
Computer Hard Drive Geolocation by HTTP
Feature Extraction

Technical Report UCSC-SSRC-12-04
May 2012

Ziqian Wan Alex J. Nelson Tao Li
wan.ziqian@gmail.com ajnelson@cs.ucsc.edu litao@scu.edu.cn

Darrell D. E. Long Andy Hospodor
darrell@cs.ucsc.edu hospodor@soe.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

Computer Hard Drive Geolocation by HTTP Feature Extraction

Ziqian Wan
Sichuan University

Alex J. Nelson
University of California, Santa Cruz

Tao Li
Sichuan University

Darrell D. E. Long
University of California, Santa Cruz

Andy Hospodor
University of California, Santa Cruz

Abstract
Geolocation data have high value to forensic investigators
because computer activities may be associated with physi-
cal locations in the past. However, locating and extracting
useful location information from an off-line disk image
is a difficult problem. Most forensic investigations em-
ploy tools that focus on extracting content, such as emails,
databases, and hidden or deleted data, and then manu-
ally investigate the results with practices like keyword
searches. While this can work on a drive-by-drive basis,
without a uniform approach to the location question, it is
easy for an investigator to miss an answer that could be
found from an evaluated technique known to other inves-
tigators.

To determine drive location, we develop a two-step ap-
proach that analyzes a drive image for geolocation pur-
poses, finding substantial location information in HTTP
headers from common and default sources. First, we ex-
tract HTTP headers from the memory page (swap) files
that reside on the hard drive. Second, we apply a weight
based algorithm that parses those headers to determine the
past geographical locations of the drive. We apply our
method to drive images from the publicly available M57
Patents corpus and identify the hard drives’ location with
low recall but high precision.

1 Introduction
The locations of a computer are valuable data in foren-
sic investigations. However, investigators may only have
a subject’s powered-off computer and need evidence that
pinpoints where it has been in the past. For example, one
may need to corroborate a suspect’s given travel story with
evidence from their laptop. Today, this is often a diffi-
cult and manually intensive task. An automated method

⇤Ziqian Wan performed this work at the University of California,
Santa Cruz.

for extracting geographic information from the hard drive
image would allow the investigators to spend less time
finding forensic data and more time analyzing it.

We have devised a method to automatically recog-
nize a computer’s recent locations, solely by analyzing
the HTTP header content from prominent websites. Our
method exploits the web sites’ practice of embedding the
user’s location in a recognizable metadata field. We found
several major web sites, including the Windows default
home page of Internet Explorer, provide a discoverable
geolocation artifact in a predictable location.

Our method works around several significant chal-
lenges with hard drive geolocation, compared to network
host location, including:

1. The only resource we have for hard drive location is
the hard drive image itself. We cannot access real
time memory data.

2. Real time feedback or data flow from the network is
also not available to us. Thus, network based loca-
tion methods, such as latency measurement [2], are
not suitable for hard drive geolocation.

3. IP addresses, an old standard for locating a computer,
suffer from a “Time shift” problem: The recorded
address may not be valid by the time of an investiga-
tion.

While IP addresses are of classic utility for geolocation,
we focus instead on evaluating the location value of HTTP
headers in this work. We compare IP addresses’ value for
our data in a later section.

1.1 Our contribution
In this paper, we describe a tool we developed that ex-
tracts HTTP headers from the page file residing on the
hard drive. We describe the tool’s two step method in Sec-
tion 3. We apply our approach to a realistic and available

data set described in Section 4. Experiments show that our
method is nearly perfectly accurate with hard drives that
contain geographic information within the HTTP head-
ers, though those features were only available on 17% of
our tested disk images. However, we found evidence that
these features are highly likely to be available on comput-
ers that use default Windows settings.

2 Related work
Katz et al. proposed geolocating an Internet host by mea-
suring the latency of packets crossing the Internet [12].
Arif et al. used an improved algorithm for network la-
tency measurement [2]. Unfortunately, these methods re-
quire real time feedback on the Internet and are not suit-
able for offline hard drive geolocation.

