memory data.
- 2. Real time feedback or data flow from the network is also not available to us. Thus, network based location methods, such as latency measurement [2], are not suitable for hard drive geolocation.
- 3. IP addresses, an old standard for locating a computer, suffer from a "Time shift" problem: The recorded address may not be valid by the time of an investigation.

While IP addresses are of classic utility for geolocation, we focus instead on evaluating the location value of HTTP headers in this work. We compare IP addresses' value for our data in a later section.

1.1 Our contribution

In this paper, we describe a tool we developed that extracts HTTP headers from the page file residing on the hard drive. We describe the tool's two step method in Section 3. We apply our approach to a realistic and available

 $^{^{\}ast} \rm Ziqian$ Wan performed this work at the University of California, Santa Cruz.

data set described in Section 4. Experiments show that our method is nearly perfectly accurate with hard drives that contain geographic information within the HTTP headers, though those features were only available on 17% of our tested disk images. However, we found evidence that these features are highly likely to be available on computers that use default Windows settings.

2 Related work

Katz *et al.* proposed geolocating an Internet host by measuring the latency of packets crossing the Internet [12]. Arif *et al.* used an improved algorithm for network latency measurement [2]. Unfortunately, these methods require real time feedback on the Internet and are not suitable for offline hard drive geolocation.

IP address location has been the most common method for network host (server) geolocation. McCurley [15] and Buyukkokten *et al.* [5] used WHOIS lookup to build a database of IP address local information. They applied this database to web pages. The US Census Bureau provides a *Gazetteer*¹ constructed using the names of cities, counties and states extracted from US Census data [18]. Additional location data sets, such as Geolite [14], provide the place name, area code and longitude/latitude related to IP addresses.

Many web sites detect the geographic information of the client and provide related advertisements or services according to the user's current location. There has been much work done in the reverse as well, where the web server is located instead from its given resources. Muir and Oorschot provided a survey of Internet host geolocation technologies [16]. Wang *et al.* divided the web resources into three categories: provider location, content location and serving location [19]. Separately, Wang *et al.* proposed a method to detect geographic locations from these three types of web resources [20]. While this research could be applicable if we were analyzing users' web cache content, we focus instead on where the server believes the user is.

Extraction of geographic features from a web resource is another method employed in network geolocation. Many web resources, such as web pages and web sites, have associated geographic features [1, 5, 13, 15]. For example, Jones *et al.* found that local web pages are more likely to provide customized services according to the client's region, such as local weather report, local advertisements and tailored context services [11]. Many web sites first detect the geographic information of the client and then provide related advertisements and customized services according to the current user's location.

To focus on *client* geolocation, we extend the approach used by Garfinkel [8] and Beverly *et al.* [4] in applying regular expressions across regions of arbitrary data (a basic form of *carving*). Their original work focused on IP address, email addresses, bank account numbers, telephone numbers, zip codes and URLs. Like Garfinkel and Beverly, we extracted IP addresses by using a module of Bulk Extractor [9]. We performed ground truth experiments to map all the IPs to Google maps according to the Geolite database [14]. While we found that we could extract the IP address from an image's host, we also realized that it was difficult to differentiate the vast number of IP addresses in the corpus for geolocation purposes, which we discuss later.

In this paper, we introduce a new method for hard drive geolocation that focuses on extracting and analyzing the HTTP headers residing within memory that has been swapped to disk. We perform our geolocation technique without any network dependence, unlike all related work except Garfinkel [8] and Beverly *et al.* [4]. We propose an algorithm that extracts the geolocation information from these HTTP headers and correlates the hits to a likely physical location.

3 Analytical procedures

This section discusses the extraction procedure we conducted to determine a hard drive's geolocation. We describe the HTTP header nomenclature in Section 3.1 and salient memory features found in the Windows page file in Section 3.2. The HTTP header extraction method is proposed in Section 3.3. We then present the geolocating method in Section 3.4.

3.1 HTTP header nomenclature

We use these terms throughout the rest of the paper. They are drawn from the HTTP Protocol RFC [7].

HTTP header field: this component of the message header defines an operating parameter of an HTTP transaction request or response. A header field is divided into a *name* and *value* separated by a colon.

HTTP header: this is a list of header fields.