IP address location has been the most common method
for network host (server) geolocation. McCurley [15] and
Buyukkokten et al. [5] used WHOIS lookup to build a
database of IP address local information. They applied
this database to web pages. The US Census Bureau pro-
vides a Gazetteer1 constructed using the names of cities,
counties and states extracted from US Census data [18].
Additional location data sets, such as Geolite [14], pro-
vide the place name, area code and longitude/latitude re-
lated to IP addresses.

Many web sites detect the geographic information of
the client and provide related advertisements or services
according to the user’s current location. There has been
much work done in the reverse as well, where the web
server is located instead from its given resources. Muir
and Oorschot provided a survey of Internet host geolo-
cation technologies [16]. Wang et al. divided the web
resources into three categories: provider location, con-
tent location and serving location [19]. Separately, Wang
et al. proposed a method to detect geographic locations
from these three types of web resources [20]. While this
research could be applicable if we were analyzing users’
web cache content, we focus instead on where the server
believes the user is.

Extraction of geographic features from a web resource
is another method employed in network geolocation.
Many web resources, such as web pages and web sites,
have associated geographic features [1, 5, 13, 15]. For ex-
ample, Jones et al. found that local web pages are more
likely to provide customized services according to the
client’s region, such as local weather report, local adver-
tisements and tailored context services [11]. Many web
sites first detect the geographic information of the client

1A gazetteer is a geographical dictionary or directory, an important
reference for information about places and place names.

and then provide related advertisements and customized
services according to the current user’s location.

To focus on client geolocation, we extend the approach
used by Garfinkel [8] and Beverly et al. [4] in apply-
ing regular expressions across regions of arbitrary data (a
basic form of carving). Their original work focused on
IP address, email addresses, bank account numbers, tele-
phone numbers, zip codes and URLs. Like Garfinkel and
Beverly, we extracted IP addresses by using a module of
Bulk Extractor [9]. We performed ground truth experi-
ments to map all the IPs to Google maps according to the
Geolite database [14]. While we found that we could ex-
tract the IP address from an image’s host, we also realized
that it was difficult to differentiate the vast number of IP
addresses in the corpus for geolocation purposes, which
we discuss later.

In this paper, we introduce a new method for hard
drive geolocation that focuses on extracting and analyz-
ing the HTTP headers residing within memory that has
been swapped to disk. We perform our geolocation tech-
nique without any network dependence, unlike all related
work except Garfinkel [8] and Beverly et al. [4]. We pro-
pose an algorithm that extracts the geolocation informa-
tion from these HTTP headers and correlates the hits to a
likely physical location.

3 Analytical procedures
This section discusses the extraction procedure we con-
ducted to determine a hard drive’s geolocation. We de-
scribe the HTTP header nomenclature in Section 3.1 and
salient memory features found in the Windows page file
in Section 3.2. The HTTP header extraction method is
proposed in Section 3.3. We then present the geolocating
method in Section 3.4.

3.1 HTTP header nomenclature
We use these terms throughout the rest of the paper. They
are drawn from the HTTP Protocol RFC [7].

HTTP header field: this component of the message
header defines an operating parameter of an HTTP trans-
action request or response. A header field is divided into
a name and value separated by a colon.

HTTP header: this is a list of header fields.
Cookie field: this field of the HTTP header identifies a

user to a server, with a server-supplied token. The token
content is entirely decided by the web server, with a Set-
Cookie header field. This state information is retained on
the user’s computer and returned to the website during a
subsequent HTTP request.

Date field: describes the date and time that the HTTP
message was sent.

HTTP headers are fairly easy to locate with text search:
Each header begins with “HTTP/version number.” In
case we search through a page file and part of the text is re-
claimed by arbitrary data, we note that characters falling
outside a restricted set close to printable ASCII are not
supposed to be found in headers, and particularly cook-
ies [3, Section 4.1.1]. Such data are possibly valid header
field values, as the cookie data are defined as octets which
need not decode to valid UTF-8, and can be over 4KiB
in length [3, Sections 5.4 and 6.1]. However, we have
observed such data in neither the page files of the M57
corpus; nor the page files of a set of computers acquired
in China, part of a larger research data set of real user data
[10].

3.2 Important features in the page file
The page file residing on the hard drive contains uncom-
monly used RAM pages. Many recent network connec-
tions may be present. From that network data, we analyze
IP addresses and then HTTP headers.