Cookie field: this field of the HTTP header identifies a user to a server, with a server-supplied token. The token content is entirely decided by the web server, with a *Set*-*Cookie* header field. This state information is retained on the user's computer and returned to the website during a subsequent HTTP request.

¹A gazetteer is a geographical dictionary or directory, an important reference for information about places and place names.

Date field: describes the date and time that the HTTP message was sent.

HTTP headers are fairly easy to locate with text search: Each header begins with "HTTP/version number." In case we search through a page file and part of the text is reclaimed by arbitrary data, we note that characters falling outside a restricted set close to printable ASCII are not supposed to be found in headers, and particularly cookies [3, Section 4.1.1]. Such data are possibly valid header field values, as the cookie data are defined as octets which need not decode to valid UTF-8, and can be over 4KiB in length [3, Sections 5.4 and 6.1]. However, we have observed such data in neither the page files of the M57 corpus; nor the page files of a set of computers acquired in China, part of a larger research data set of real user data [10].

3.2 Important features in the page file

The page file residing on the hard drive contains uncommonly used RAM pages. Many recent network connections may be present. From that network data, we analyze IP addresses and then HTTP headers.

Ma and Tanaka [13] proposed that most web resources contain web pages, which have geographic features. Location based web applications can provide tailored information according to a user's location, such as local weather reports, location-based web search, and local advertisements. We found some web sites with significant amounts of traffic, such as CNN and The Financial Times, also record this location in the session cookie, illustrated in Figure 1. When the user visits the same web page or domain again, the user's web browser reads this cookie from disk and provides it to the web page or domain, placing another artifact in RAM.

This HTTP header information resides within the main memory of the client and will be lost if the system is powered off or the memory is overwritten. However, if the system needs more memory to deal with additional applications, these HTTP headers may be paged to the hard drive. Also, if the computer was suspended or hibernated this important data would end up in a file such as hiberfil.sys. For this paper, we focus on the Windows page file, as it was uniformly available in the M57 corpus.

3.3 Extracting HTTP headers

To extract headers from the page file, we perform string search. The regular expression "HTTP/1. d" indicates a header, so we extract all the recognized header fields that immediately follow that regular expression match.

Figure 1: Cookie in the HTTP header, with the user's location used as part of the identifier.

A scan of the entire page file produces an HTTP header listing. Our locating method extracts the geographic information from this listing and calculates the image's location with the algorithm in the following section.

3.4 Locating algorithm

Our locating method used the 2010 U.S. Census Gazetteer [18] to ground the geographic references, extracted from HTTP headers, to a specific location.

We build two lists of US states, one for the state's full name and the other one for its two letter abbreviation. A city name list is built for each state, and each geographic item in the gazetteer has a weight value as shown in Figure 2. We extract each HTTP header cookie field to build a cookie list. Each state's full name and abbreviated name are searched through every cookie in the list. If we find one state's name in the cookie field, then we search that cookie for all the known cities within that state. If we match a city name then we increment that city's weight². If we cannot find a city name in the same cookie, then, it's assumed to be a false positive. If the city's name is the same as its state's name, such as New York city is part of New York state, we do not increase its weight value unless it appears more than once. Finally, the city whose weight value is the highest is considered to be the domain location of the drive image. Our locating algorithm is described in algorithm 1.

²Oddly enough, in experiments on personal data not included in Section 4, we found we did not need to apply character decoding (*e. g.* uudecode) to find multi-word cities, such as "Santa Cruz."

Figure 2: The gazetteer data structure supporting our city lookup algorithm. Locations are counted by identifying if a state string and city string are both identified in an HTTP header.

4 **Experiments**

We verify our method using drive images with known locations, from the M57 Patents research scenario [6, 21]. This collection of drives comes from a fictitious company called M57 Patents, which started operation on November 13th, 2009, and ceased operation on December 12, 2009. The scenario was developed in Monterey, California, USA. At least one disk image was taken for each of four employees every day, by rebooting their desktop Windows workstations into a Linux environment at day's end. The four employees in this company are: Charlie, Pat, Terry and Jo. The total data set has seventy-nine disk images, with an additional four non-computer storage images not considered.