Ma and Tanaka [13] proposed that most web resources
contain web pages, which have geographic features. Lo-
cation based web applications can provide tailored in-
formation according to a user’s location, such as local
weather reports, location-based web search, and local ad-
vertisements. We found some web sites with significant
amounts of traffic, such as CNN and The Financial Times,
also record this location in the session cookie, illustrated
in Figure 1. When the user visits the same web page or do-
main again, the user’s web browser reads this cookie from
disk and provides it to the web page or domain, placing
another artifact in RAM.

This HTTP header information resides within the main
memory of the client and will be lost if the system is
powered off or the memory is overwritten. However, if
the system needs more memory to deal with additional
applications, these HTTP headers may be paged to the
hard drive. Also, if the computer was suspended or hi-
bernated this important data would end up in a file such as
hiberfil.sys. For this paper, we focus on the Win-
dows page file, as it was uniformly available in the M57
corpus.

3.3 Extracting HTTP headers
To extract headers from the page file, we perform string
search. The regular expression “HTTP/1.\d” indicates
a header, so we extract all the recognized header fields
that immediately follow that regular expression match.

Figure 1: Cookie in the HTTP header, with the user’s lo-
cation used as part of the identifier.

A scan of the entire page file produces an HTTP header
listing. Our locating method extracts the geographic in-
formation from this listing and calculates the image’s lo-
cation with the algorithm in the following section.

3.4 Locating algorithm

Our locating method used the 2010 U.S. Census Gazetteer
[18] to ground the geographic references, extracted from
HTTP headers, to a specific location.

We build two lists of US states, one for the state’s full
name and the other one for its two letter abbreviation. A
city name list is built for each state, and each geographic
item in the gazetteer has a weight value as shown in Figure
2. We extract each HTTP header cookie field to build a
cookie list. Each state’s full name and abbreviated name
are searched through every cookie in the list. If we find
one state’s name in the cookie field, then we search that
cookie for all the known cities within that state. If we
match a city name then we increment that city’s weight2.
If we cannot find a city name in the same cookie, then, it’s
assumed to be a false positive. If the city’s name is the
same as its state’s name, such as New York city is part of
New York state, we do not increase its weight value unless
it appears more than once. Finally, the city whose weight
value is the highest is considered to be the domain location
of the drive image. Our locating algorithm is described in
algorithm 1.

2Oddly enough, in experiments on personal data not included in Sec-
tion 4, we found we did not need to apply character decoding (e. g.
uudecode) to find multi-word cities, such as “Santa Cruz.”

Figure 2: The gazetteer data structure supporting our city lookup algorithm. Locations are counted by identifying if a
state string and city string are both identified in an HTTP header.

4 Experiments
We verify our method using drive images with known lo-
cations, from the M57 Patents research scenario [6, 21].
This collection of drives comes from a fictitious company
called M57 Patents, which started operation on Novem-
ber 13th, 2009, and ceased operation on December 12,
2009. The scenario was developed in Monterey, Califor-
nia, USA. At least one disk image was taken for each
of four employees every day, by rebooting their desktop
Windows workstations into a Linux environment at day’s
end. The four employees in this company are: Charlie,
Pat, Terry and Jo. The total data set has seventy-nine disk
images, with an additional four non-computer storage im-
ages not considered.

4.1 Analysis of HTTP header
Figure 3 shows in hexedit view one HTTP header residing
on Charlie’s image when he visited the Financial Times
web site on November 23rd. As can be seen in the cookie
field, the user’s location and then-IP address are embed-
ded. Figure 4 shows that HTTP header resides on Pat’s
image when he visited the MSNBC web site on Novem-
ber 23rd. We see here that the cookie field contains his
city and zip code.

We find the tracking information left by local.msn.com
to be substantial, which empowers this geolocation
method. local.msn.com stores the user’s city, zip code
and latitude/longitude in the cookie. msn.com loads lo-
cal.msn.com for a local weather report, generating a loca-
tion artifact in RAM. This is significant because msn.com
is the default web page for Windows, as observed in
US-localized copies of version XP and 7. Hence, if a
Windows computer does not have its default home page

changed, the default browser on-open behavior of viewing
the home page leaves timestamped geolocation evidence
in memory.

From the time information, one seems more likely to
find recent locations from HTTP headers. We extracted
the Date field of each header, parsing the value with the
dateutil Python library [17], to determine the over-
all header age distribution. For simplicity of parsing, we
only counted Date values that didn’t end with “GMT.”
From Figures 5 and 6, we can see many HTTP headers
are paged to the hard drive on the same day that the image
was built. That means if a location is recorded, it will be
a recent location.

These headers also clarified an inaccuracy in the file
system timestamps of pagefile.sys. As we pro-
cessed the M57 data, XP and Vista machines, we found
the mtime was typically accurate to only within the last
day or two of activity. For instance, some Monday im-
ages left the page file’s mtime as late in the previous week.
Making the assumption that the header times were not per-
turbed in memory after being received from the sending
web servers, these embedded timestamps within the page
file present a more accurate picture of the system’s recent
use time.

4.2 Drive location

We processed the M57 data set with our location-
identifying method. Table 1 shows the results with the
place name and weight value of each image. Although all
images in this data set were from Monterey, California,
US, we were only able to identify a location – any loca-
tion – for fourteen of the images. The other images did

034519C0 50002100 5A010802 00000000 2F636F6E 74656E74 2F696D61 6765732F 37326161 P.!.Z......./content/images/72aa
034519E0 35316263 2D343438 642D3131 64652D38 3264362D 30303134 34666561 62646330 51bc-448d-11de-82d6-00144feabdc0
03451A00 2E696D67 20485454 502F312E 310D0A48 6F73743A 20696D2E 6D656469 612E6674 .img HTTP/1.1..Host: im.media.ft
03451A20 2E636F6D 0D0A5573 65722D41 67656E74 3A204D6F 7A696C6C 612F352E 30202857 .com..User-Agent: Mozilla/5.0 (W
03451A40 696E646F 77733B20 553B2057 696E646F 7773204E 5420352E 313B2065 6E2D5553 indows; U; Windows NT 5.1; en-US
03451A60 3B207276 3A312E39 2E312E35 29204765 636B6F2F 32303039 31313032 20466972 ; rv:1.9.1.5) Gecko/20091102 Fir
03451A80 65666F78 2F332E35 2E350D0A 41636365 70743A20 696D6167 652F706E 672C696D efox/3.5.5..Accept: image/png,im
03451AA0 6167652F 2A3B713D 302E382C 2A2F2A3B 713D302E 350D0A41 63636570 742D4C61 age/*;q=0.8,*/*;q=0.5..Accept-La
03451AC0 6E677561 67653A20 656E2D75 732C656E 3B713D30 2E350D0A 41636365 70742D45 nguage: en-us,en;q=0.5..Accept-E
03451AE0 6E636F64 696E673A 20677A69 702C6465 666C6174 650D0A41 63636570 742D4368 ncoding: gzip,deflate..Accept-Ch
03451B00 61727365 743A2049 534F2D38 3835392D 312C7574 662D383B 713D302E 372C2A3B arset: ISO-8859-1,utf-8;q=0.7,*;
03451B20 713D302E 370D0A4B 6565702D 416C6976 653A2033 30300D0A 436F6E6E 65637469 q=0.7..Keep-Alive: 300..Connecti
03451B40 6F6E3A20 6B656570 2D616C69 76650D0A 52656665 7265723A 20687474 703A2F2F on: keep-alive..Referer: http://
03451B60 7777772E 66742E63 6F6D2F68 6F6D652F 75730D0A 436F6F6B 69653A20 41595343 www.ft.com/home/us..Cookie: AYSC
03451B80 3D5F3034 63615F31 33555341 5F313455 53415F31 37736F75 74687765 73745F31 =_04ca_13USA_14USA_17southwest_1
03451BA0 386D6F6E 74657265 795F3234 6E6F7274 68253235 3230616D 65726963 615F3235 8monterey_24north%2520america_25
03451BC0 68696768 5F323638 33315F32 37505654 5F3B2046 54557365 72547261 636B3D32 high_26831_27PVT_; FTUserTrack=2
03451BE0 30352E31 35352E36 352E3130 332E3431 34343132 35383430 37383931 3934373B 05.155.65.103.41441258407891947;
03451C00 20727369 5F736567 733D4A30 37373137 5F313032 39363B20 475A4950 3D313B20 rsi_segs=J07717_10296; GZIP=1;
03451C20 46544D44 3D71763B 20727369 5F63743D 32303039 5F31315F 32333A31 0D0A0D0A FTMD=qv; rsi_ct=2009_11_23:1....