4.1 Analysis of HTTP header

Figure 3 shows in hexedit view one HTTP header residing on Charlie's image when he visited the Financial Times web site on November 23rd. As can be seen in the cookie field, the user's location and then-IP address are embedded. Figure 4 shows that HTTP header resides on Pat's image when he visited the MSNBC web site on November 23rd. We see here that the cookie field contains his city and zip code.

We find the tracking information left by local.msn.com to be substantial, which empowers this geolocation method. local.msn.com stores the user's city, zip code and latitude/longitude in the cookie. msn.com loads local.msn.com for a local weather report, generating a location artifact in RAM. This is significant because msn.com is the default web page for Windows, as observed in US-localized copies of version XP and 7. Hence, if a Windows computer does not have its default home page changed, the default browser on-open behavior of viewing the home page leaves timestamped geolocation evidence in memory.

From the time information, one seems more likely to find recent locations from HTTP headers. We extracted the Date field of each header, parsing the value with the dateutil Python library [17], to determine the overall header age distribution. For simplicity of parsing, we only counted Date values that didn't end with "GMT." From Figures 5 and 6, we can see many HTTP headers are paged to the hard drive on the same day that the image was built. That means if a location is recorded, it will be a recent location.

These headers also clarified an inaccuracy in the file system timestamps of pagefile.sys. As we processed the M57 data, XP and Vista machines, we found the mtime was typically accurate to only within the last day or two of activity. For instance, some Monday images left the page file's mtime as late in the previous week. Making the assumption that the header times were not perturbed in memory after being received from the sending web servers, these embedded timestamps within the page file present a more accurate picture of the system's recent use time.

4.2 Drive location

We processed the M57 data set with our locationidentifying method. Table 1 shows the results with the place name and weight value of each image. Although all images in this data set were from Monterey, California, US, we were only able to identify a location – any location – for fourteen of the images. The other images did

034519C0	50002100	5A010802	00000000	2F636F6E	74656E74	2F696D61	6765732F	37326161	P.!.Z/content/images/72aa
034519E0	35316263	2D343438	642D3131	64652D38	3264362D	30303134	34666561	62646330	51bc-448d-11de-82d6-00144feabdc0
03451A00	2E696D67	20485454	502F312E	310D0A48	6F73743A	20696D2E	6D656469	612E6674	.img HTTP/1.1Host: im.media.ft
03451A20	2E636F6D	0D0A5573	65722D41	67656E74	3A204D6F	7A696C6C	612F352E	30202857	.comUser-Agent: Mozilla/5.0 (W
03451A40	696E646F	77733B20	553B2057	696E646F	7773204E	5420352E	313B2065	6E2D5553	indows; U; Windows NT 5.1; en-US
03451A60	3B207276	3A312E39	2E312E35	29204765	636B6F2F	32303039	31313032	20466972	; rv:1.9.1.5) Gecko/20091102 Fir
03451A80	65666F78	2F332E35	2E350D0A	41636365	70743A20	696D6167	652F706E	672C696D	efox/3.5.5Accept: image/png,im
03451AA0	6167652F	2A3B713D	302E382C	2A2F2A3B	713D302E	350D0A41	63636570	742D4C61	age/*;q=0.8,*/*;q=0.5Accept-La
03451AC0	6E677561	67653A20	656E2D75	732C656E	3B713D30	2E350D0A	41636365	70742D45	nguage: en-us, en; q=0.5Accept-E
03451AE0	6E636F64	696E673A	20677A69	702C6465	666C6174	650D0A41	63636570	742D4368	ncoding: gzip, deflateAccept-Ch
03451B00	61727365	743A2049	534F2D38	3835392D	312C7574	662D383B	713D302E	372C2A3B	arset: ISO-8859-1,utf-8;q=0.7,*;
03451B20	713D302E	370D0A4B	6565702D	416C6976	653A2033	30300D0A	436F6E6E	65637469	q=0.7Keep-Alive: 300Connecti
03451B40	6F6E3A20	6B656570	2D616C69	76650D0A	52656665	7265723A	20687474	703A2F2F	on: keep-aliveReferer: http://
03451B60	7777772E	66742E63	6F6D2F68	6F6D652F	75730D0A	436F6F6B	69653A20	41595343	www.ft.com/home/usCookie: AYSC
03451B80	3D5F3034	63615F31	33555341	5F313455	53415F31	37736F75	74687765	73745F31	=_04ca_13USA_14USA_17southwest_1
03451BA0	386D6F6E	74657265	795F3234	6E6F7274	68253235	3230616D	65726963	615F3235	8monterey_24north%2520america_25
03451BC0	68696768	5F323638	33315F32	37505654	5F3B2046	54557365	72547261	636B3D32	high_26831_27PVT_; FTUserTrack=2
03451BE0	30352E31	35352E36	352E3130	332E3431	34343132	35383430	37383931	3934373B	05.155.65.103.41441258407891947;
03451C00	20727369	5F736567	733D4A30	37373137	5F313032	39363B20	475A4950	3D313B20	rsi_segs=J07717_10296; GZIP=1;
03451C20	46544D44	3D71763B	20727369	5F63743D	32303039	5F31315F	32333A31	ODOAODOA	FTMD=qv; rsi_ct=2009_11_23:1