Figure 3: A nearly-intact HTTP request header residing on Charlie’s image for Nov. 23rd, as displayed by hexedit.
Byte addresses are within-file addresses of pagefile.sys. We observe the cookie field, highlighted, includes what
appear to be an accurate city, IP address (205.155.65.103, whose location resolves to Monterey, CA) and an
accurate date (2009 11 23).
12FB7C20 25324361 61353730 44002100 8C010A02 00000000 2F646566 61756C74 2E617368 %2Caa570D.!........./default.ash
12FB7C40 782F6964 2F323732 38373230 32204854 54502F31 2E310D0A 41636365 70743A20 x/id/27287202 HTTP/1.1..Accept:
12FB7C60 2A2F2A0D 0A526566 65726572 3A206874 74703A2F 2F777777 2E6D736E 62632E6D */*..Referer: http://www.msnbc.m
12FB7C80 736E2E63 6F6D2F69 642F3333 38393130 37382F6E 732F7465 63686E6F 6C6F6779 sn.com/id/33891078/ns/technology
12FB7CA0 5F616E64 5F736369 656E6365 2D737061 63652F3F 4754313D 34333030 310D0A41 _and_science-space/?GT1=43001..A
12FB7CC0 63636570 742D4C61 6E677561 67653A20 656E2D75 730D0A55 7365722D 4167656E ccept-Language: en-us..User-Agen
12FB7CE0 743A204D 6F7A696C 6C612F34 2E302028 636F6D70 61746962 6C653B20 4D534945 t: Mozilla/4.0 (compatible; MSIE
12FB7D00 20382E30 3B205769 6E646F77 73204E54 20352E31 3B205472 6964656E 742F342E 8.0; Windows NT 5.1; Trident/4.
12FB7D20 30290D0A 41636365 70742D45 6E636F64 696E673A 20677A69 702C2064 65666C61 0)..Accept-Encoding: gzip, defla
12FB7D40 74650D0A 486F7374 3A207777 772E6D73 6E62632E 6D736E2E 636F6D0D 0A436F6E te..Host: www.msnbc.msn.com..Con
12FB7D60 6E656374 696F6E3A 204B6565 702D416C 6976650D 0A436F6F 6B69653A 204D4331 nection: Keep-Alive..Cookie: MC1
12FB7D80 3D563D33 26475549 443D6437 33616364 64656139 63313439 66623839 31343263 =V=3&GUID=d73acddea9c149fb89142c
12FB7DA0 62306132 35613330 62633B20 4D554944 3D443639 35434139 38413936 44343433 b0a25a30bc; MUID=D695CA98A96D443
12FB7DC0 45394636 42414346 45453533 39433133 353B206D 683D4D53 46543B20 43433D55 E9F6BACFEE539C135; mh=MSFT; CC=U
12FB7DE0 533B2043 554C5455 52453D45 4E2D5553 3B207A69 703D7A3A 39333934 307C6C61 S; CULTURE=EN-US; zip=z:93940|la
12FB7E00 3A33362E 367C6C6F 3A2D3132 312E3839 317C633A 55537C68 723A313B 2051313D :36.6|lo:-121.891|c:US|hr:1; Q1=
12FB7E20 39333934 302C6D6F 6E746572 65792C63 612C756E 69746564 20737461 7465732C 93940,monterey,ca,united states,
12FB7E40 75730D0A 0D0A7469 1D004400 4B006502 A0C36E01 28F84A01 436F6F6B 69653A20 us....ti..D.K.e...n.(.J.Cookie:

Figure 4: One HTTP header residing in pagefile.sys of Pat’s image for Nov. 16th. Similar to Figure 3, specific
location information is reported within the cookie identifier.

not contain enough geographic information in their HTTP
headers for accurate geolocation.

There are 29,513 cities in the U.S. according to the
2010 Census Gazetteer. Fourteen images in the M57 cor-
pus had the geographic HTTP headers, and all these im-
ages were geolocated to Monterey, California.

4.3 Comparison with IP-based location

We also performed ground truth experiments on the M57
corpus to analyze the feasibility of the IP geolocation
method and compared it with our method. We used a
module of Bulk Extractor [9] to extract IP addresses and
the Geolite data [14] for February, 2011 to assign loca-

Table 1: The highest non-zero location weights of M57.
All weights were for Monterey, California.

Image Owner Date RAM Size Pagefile Size Weight value
Charlie 20091116 1 GiB 2046 MiB 174
Charlie 20091117 1 GiB 2046 MiB 42
Charlie 20091123 1 GiB 2046 MiB 87
Charlie 20091207 1 GiB 2046 MiB 142
Charlie 20091208 1 GiB 2046 MiB 89
Charlie 20091209 1 GiB 2046 MiB 58
Charlie 20091210 1 GiB 2046 MiB 58
Charlie 20091211 1 GiB 2046 MiB 58
Pat 20091116 256 MiB 768 MiB 9
Pat 20091117 256 MiB 768 MiB 1
Pat 20091118 256 MiB 768 MiB 1
Terry 20091116 2 GiB 1024 MiB 145
Terry 20091117 2 GiB 2346.3 MiB 120
Terry 20091118 2 GiB 2346.3 MiB 126

tions to them.3 We classified the location accuracy as
3Because this data set is more recent, we verified that the publicly

visible IP address within the M57 scenario would still be listed as Mon-
terey in these data.

Table 2: The results of IP extracting compared with our method. The in-US counts include Monterey, CA.

Image owner Image date
Non-distinct IPs Distinct IPs

Geolocatable HTTP headersGeolocatable Geolocatable Geolocatable Geolocatable Geolocatable Geolocatable
to Monterey in US outside US to Monterey in US outside US

Charlie 20091116 4 5329 10671 1 1005 1577 174
Charlie 20091117 6 4894 10052 1 958 1577 42
Charlie 20091123 10 4810 10779 1 1011 1610 87
Charlie 20091203 12 4648 10849 1 977 1617 0
Charlie 20091204 12 4977 11808 1 988 1623 0
Charlie 20091207 12 4716 11031 1 972 1632 142
Charlie 20091208 12 4495 10809 1 965 1629 89
Charlie 20091209 12 4748 10944 1 990 1633 58
Charlie 20091210 52 4315 11328 1 979 1602 58
Charlie 20091211 52 4322 11307 1 979 1602 58
Pat 20091116 0 8640 12964 0 1020 1598 9
Pat 20091117 2 7356 12722 1 1025 1575 1
Pat 20091118 4 9440 13879 1 1062 1587 1
Pat 20091124 18 10806 16288 1 1019 1622 0
Pat 20091130 16 12148 16504 1 1053 1651 0
Pat 20091201 10 12115 16512 1 1029 1645 0
Pat 20091202 10 12047 15925 1 1077 1648 0
Pat 20091203 12 10262 15212 1 1048 1652 0
Pat 20091204 12 10163 15134 1 1014 1607 0
Pat 20091207 12 10488 15760 1 1015 1616 0
Pat 20091208 14 13055 18622 1 1015 1611 0
Pat 20091209 14 12755 17796 1 1021 1613 0
Pat 20091210 14 13279 18479 1 1042 1643 0
Pat 20091211 14 13976 19922 1 1045 1649 0
Terry 20091116 10 721000 64309 1 1510 2177 145
Terry 20091117 10 531300 63684 1 1494 2179 120
Terry 20091118 12 422137 68223 1 1512 2163 126
Terry 20091123 16 647091 78019 1 1422 2250 0

correct-city, in-US (including Monterey), and non-US,
and list the tallies in Table 2.