Figure 3: A nearly-intact HTTP request header residing on Charlie's image for Nov. 23rd, as displayed by hexedit. Byte addresses are within-file addresses of pagefile.sys. We observe the cookie field, highlighted, includes what appear to be an accurate city, IP address (205.155.65.103, whose location resolves to Monterey, CA) and an accurate date (2009_11_23).

12FB7C20	25324361	61353730	44002100	8C010A02	00000000	2F646566	61756C74	2E617368	%2Caa570D.!/default.ash
12FB7C40	782F6964	2F323732	38373230	32204854	54502F31	2E310D0A	41636365	70743A20	x/id/27287202 HTTP/1.1Accept:
12FB7C60	2A2F2A0D	0A526566	65726572	3A206874	74703A2F	2F777777	2E6D736E	62632E6D	*/*Referer: http://www.msnbc.m
12FB7C80	736E2E63	6F6D2F69	642F3333	38393130	37382F6E	732F7465	63686E6F	6C6F6779	sn.com/id/33891078/ns/technology
12FB7CA0	5F616E64	5F736369	656E6365	2D737061	63652F3F	4754313D	34333030	310D0A41	_and_science-space/?GT1=43001A
12FB7CC0	63636570	742D4C61	6E677561	67653A20	656E2D75	730D0A55	7365722D	4167656E	ccept-Language: en-usUser-Agen
12FB7CE0	743A204D	6F7A696C	6C612F34	2E302028	636F6D70	61746962	6C653B20	4D534945	t: Mozilla/4.0 (compatible; MSIE
12FB7D00	20382E30	3B205769	6E646F77	73204E54	20352E31	3B205472	6964656E	742F342E	8.0; Windows NT 5.1; Trident/4.
12FB7D20	30290D0A	41636365	70742D45	6E636F64	696E673A	20677A69	702C2064	65666C61	0)Accept-Encoding: gzip, defla
12FB7D40	74650D0A	486F7374	3A207777	772E6D73	6E62632E	6D736E2E	636F6D0D	0A436F6E	teHost: www.msnbc.msn.comCon
12FB7D60	6E656374	696F6E3A	204B6565	702D416C	6976650D	0A <mark>436F6F</mark>	6B69653A	204D4331	nection: Keep-AliveCookie: MC1
12FB7D80	3D563D33	26475549	443D6437	33616364	64656139	63313439	66623839	31343263	=V=3&GUID=d73acddea9c149fb89142c
12FB7DA0	62306132	35613330	62633B20	4D554944	3D443639	35434139	38413936	44343433	b0a25a30bc; MUID=D695CA98A96D443
12FB7DC0	45394636	42414346	45453533	39433133	353B206D	683D4D53	46543B20	43433D55	E9F6BACFEE539C135; mh=MSFT; CC=U
12FB7DE0	533B2043	554C5455	52453D45	4E2D5553	3B207A69	703D7A3A	39333934	307C6C61	S; CULTURE=EN-US; zip=z:93940 la
12FB7E00	3A33362E	367C6C6F	3A2D3132	312E3839	317C633A	55537C68	723A313B	2051313D	:36.6 lo:-121.891 c:US hr:1; Q1=
12FB7E20	39333934	302C6D6F	6E746572	65792063	612C756E	69746564	20737461	7465732C	93940, monterey, ca, united states,
12FB7E40	75730D0A	0D0A7469	1D004400	4B006502	A0C36E01	28F84A01	436F6F6B	69653A20	ustiD.K.en.(.J.Cookie:

Figure 4: One HTTP header residing in pagefile.sys of Pat's image for Nov. 16th. Similar to Figure 3, specific location information is reported within the cookie identifier.

not contain enough geographic information in their HTTP headers for accurate geolocation.

There are 29,513 cities in the U.S. according to the 2010 Census Gazetteer. Fourteen images in the M57 corpus had the geographic HTTP headers, and all these images were geolocated to Monterey, California.

4.3 Comparison with IP-based location

We also performed ground truth experiments on the M57 corpus to analyze the feasibility of the IP geolocation method and compared it with our method. We used a module of Bulk Extractor [9] to extract IP addresses and the Geolite data [14] for February, 2011 to assign loca-

Table 1: The highest non-zero location weights of M57. All weights were for Monterey, California.

Image Owner	Date	RAM Size	Pagefile Size	Weight value
Charlie	20091116	1 GiB	2046 MiB	174
Charlie	20091117	1 GiB	2046 MiB	42
Charlie	20091123	1 GiB	2046 MiB	87
Charlie	20091207	1 GiB	2046 MiB	142
Charlie	20091208	1 GiB	2046 MiB	89
Charlie	20091209	1 GiB	2046 MiB	58
Charlie	20091210	1 GiB	2046 MiB	58
Charlie	20091211	1 GiB	2046 MiB	58
Pat	20091116	256 MiB	768 MiB	9
Pat	20091117	256 MiB	768 MiB	1
Pat	20091118	256 MiB	768 MiB	1
Terry	20091116	2 GiB	1024 MiB	145
Terry	20091117	2 GiB	2346.3 MiB	120
Terry	20091118	2 GiB	2346.3 MiB	126

tions to them.³ We classified the location accuracy as

³Because this data set is more recent, we verified that the publicly visible IP address within the M57 scenario would still be listed as Monterey in these data.

			Non-distinct IPs Distinct IPs					
Image owner	Image date	Geolocatable	Geolocatable	Geolocatable	Geolocatable	Geolocatable	Geolocatable	Geolocatable HTTP headers
		to Monterey	in US	outside US	to Monterey	in US	outside US	
Charlie	20091116	4	5329	10671	1	1005	1577	174
Charlie	20091117	6	4894	10052	1	958	1577	42
Charlie	20091123	10	4810	10779	1	1011	1610	87
Charlie	20091203	12	4648	10849	1	977	1617	0
Charlie	20091204	12	4977	11808	1	988	1623	0
Charlie	20091207	12	4716	11031	1	972	1632	142
Charlie	20091208	12	4495	10809	1	965	1629	89
Charlie	20091209	12	4748	10944	1	990	1633	58
Charlie	20091210	52	4315	11328	1	979	1602	58
Charlie	20091211	52	4322	11307	1	979	1602	58
Pat	20091116	0	8640	12964	0	1020	1598	9
Pat	20091117	2	7356	12722	1	1025	1575	1
Pat	20091118	4	9440	13879	1	1062	1587	1
Pat	20091124	18	10806	16288	1	1019	1622	0
Pat	20091130	16	12148	16504	1	1053	1651	0
Pat	20091201	10	12115	16512	1	1029	1645	0
Pat	20091202	10	12047	15925	1	1077	1648	0
Pat	20091203	12	10262	15212	1	1048	1652	0
Pat	20091204	12	10163	15134	1	1014	1607	0
Pat	20091207	12	10488	15760	1	1015	1616	0
Pat	20091208	14	13055	18622	1	1015	1611	0
Pat	20091209	14	12755	17796	1	1021	1613	0
Pat	20091210	14	13279	18479	1	1042	1643	0
Pat	20091211	14	13976	19922	1	1045	1649	0
Terry	20091116	10	721000	64309	1	1510	2177	145
Terry	20091117	10	531300	63684	1	1494	2179	120
Terry	20091118	12	422137	68223	1	1512	2163	126
Terry	20091123	16	647091	78019	1	1422	2250	0

Table 2: The results of IP extracting compared with our method. The in-US counts include Monterey, CA.

correct-city, in-US (including Monterey), and non-US, and list the tallies in Table 2.