We found nineteen images had IP addresses that re-
solved in or geographically very close to Monterey. How-
ever, the quantity of in-city IP occurrences is orders of
magnitude smaller than the quantity of IPs associated with
other locations. Visual analysis from mapping the begin-
ning and endpoints of supposed IP communications also
laid the IP addresses literally all over the map, which
leads us to believe Bulk Extractor produces significant
amounts of false-positive IP addresses. We conclude that
IP address geolocation can corroborate other location evi-
dence, however there is a significant risk for false positive
matches from extracted addresses that may simply be data
misidentified as IPs.

5 Future considerations
We focused on extracting HTTP headers from the Win-
dows page file to determine a drive’s past location. Un-
fortunately, the recall rate from our data was fairly low.
Also, our measurements of HTTP header dates (whether
they had location information or not) in Figures 5 and
6 cast doubt on the longevity of the artifacts on which
our location inference technique relies. While this work
establishes that a location is discoverable through HTTP
headers, we require additional, more diverse data to prop-
erly study how often and under what conditions headers

yield location data. One data set we could consider is the
Real Data Corpus [10], but unfortunately those data lack
ground truth on locations of actual use.

We acknowledge, but did not consider the Windows hi-
bernation file in this work. Our data came from desktop
computers that were shut down at the end of their work
days. One computer in the M57 corpus (Terry) was a
Vista machine with some updates to its hiberfil.sys,
noted in mtimes and checksums. However, the other three
M57 computers were Windows XP machines without the
hibernation file. We chose to use the uniformly available
page files, which gave us sufficient network information
to make claims about the host’s location. We suspect
that other data residing within the hibernation file, cou-
pled with the growing popularity of laptop and handheld
devices, will yield additional forensic information.

As operating systems and applications continue to grow
in size they put an increasing burden on the paging sys-
tem. As more information is paged onto the hard drive,
even if it is later unallocated, our method becomes more
effective.

6 Conclusion

In this paper, we proposed a method to extract geographic
features from the hard drive images, focusing on page files
containing HTTP artifacts. We developed an algorithm

Algorithm 1 Locating method.
Input: HTTP header file, state list file, city list file

statenamelist= read from state list file
f ullnamelist =read from state list file
place[][]= read from city list file
weight[][]
cookie[]
for i in len(place) do

for j in len(place[i]) do
weight[i][j]=0

end for
end for
for header in HTTP header file do

temp = header.split(‘\n’)
for i in len(temp) do

if temp[i].startswith(‘Cookie:’) then
cookie.append(temp[i])

end if
end for

end for
for i in len(cookie) do

for stateindex in len(place) do
stateabbrnamecount=cookie[i].upper().find(
statenamelist[stateindex].upper())
state f ullnamecount=cookie[i].upper().find(
f ullnamelist[stateindex].upper())
count=stateabbrnamecount+state f ullnamecount
if count >0 then

for cityindex in len(place[stateindex]) do
citycount=cookie[i].upper().find(
state[stateindex][cityindex].upper())
if citycount >0 then

weight[stateindex][cityindex]++
end if

end for
end if

end for
end for

to geolocate a hard drive image from HTTP headers, ex-
ploiting client-server session identifiers that contain the
user’s location. Experimental results on a publicly avail-
able disk image set showed that our method can identify a
disk image’s location when certain telling HTTP headers
have been paged to disk. Our initial experiments focused
on the United States, using location names from the US
Census Bureau. In the future, a global gazetteer may ex-
tend our geolocation method to any named location on the
planet.

Figure 5: Time stamps of HTTP headers on Nov. 17.

Figure 6: Time stamps of HTTP headers on Nov. 23.

Acknowledgments
The authors would like to thank DJ Capelis, Zhike Zhang,
Xiaoyan Zhu, Ranjana Rajendran, and the anonymous re-
viewers of IEEE Transactions on Information Forensics
and Security for their valuable comments on this paper.

This product includes GeoLite data created by Max-
Mind, available from http://www.maxmind.com/.

References
[1] E. Amitay, N. Har’El, R. Sivan, and A. Soffer. Web-

a-Where: Geotagging web content. In Proceed-
ings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’04, pages 273–280, New
York, NY, USA, 2004. ACM.

[2] M. J. Arif, S. Karunasekera, and S. Kulkarni. Ge-
oWeight: Internet host geolocation based on a prob-
ability model for latency measurements. In Pro-

ceedings of the Thirty-Third Australasian Confer-
ence on Computer Science, volume 102 of ACSC
’10, pages 89–98, Darlinghurst, Australia, 2010.
Australian Computer Society, Inc.

[3] A. Barth. RFC 6265: HTTP State Management
Mechanism, 2011.

[4] R. Beverly, S. Garfinkel, and G. Cardwell. Foren-
sic carving of network packets and associated data
structures. Digital Investigation, 8:S78–S89, 2011.

[5] O. Buyukkokten, J. Cho, H. Garcia-Molina, L. Gra-
vano, and N. Shivakumar. Exploiting geographi-
cal location information of web pages. In ACM
SIGMOD Workshop on The Web and Databases
(WebDB’99), 1999.

[6] DigitalCorpora.org. M57 Patents
Scenario Disk Images. http://
digitalcorpora.org/corpora/
scenarios/m57-patents-scenario,
2009. Accessed December 2010.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Mas-
inter, P. Leach, and T. Berners-Lee. RFC 2616: Hy-
pertext Transfer Protocol–HTTP/1.1, 1999.

[8] S. Garfinkel. Forensic feature extraction and cross-
drive analysis. Digital Investigation, 3:71–81, 2006.

[9] S. Garfinkel. Bulk Extractor 1.0.0. http://
afflib.org/software/bulk_extractor,
June 2011. Accessed June 2011.

[10] S. L. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt.
Bringing science to digital forensics with standard-
ized forensic corpora. In Proceedings of the 9th An-
nual Digital Forensic Research Workshop (DFRWS),
Quebec, Canada, August 2009.

[11] M. Jones, P. Jain, G. Buchanan, and G. Marsden.
Using a mobile device to vary the pace of search.
Human-Computer Interaction with Mobile Devices
and Services, pages 390–394, 2003.

[12] E. Katz-Bassett, J. John, A. Krishnamurthy,
D. Wetherall, T. Anderson, and Y. Chawathe. To-
wards IP geolocation using delay and topology mea-
surements. In Proceedings of the 6th ACM SIG-
COMM Conference on Internet Measurement, pages
71–84. ACM, 2006.

[13] Q. Ma and K. Tanaka. Retrieving regional informa-
tion from web by contents localness and user loca-
tion. In S. Myaeng, M. Zhou, K.-F. Wong, and H.-
J. Zhang, editors, Information Retrieval Technology,
volume 3411 of Lecture Notes in Computer Science,
pages 301–312. Springer Berlin / Heidelberg, 2005.

[14] MaxMind, Inc. GeoLite City. http://www.
maxmind.com/app/geolitecity, 2010. Ac-
cessed December 2010.

[15] K. S. McCurley. Geospatial mapping and naviga-
tion of the web. In Proceedings of the 10th Interna-
tional Conference on World Wide Web, pages 221–
229. ACM, 2001.

[16] J. A. Muir and P. C. van Oorschot. Internet geoloca-
tion: Evasion and counterevasion. ACM Computing
Surveys, 42:4:1–4:23, December 2009.

[17] G. Niemeyer. python-dateutil. http://labix.
org/python-dateutil, 2011. Accessed Jan-
uary 2012.

[18] US Census Bureau. 2010 Gazetteer.
http://www.census.gov/geo/www/
gazetteer/gazette.html, 2010. Accessed
July 2011.

[19] C. Wang, X. Xie, L. Wang, Y. Lu, and W. Ma. Web
resource geographic location classification and de-
tection. In Special Interest Tracks and Posters of the
14th International Conference on World Wide Web,
pages 1138–1139. ACM, 2005.

[20] C. Wang, X. Xie, L. Wang, Y. Lu, and W. Y. Ma. De-
tecting geographic locations from web resources. In
Proceedings of the 2005 Workshop on Geographic
Information Retrieval, pages 17–24. ACM, 2005.

[21] K. Woods, C. Lee, S. Garfinkel, D. Dittrich, A. Rus-
sel, and K. Kearton. Creating realistic corpora for
forensic and security education. In 2011 ADFSL
Conference on Digital Forensics, Security and Law,
Richmond, VA, 2011. Elsevier.