We found nineteen images had IP addresses that resolved in or geographically very close to Monterey. However, the quantity of in-city IP occurrences is orders of magnitude smaller than the quantity of IPs associated with other locations. Visual analysis from mapping the beginning and endpoints of supposed IP communications also laid the IP addresses literally all over the map, which leads us to believe Bulk Extractor produces significant amounts of false-positive IP addresses. We conclude that IP address geolocation can corroborate other location evidence, however there is a significant risk for false positive matches from extracted addresses that may simply be data misidentified as IPs.

5 Future considerations

We focused on extracting HTTP headers from the Windows page file to determine a drive's past location. Unfortunately, the recall rate from our data was fairly low. Also, our measurements of HTTP header dates (whether they had location information or not) in Figures 5 and 6 cast doubt on the longevity of the artifacts on which our location inference technique relies. While this work establishes that a location is discoverable through HTTP headers, we require additional, more diverse data to properly study how often and under what conditions headers yield location data. One data set we could consider is the Real Data Corpus [10], but unfortunately those data lack ground truth on locations of actual use.

We acknowledge, but did not consider the Windows hibernation file in this work. Our data came from desktop computers that were shut down at the end of their work days. One computer in the M57 corpus (Terry) was a Vista machine with some updates to its hiberfil.sys, noted in mtimes and checksums. However, the other three M57 computers were Windows XP machines without the hibernation file. We chose to use the uniformly available page files, which gave us sufficient network information to make claims about the host's location. We suspect that other data residing within the hibernation file, coupled with the growing popularity of laptop and handheld devices, will yield additional forensic information.

As operating systems and applications continue to grow in size they put an increasing burden on the paging system. As more information is paged onto the hard drive, even if it is later unallocated, our method becomes more effective.

6 Conclusion

In this paper, we proposed a method to extract geographic features from the hard drive images, focusing on page files containing HTTP artifacts. We developed an algorithm Algorithm 1 Locating method.

nput: HTTP header file, state list file, city list file
<i>statenamelist</i> = read from state list file
<i>fullnamelist</i> =read from state list file
<i>place</i> [][]= read from city list file
weight[][]
cookie[]
for <i>i</i> in len(<i>place</i>) do
for j in len($place[i]$) do
weight[i][j]=0
end for
end for
for <i>header</i> in HTTP header file do
$temp = header.split('\n')$
for i in len(temp) do
if <i>temp</i> [<i>i</i>].startswith('Cookie:') then
cookie.append(temp[i])
end if
end for
end for
for <i>i</i> in len(<i>cookie</i>) do
for stateindex in len(place) do
<pre>stateabbrnamecount=cookie[i].upper().find(</pre>
<pre>statenamelist[stateindex].upper())</pre>
<pre>statefullnamecount=cookie[i].upper().find(</pre>
fullnamelist[stateindex].upper())
count=stateabbrnamecount+statefullnamecount
if $count > 0$ then
for <i>cityindex</i> in len(<i>place</i> [<i>stateindex</i>]) do
<i>citycount=cookie</i> [<i>i</i>].upper().find(
state[stateindex][cityindex].upper())
if $citycount > 0$ then
weight[stateindex][cityindex]++
end if
end for
end if
end for
end for

to geolocate a hard drive image from HTTP headers, exploiting client-server session identifiers that contain the user's location. Experimental results on a publicly available disk image set showed that our method can identify a disk image's location when certain telling HTTP headers have been paged to disk. Our initial experiments focused on the United States, using location names from the US Census Bureau. In the future, a global gazetteer may extend our geolocation method to any named location on the planet.

Figure 5: Time stamps of HTTP headers on Nov. 17.

Acknowledgments

The authors would like to thank DJ Capelis, Zhike Zhang, Xiaoyan Zhu, Ranjana Rajendran, and the anonymous reviewers of IEEE Transactions on Information Forensics and Security for their valuable comments on this paper.

This product includes GeoLite data created by Max-Mind, available from http://www.maxmind.com/.

References

- [1] E. Amitay, N. Har'El, R. Sivan, and A. Soffer. Weba-Where: Geotagging web content. In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '04, pages 273–280, New York, NY, USA, 2004. ACM.
- [2] M. J. Arif, S. Karunasekera, and S. Kulkarni. GeoWeight: Internet host geolocation based on a probability model for latency measurements. In *Pro-*

ceedings of the Thirty-Third Australasian Conference on Computer Science, volume 102 of *ACSC* '10, pages 89–98, Darlinghurst, Australia, 2010. Australian Computer Society, Inc.

- [3] A. Barth. RFC 6265: HTTP State Management Mechanism, 2011.
- [4] R. Beverly, S. Garfinkel, and G. Cardwell. Forensic carving of network packets and associated data structures. *Digital Investigation*, 8:S78–S89, 2011.
- [5] O. Buyukkokten, J. Cho, H. Garcia-Molina, L. Gravano, and N. Shivakumar. Exploiting geographical location information of web pages. In ACM SIGMOD Workshop on The Web and Databases (WebDB'99), 1999.
- [6] DigitalCorpora.org. M57 Patents Scenario Disk Images. http:// digitalcorpora.org/corpora/ scenarios/m57-patents-scenario, 2009. Accessed December 2010.
- [7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol–HTTP/1.1, 1999.
- [8] S. Garfinkel. Forensic feature extraction and crossdrive analysis. *Digital Investigation*, 3:71–81, 2006.
- [9] S. Garfinkel. Bulk Extractor 1.0.0. http:// afflib.org/software/bulk_extractor, June 2011. Accessed June 2011.
- [10] S. L. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt. Bringing science to digital forensics with standardized forensic corpora. In *Proceedings of the 9th Annual Digital Forensic Research Workshop (DFRWS)*, Quebec, Canada, August 2009.
- [11] M. Jones, P. Jain, G. Buchanan, and G. Marsden. Using a mobile device to vary the pace of search. *Human-Computer Interaction with Mobile Devices and Services*, pages 390–394, 2003.
- [12] E. Katz-Bassett, J. John, A. Krishnamurthy, D. Wetherall, T. Anderson, and Y. Chawathe. Towards IP geolocation using delay and topology measurements. In *Proceedings of the 6th ACM SIG-COMM Conference on Internet Measurement*, pages 71–84. ACM, 2006.

- [13] Q. Ma and K. Tanaka. Retrieving regional information from web by contents localness and user location. In S. Myaeng, M. Zhou, K.-F. Wong, and H.-J. Zhang, editors, *Information Retrieval Technology*, volume 3411 of *Lecture Notes in Computer Science*, pages 301–312. Springer Berlin / Heidelberg, 2005.
- [14] MaxMind, Inc. GeoLite City. http://www. maxmind.com/app/geolitecity, 2010. Accessed December 2010.
- [15] K. S. McCurley. Geospatial mapping and navigation of the web. In *Proceedings of the 10th International Conference on World Wide Web*, pages 221– 229. ACM, 2001.
- [16] J. A. Muir and P. C. van Oorschot. Internet geolocation: Evasion and counterevasion. ACM Computing Surveys, 42:4:1–4:23, December 2009.
- [17] G. Niemeyer. python-dateutil. http://labix. org/python-dateutil, 2011. Accessed January 2012.
- [18] US Census Bureau. 2010 Gazetteer. http://www.census.gov/geo/www/ gazetteer/gazette.html, 2010. Accessed July 2011.
- [19] C. Wang, X. Xie, L. Wang, Y. Lu, and W. Ma. Web resource geographic location classification and detection. In *Special Interest Tracks and Posters of the 14th International Conference on World Wide Web*, pages 1138–1139. ACM, 2005.
- [20] C. Wang, X. Xie, L. Wang, Y. Lu, and W. Y. Ma. Detecting geographic locations from web resources. In *Proceedings of the 2005 Workshop on Geographic Information Retrieval*, pages 17–24. ACM, 2005.
- [21] K. Woods, C. Lee, S. Garfinkel, D. Dittrich, A. Russel, and K. Kearton. Creating realistic corpora for forensic and security education. In 2011 ADFSL Conference on Digital Forensics, Security and Law, Richmond, VA, 2011. Elsevier.